blob: e0c372848392ccce0a6601a4e735919aebf97fa0 [file] [log] [blame]
use super::pat::{GateOr, PARAM_EXPECTED};
use super::ty::{AllowPlus, RecoverQPath};
use super::{BlockMode, Parser, PathStyle, Restrictions, TokenType};
use super::{SemiColonMode, SeqSep, TokenExpectType};
use crate::maybe_recover_from_interpolated_ty_qpath;
use log::debug;
use rustc_ast::ast::{self, AttrStyle, AttrVec, CaptureBy, Field, Lit, UnOp, DUMMY_NODE_ID};
use rustc_ast::ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
use rustc_ast::ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Token, TokenKind};
use rustc_ast::util::classify;
use rustc_ast::util::literal::LitError;
use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
use rustc_ast_pretty::pprust;
use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
use rustc_span::source_map::{self, Span, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use std::mem;
/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
/// dropped into the token stream, which happens while parsing the result of
/// macro expansion). Placement of these is not as complex as I feared it would
/// be. The important thing is to make sure that lookahead doesn't balk at
/// `token::Interpolated` tokens.
macro_rules! maybe_whole_expr {
($p:expr) => {
if let token::Interpolated(nt) = &$p.token.kind {
match &**nt {
token::NtExpr(e) | token::NtLiteral(e) => {
let e = e.clone();
$p.bump();
return Ok(e);
}
token::NtPath(path) => {
let path = path.clone();
$p.bump();
return Ok($p.mk_expr(
$p.token.span,
ExprKind::Path(None, path),
AttrVec::new(),
));
}
token::NtBlock(block) => {
let block = block.clone();
$p.bump();
return Ok($p.mk_expr(
$p.token.span,
ExprKind::Block(block, None),
AttrVec::new(),
));
}
_ => {}
};
}
};
}
#[derive(Debug)]
pub(super) enum LhsExpr {
NotYetParsed,
AttributesParsed(AttrVec),
AlreadyParsed(P<Expr>),
}
impl From<Option<AttrVec>> for LhsExpr {
/// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
/// and `None` into `LhsExpr::NotYetParsed`.
///
/// This conversion does not allocate.
fn from(o: Option<AttrVec>) -> Self {
if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
}
}
impl From<P<Expr>> for LhsExpr {
/// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
///
/// This conversion does not allocate.
fn from(expr: P<Expr>) -> Self {
LhsExpr::AlreadyParsed(expr)
}
}
impl<'a> Parser<'a> {
/// Parses an expression.
#[inline]
pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
self.parse_expr_res(Restrictions::empty(), None)
}
pub(super) fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
}
fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
match self.parse_expr() {
Ok(expr) => Ok(expr),
Err(mut err) => match self.token.ident() {
Some((Ident { name: kw::Underscore, .. }, false))
if self.look_ahead(1, |t| t == &token::Comma) =>
{
// Special-case handling of `foo(_, _, _)`
err.emit();
self.bump();
Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
}
_ => Err(err),
},
}
}
/// Parses a sequence of expressions delimited by parentheses.
fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
}
/// Parses an expression, subject to the given restrictions.
#[inline]
pub(super) fn parse_expr_res(
&mut self,
r: Restrictions,
already_parsed_attrs: Option<AttrVec>,
) -> PResult<'a, P<Expr>> {
self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
}
/// Parses an associative expression.
///
/// This parses an expression accounting for associativity and precedence of the operators in
/// the expression.
#[inline]
fn parse_assoc_expr(&mut self, already_parsed_attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
self.parse_assoc_expr_with(0, already_parsed_attrs.into())
}
/// Parses an associative expression with operators of at least `min_prec` precedence.
pub(super) fn parse_assoc_expr_with(
&mut self,
min_prec: usize,
lhs: LhsExpr,
) -> PResult<'a, P<Expr>> {
let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
expr
} else {
let attrs = match lhs {
LhsExpr::AttributesParsed(attrs) => Some(attrs),
_ => None,
};
if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
return self.parse_prefix_range_expr(attrs);
} else {
self.parse_prefix_expr(attrs)?
}
};
let last_type_ascription_set = self.last_type_ascription.is_some();
if !self.should_continue_as_assoc_expr(&lhs) {
self.last_type_ascription = None;
return Ok(lhs);
}
self.expected_tokens.push(TokenType::Operator);
while let Some(op) = self.check_assoc_op() {
// Adjust the span for interpolated LHS to point to the `$lhs` token
// and not to what it refers to.
let lhs_span = match self.prev_token.kind {
TokenKind::Interpolated(..) => self.prev_token.span,
_ => lhs.span,
};
let cur_op_span = self.token.span;
let restrictions = if op.node.is_assign_like() {
self.restrictions & Restrictions::NO_STRUCT_LITERAL
} else {
self.restrictions
};
let prec = op.node.precedence();
if prec < min_prec {
break;
}
// Check for deprecated `...` syntax
if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
self.err_dotdotdot_syntax(self.token.span);
}
if self.token == token::LArrow {
self.err_larrow_operator(self.token.span);
}
self.bump();
if op.node.is_comparison() {
if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
return Ok(expr);
}
}
let op = op.node;
// Special cases:
if op == AssocOp::As {
lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
continue;
} else if op == AssocOp::Colon {
lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
continue;
} else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
// If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
// generalise it to the Fixity::None code.
lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
break;
}
let fixity = op.fixity();
let prec_adjustment = match fixity {
Fixity::Right => 0,
Fixity::Left => 1,
// We currently have no non-associative operators that are not handled above by
// the special cases. The code is here only for future convenience.
