blob: f16f15381001b385339ad59c3a30cdb2974b350b [file] [log] [blame]
//! # Scroll
//!
//! ```text, no_run
//! _______________
//! ()==( (@==()
//! '______________'|
//! | |
//! | ἀρετή |
//! __)_____________|
//! ()==( (@==()
//! '--------------'
//!
//! ```
//!
//! Scroll is a library for efficiently and easily reading/writing types from byte arrays. All the builtin types are supported, e.g., `u32`, `i8`, etc., where the type is specified as a type parameter, or type inferred when possible. In addition, it supports zero-copy reading of string slices, or any other kind of slice. The library can be used in a no_std context as well; the [Error](enum.Error.html) type only has the `IO` and `String` variants if the default features are used, and is `no_std` safe when compiled without default features.
//!
//! There are 3 traits for reading that you can import:
//!
//! 1. [Pread](trait.Pread.html), for reading (immutable) data at an offset;
//! 2. [Gread](trait.Gread.html), for reading data at an offset which automatically gets incremented by the size;
//! 3. [IOread](trait.IOread.html), for reading _simple_ data out of a `std::io::Read` based interface, e.g., a stream. (**Note**: only available when compiled with `std`)
//!
//! Each of these interfaces also have their corresponding writer versions as well, e.g., [Pwrite](trait.Pwrite.html), [Gwrite](trait.Gwrite.html), and [IOwrite](trait.IOwrite.html), respectively.
//!
//! Most familiar will likely be the `Pread` trait (inspired from the C function), which in our case takes an immutable reference to self, an immutable offset to read at, (and _optionally_ a parsing context, more on that later), and then returns the deserialized value.
//!
//! Because self is immutable, _**all** reads can be performed in parallel_ and hence are trivially parallelizable.
//!
//! For most usecases, you can use [scroll_derive](https://docs.rs/scroll_derive) to annotate your types with `derive(Pread, Pwrite, IOread, IOwrite, SizeWith)` to automatically add sensible derive defaults, and you should be ready to roll. For more complex usescases, you can implement the conversion traits yourself, see the [context module](ctx/index.html) for more information.
//!
//! # Example
//!
//! A simple example demonstrates its flexibility:
//!
//! ```rust
//! use scroll::{ctx, Pread, LE};
//! let bytes: [u8; 4] = [0xde, 0xad, 0xbe, 0xef];
//!
//! // reads a u32 out of `b` with the endianness of the host machine, at offset 0, turbofish-style
//! let number: u32 = bytes.pread::<u32>(0).unwrap();
//! // ...or a byte, with type ascription on the binding.
//! let byte: u8 = bytes.pread(0).unwrap();
//!
//! //If the type is known another way by the compiler, say reading into a struct field, we can omit the turbofish, and type ascription altogether!
//!
//! // If we want, we can explicitly add a endianness to read with by calling `pread_with`.
//! // The following reads a u32 out of `b` with Big Endian byte order, at offset 0
//! let be_number: u32 = bytes.pread_with(0, scroll::BE).unwrap();
//! // or a u16 - specify the type either on the variable or with the beloved turbofish
//! let be_number2 = bytes.pread_with::<u16>(2, scroll::BE).unwrap();
//!
//! // Scroll has core friendly errors (no allocation). This will have the type `scroll::Error::BadOffset` because it tried to read beyond the bound
//! let byte: scroll::Result<i64> = bytes.pread(0);
//!
//! // Scroll is extensible: as long as the type implements `TryWithCtx`, then you can read your type out of the byte array!
//!
//! // We can parse out custom datatypes, or types with lifetimes
//! // if they implement the conversion trait `TryFromCtx`; here we parse a C-style \0 delimited &str (safely)
//! let hello: &[u8] = b"hello_world\0more words";
//! let hello_world: &str = hello.pread(0).unwrap();
//! assert_eq!("hello_world", hello_world);
//!
//! // ... and this parses the string if its space separated!
//! use scroll::ctx::*;
//! let spaces: &[u8] = b"hello world some junk";
//! let world: &str = spaces.pread_with(6, StrCtx::Delimiter(SPACE)).unwrap();
//! assert_eq!("world", world);
//! ```
//!
//! # `std::io` API
//!
//! Scroll can also read/write simple types from a `std::io::Read` or `std::io::Write` implementor. The built-in numeric types are taken care of for you. If you want to read a custom type, you need to implement the [FromCtx](trait.FromCtx.html) (_how_ to parse) and [SizeWith](ctx/trait.SizeWith.html) (_how_ big the parsed thing will be) traits. You must compile with default features. For example:
//!
//! ```rust
//! use std::io::Cursor;
//! use scroll::IOread;
//! let bytes_ = [0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0xef,0xbe,0x00,0x00,];
//! let mut bytes = Cursor::new(bytes_);
//!
//! // this will bump the cursor's Seek
//! let foo = bytes.ioread::<u64>().unwrap();
//! // ..ditto
//! let bar = bytes.ioread::<u32>().unwrap();
//! ```
//!
//! Similarly, we can write to anything that implements `std::io::Write` quite naturally:
//!
//! ```rust
//! use scroll::{IOwrite, LE, BE};
//! use std::io::{Write, Cursor};
//!
//! let mut bytes = [0x0u8; 10];
//! let mut cursor = Cursor::new(&mut bytes[..]);
//! cursor.write_all(b"hello").unwrap();
//! cursor.iowrite_with(0xdeadbeef as u32, BE).unwrap();
//! assert_eq!(cursor.into_inner(), [0x68, 0x65, 0x6c, 0x6c, 0x6f, 0xde, 0xad, 0xbe, 0xef, 0x0]);
//! ```
//!
//! # Advanced Uses
//!
//! Scroll is designed to be highly configurable - it allows you to implement various context (`Ctx`) sensitive traits, which then grants the implementor _automatic_ uses of the `Pread` and/or `Pwrite` traits.
//!
//! For example, suppose we have a datatype and we want to specify how to parse or serialize this datatype out of some arbitrary
//! byte buffer. In order to do this, we need to provide a [TryFromCtx](trait.TryFromCtx.html) impl for our datatype.
//!
//! In particular, if we do this for the `[u8]` target, using the convention `(usize, YourCtx)`, you will automatically get access to
//! calling `pread_with::<YourDatatype>` on arrays of bytes.
//!
//! ```rust
//! use scroll::{self, ctx, Pread, BE, Endian};
//!
//! struct Data<'a> {
//! name: &'a str,
//! id: u32,
//! }
//!
//! // note the lifetime specified here
//! impl<'a> ctx::TryFromCtx<'a, Endian> for Data<'a> {
//! type Error = scroll::Error;
//! // and the lifetime annotation on `&'a [u8]` here
//! fn try_from_ctx (src: &'a [u8], endian: Endian)
//! -> Result<(Self, usize), Self::Error> {
//! let offset = &mut 0;
//! let name = src.gread::<&str>(offset)?;
//! let id = src.gread_with(offset, endian)?;
//! Ok((Data { name: name, id: id }, *offset))
//! }
//! }
//!
//! let bytes = b"UserName\x00\x01\x02\x03\x04";
//! let data = bytes.pread_with::<Data>(0, BE).unwrap();
//! assert_eq!(data.id, 0x01020304);
//! assert_eq!(data.name.to_string(), "UserName".to_string());
//! ```
//!
//! Please see the [Pread documentation examples](trait.Pread.html#implementing-your-own-reader)
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "derive")]
#[allow(unused_imports)]
pub use scroll_derive::{Pread, Pwrite, SizeWith, IOread, IOwrite};
#[cfg(feature = "std")]
extern crate core;
pub mod ctx;
mod pread;
mod pwrite;
mod greater;
mod error;
mod endian;
mod leb128;
#[cfg(feature = "std")]
mod lesser;
pub use crate::endian::*;
pub use crate::pread::*;
pub use crate::pwrite::*;
pub use crate::greater::*;
pub use crate::error::*;
pub use crate::leb128::*;
#[cfg(feature = "std")]
pub use crate::lesser::*;
#[doc(hidden)]
pub mod export {
pub use ::core::result;
pub use ::core::mem;
}
#[cfg(test)]
mod tests {
#[allow(overflowing_literals)]
use super::{LE};
#[test]
fn test_measure_with_bytes() {
use super::ctx::MeasureWith;
let bytes: [u8; 4] = [0xef, 0xbe, 0xad, 0xde];
assert_eq!(bytes.measure_with(&()), 4);
}
#[test]
fn test_measurable() {
use super::ctx::SizeWith;
assert_eq!(8, u64::size_with(&LE));
}
//////////////////////////////////////////////////////////////
// begin pread_with
//////////////////////////////////////////////////////////////
macro_rules! pwrite_test {
($write:ident, $read:ident, $deadbeef:expr) => {
#[test]
fn $write() {
use super::{Pwrite, Pread, BE};
let mut bytes: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
let b = &mut bytes[..];
b.pwrite_with::<$read>($deadbeef, 0, LE).unwrap();
assert_eq!(b.pread_with::<$read>(0, LE).unwrap(), $deadbeef);
b.pwrite_with::<$read>($deadbeef, 0, BE).unwrap();
assert_eq!(b.pread_with::<$read>(0, BE).unwrap(), $deadbeef);
}
}
}
pwrite_test!(pwrite_and_pread_roundtrip_u16, u16, 0xbeef);
pwrite_test!(pwrite_and_pread_roundtrip_i16, i16, 0x7eef);
pwrite_test!(pwrite_and_pread_roundtrip_u32, u32, 0xbeefbeef);
pwrite_test!(pwrite_and_pread_roundtrip_i32, i32, 0x7eefbeef);
pwrite_test!(pwrite_and_pread_roundtrip_u64, u64, 0xbeefbeef7eef7eef);
pwrite_test!(pwrite_and_pread_roundtrip_i64, i64, 0x7eefbeef7eef7eef);
#[test]
fn pread_with_be() {
use super::{Pread};
let bytes: [u8; 2] = [0x7e, 0xef];
let b = &bytes[..];
let byte: u16 = b.pread_with(0, super::BE).unwrap();
assert_eq!(0x7eef, byte);
let bytes: [u8; 2] = [0xde, 0xad];
let dead: u16 = bytes.pread_with(0, super::BE).unwrap();
assert_eq!(0xdead, dead);
}
#[test]
fn pread() {
use super::{Pread};
let bytes: [u8; 2] = [0x7e, 0xef];
let b = &bytes[..];
let byte: u16 = b.pread(0).unwrap();
#[cfg(target_endian = "little")]
assert_eq!(0xef7e, byte);
#[cfg(target_endian = "big")]
assert_eq!(0x7eef, byte);
}
#[test]
fn pread_slice() {
use super::{Pread};
use super::ctx::StrCtx;
let bytes: [u8; 2] = [0x7e, 0xef];
let b = &bytes[..];
let iserr: Result<&str, _> = b.pread_with(0, StrCtx::Length(3));
assert!(iserr.is_err());
// let bytes2: &[u8] = b.pread_with(0, 2).unwrap();
// assert_eq!(bytes2.len(), bytes[..].len());
// for i in 0..bytes2.len() {
// assert_eq!(bytes2[i], bytes[i])
// }
}
#[test]
fn pread_str() {
use super::Pread;
use super::ctx::*;
let bytes: [u8; 2] = [0x2e, 0x0];
let b = &bytes[..];
let s: &str = b.pread(0).unwrap();
println!("str: {}", s);
assert_eq!(s.len(), bytes[..].len() - 1);
let bytes: &[u8] = b"hello, world!\0some_other_things";
let hello_world: &str = bytes.pread_with(0, StrCtx::Delimiter(NULL)).unwrap();
println!("{:?}", &hello_world);
assert_eq!(hello_world.len(), 13);
let hello: &str = bytes.pread_with(0, StrCtx::Delimiter(SPACE)).unwrap();
println!("{:?}", &hello);
assert_eq!(hello.len(), 6);
// this could result in underflow so we just try it
let _error = bytes.pread_with::<&str>(6, StrCtx::Delimiter(SPACE));
let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
println!("{:?}", &error);
assert!(error.is_ok());
}
#[test]
fn pread_str_weird() {
use super::Pread;
use super::ctx::*;
let bytes: &[u8] = b"";
let hello_world = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL));
println!("1 {:?}", &hello_world);
assert_eq!(hello_world.is_err(), true);
let error = bytes.pread_with::<&str>(7, StrCtx::Delimiter(SPACE));
println!("2 {:?}", &error);
assert!(error.is_err());
let bytes: &[u8] = b"\0";
let null = bytes.pread::<&str>(0).unwrap();
println!("3 {:?}", &null);
assert_eq!(null.len(), 0);
}
#[test]
fn pwrite_str_and_bytes() {
use super::{Pread, Pwrite};
use super::ctx::*;
let astring: &str = "lol hello_world lal\0ala imabytes";
let mut buffer = [0u8; 33];
buffer.pwrite(astring, 0).unwrap();
{
let hello_world = buffer.pread_with::<&str>(4, StrCtx::Delimiter(SPACE)).unwrap();
assert_eq!(hello_world, "hello_world");
}
let bytes: &[u8] = b"more\0bytes";
buffer.pwrite(bytes, 0).unwrap();
let more = bytes.pread_with::<&str>(0, StrCtx::Delimiter(NULL)).unwrap();
assert_eq!(more, "more");
let bytes = bytes.pread_with::<&str>(more.len() + 1, StrCtx::Delimiter(NULL)).unwrap();
assert_eq!(bytes, "bytes");
}
use std::error;
use std::fmt::{self, Display};
#[derive(Debug)]
pub struct ExternalError {}
impl Display for ExternalError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "ExternalError")
}
}
impl error::Error for ExternalError {
fn description(&self) -> &str {
"ExternalError"
}
fn cause(&self) -> Option<&dyn error::Error> { None}
}
impl From<super::Error> for ExternalError {
fn from(err: super::Error) -> Self {
//use super::Error::*;
match err {
_ => ExternalError{},
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct Foo(u16);
impl super::ctx::TryIntoCtx<super::Endian> for Foo {
type Error = ExternalError;
fn try_into_ctx(self, this: &mut [u8], le: super::Endian) -> Result<usize, Self::Error> {
use super::Pwrite;
if this.len() < 2 { return Err((ExternalError {}).into()) }
this.pwrite_with(self.0, 0, le)?;
Ok(2)
}
}
impl<'a> super::ctx::TryFromCtx<'a, super::Endian> for Foo {
type Error = ExternalError;
fn try_from_ctx(this: &'a [u8], le: super::Endian) -> Result<(Self, usize), Self::Error> {
use super::Pread;
if this.len() > 2 { return Err((ExternalError {}).into()) }
let n = this.pread_with(0, le)?;
Ok((Foo(n), 2))
}
}
#[test]
fn pread_with_iter_bytes() {
use super::{Pread};
let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
let bytes_to = &mut bytes_to[..];
let bytes_from = &bytes_from[..];
for i in 0..bytes_from.len() {
bytes_to[i] = bytes_from.pread(i).unwrap();
}
assert_eq!(bytes_to, bytes_from);
}
//////////////////////////////////////////////////////////////
// end pread_with
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
// begin gread_with
//////////////////////////////////////////////////////////////
macro_rules! g_test {
($read:ident, $deadbeef:expr, $typ:ty) => {
#[test]
fn $read() {
use super::Pread;
let bytes: [u8; 8] = [0xf, 0xe, 0xe, 0xb, 0xd, 0xa, 0xe, 0xd];
let mut offset = 0;
let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
assert_eq!(deadbeef, $deadbeef as $typ);
assert_eq!(offset, ::std::mem::size_of::<$typ>());
}
}
}
g_test!(simple_gread_u16, 0xe0f, u16);
g_test!(simple_gread_u32, 0xb0e0e0f, u32);
g_test!(simple_gread_u64, 0xd0e0a0d0b0e0e0f, u64);
g_test!(simple_gread_i64, 940700423303335439, i64);
macro_rules! simple_float_test {
($read:ident, $deadbeef:expr, $typ:ty) => {
#[test]
fn $read() {
use super::Pread;
let bytes: [u8; 8] = [0u8, 0, 0, 0, 0, 0, 224, 63];
let mut offset = 0;
let deadbeef: $typ = bytes.gread_with(&mut offset, LE).unwrap();
assert_eq!(deadbeef, $deadbeef as $typ);
assert_eq!(offset, ::std::mem::size_of::<$typ>());
}
};
}
simple_float_test!(gread_f32, 0.0, f32);
simple_float_test!(gread_f64, 0.5, f64);
macro_rules! g_read_write_test {
($read:ident, $val:expr, $typ:ty) => {
#[test]
fn $read() {
use super::{LE, BE, Pread, Pwrite};
let mut buffer = [0u8; 16];
let offset = &mut 0;
buffer.gwrite_with($val.clone(), offset, LE).unwrap();
let o2 = &mut 0;
let val: $typ = buffer.gread_with(o2, LE).unwrap();
assert_eq!(val, $val);
assert_eq!(*offset, ::std::mem::size_of::<$typ>());
assert_eq!(*o2, ::std::mem::size_of::<$typ>());
assert_eq!(*o2, *offset);
buffer.gwrite_with($val.clone(), offset, BE).unwrap();
let val: $typ = buffer.gread_with(o2, BE).unwrap();
assert_eq!(val, $val);
}
};
}
g_read_write_test!(gread_gwrite_f64_1, 0.25f64, f64);
g_read_write_test!(gread_gwrite_f64_2, 0.5f64, f64);
g_read_write_test!(gread_gwrite_f64_3, 0.064, f64);
g_read_write_test!(gread_gwrite_f32_1, 0.25f32, f32);
g_read_write_test!(gread_gwrite_f32_2, 0.5f32, f32);
g_read_write_test!(gread_gwrite_f32_3, 0.0f32, f32);
g_read_write_test!(gread_gwrite_i64_1, 0i64, i64);
g_read_write_test!(gread_gwrite_i64_2, -1213213211111i64, i64);
g_read_write_test!(gread_gwrite_i64_3, -3000i64, i64);
g_read_write_test!(gread_gwrite_i32_1, 0i32, i32);
g_read_write_test!(gread_gwrite_i32_2, -1213213232, i32);
g_read_write_test!(gread_gwrite_i32_3, -3000i32, i32);
// useful for ferreting out problems with impls
#[test]
fn gread_with_iter_bytes() {
use super::{Pread};
let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
let bytes_to = &mut bytes_to[..];
let bytes_from = &bytes_from[..];
let mut offset = &mut 0;
for i in 0..bytes_from.len() {
bytes_to[i] = bytes_from.gread(&mut offset).unwrap();
}
assert_eq!(bytes_to, bytes_from);
assert_eq!(*offset, bytes_to.len());
}
#[test]
fn gread_inout() {
use super::{Pread};
let mut bytes_to: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
let bytes_from: [u8; 8] = [1, 2, 3, 4, 5, 6, 7, 8];
let bytes = &bytes_from[..];
let offset = &mut 0;
bytes.gread_inout(offset, &mut bytes_to[..]).unwrap();
assert_eq!(bytes_to, bytes_from);
assert_eq!(*offset, bytes_to.len());
}
#[test]
fn gread_with_byte() {
use super::{Pread};
let bytes: [u8; 1] = [0x7f];
let b = &bytes[..];
let offset = &mut 0;
let byte: u8 = b.gread(offset).unwrap();
assert_eq!(0x7f, byte);
assert_eq!(*offset, 1);
}
#[test]
fn gread_slice() {
use super::{Pread};
use super::ctx::{StrCtx};
let bytes: [u8; 2] = [0x7e, 0xef];
let b = &bytes[..];
let offset = &mut 0;
let res = b.gread_with::<&str>(offset, StrCtx::Length(3));
assert!(res.is_err());
*offset = 0;
let astring: [u8; 3] = [0x45, 042, 0x44];
let string = astring.gread_with::<&str>(offset, StrCtx::Length(2));
match &string {
&Ok(_) => {},
&Err(ref err) => {println!("{}", &err); panic!();}
}
assert_eq!(string.unwrap(), "E*");
*offset = 0;
let bytes2: &[u8] = b.gread_with(offset, 2).unwrap();
assert_eq!(*offset, 2);
assert_eq!(bytes2.len(), bytes[..].len());
for i in 0..bytes2.len() {
assert_eq!(bytes2[i], bytes[i])
}
}
/////////////////////////////////////////////////////////////////
// end gread_with
/////////////////////////////////////////////////////////////////
}