Fixity::None => 1,
};
let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
})?;
// Make sure that the span of the parent node is larger than the span of lhs and rhs,
// including the attributes.
let lhs_span =
lhs.attrs.iter().find(|a| a.style == AttrStyle::Outer).map_or(lhs_span, |a| a.span);
let span = lhs_span.to(rhs.span);
lhs = match op {
AssocOp::Add
| AssocOp::Subtract
| AssocOp::Multiply
| AssocOp::Divide
| AssocOp::Modulus
| AssocOp::LAnd
| AssocOp::LOr
| AssocOp::BitXor
| AssocOp::BitAnd
| AssocOp::BitOr
| AssocOp::ShiftLeft
| AssocOp::ShiftRight
| AssocOp::Equal
| AssocOp::Less
| AssocOp::LessEqual
| AssocOp::NotEqual
| AssocOp::Greater
| AssocOp::GreaterEqual => {
let ast_op = op.to_ast_binop().unwrap();
let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
self.mk_expr(span, binary, AttrVec::new())
}
AssocOp::Assign => {
self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
}
AssocOp::AssignOp(k) => {
let aop = match k {
token::Plus => BinOpKind::Add,
token::Minus => BinOpKind::Sub,
token::Star => BinOpKind::Mul,
token::Slash => BinOpKind::Div,
token::Percent => BinOpKind::Rem,
token::Caret => BinOpKind::BitXor,
token::And => BinOpKind::BitAnd,
token::Or => BinOpKind::BitOr,
token::Shl => BinOpKind::Shl,
token::Shr => BinOpKind::Shr,
};
let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
self.mk_expr(span, aopexpr, AttrVec::new())
}
AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
self.span_bug(span, "AssocOp should have been handled by special case")
}
};
if let Fixity::None = fixity {
break;
}
}
if last_type_ascription_set {
self.last_type_ascription = None;
}
Ok(lhs)
}
fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
match (self.expr_is_complete(lhs), self.check_assoc_op().map(|op| op.node)) {
// Semi-statement forms are odd:
// See https://github.com/rust-lang/rust/issues/29071
(true, None) => false,
(false, _) => true, // Continue parsing the expression.
// An exhaustive check is done in the following block, but these are checked first
// because they *are* ambiguous but also reasonable looking incorrect syntax, so we
// want to keep their span info to improve diagnostics in these cases in a later stage.
(true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
(true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
(true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475)
(true, Some(AssocOp::Add)) // `{ 42 } + 42
// If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
// `if x { a } else { b } && if y { c } else { d }`
if !self.look_ahead(1, |t| t.is_reserved_ident()) => {
// These cases are ambiguous and can't be identified in the parser alone.
let sp = self.sess.source_map().start_point(self.token.span);
self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
false
}
(true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
(true, Some(_)) => {
self.error_found_expr_would_be_stmt(lhs);
true
}
}
}
/// We've found an expression that would be parsed as a statement,
/// but the next token implies this should be parsed as an expression.
/// For example: `if let Some(x) = x { x } else { 0 } / 2`.
fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
let mut err = self.struct_span_err(
self.token.span,
&format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
);
err.span_label(self.token.span, "expected expression");
self.sess.expr_parentheses_needed(&mut err, lhs.span, Some(pprust::expr_to_string(&lhs)));
err.emit();
}
/// Possibly translate the current token to an associative operator.
/// The method does not advance the current token.
///
/// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
(Some(op), _) => (op, self.token.span),
(None, Some((Ident { name: sym::and, span }, false))) => {
self.error_bad_logical_op("and", "&&", "conjunction");
(AssocOp::LAnd, span)
}
(None, Some((Ident { name: sym::or, span }, false))) => {
self.error_bad_logical_op("or", "||", "disjunction");
(AssocOp::LOr, span)
}
_ => return None,
};
Some(source_map::respan(span, op))
}
/// Error on `and` and `or` suggesting `&&` and `||` respectively.
fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
.span_suggestion_short(
self.token.span,
&format!("use `{}` to perform logical {}", good, english),
good.to_string(),
Applicability::MachineApplicable,
)
.note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
.emit();
}
/// Checks if this expression is a successfully parsed statement.
fn expr_is_complete(&self, e: &Expr) -> bool {
self.restrictions.contains(Restrictions::STMT_EXPR)
&& !classify::expr_requires_semi_to_be_stmt(e)
}
/// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
/// The other two variants are handled in `parse_prefix_range_expr` below.
fn parse_range_expr(
&mut self,
prec: usize,
lhs: P<Expr>,
op: AssocOp,
cur_op_span: Span,
) -> PResult<'a, P<Expr>> {
let rhs = if self.is_at_start_of_range_notation_rhs() {
Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
} else {
None
};
let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
let span = lhs.span.to(rhs_span);
let limits =
if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
Ok(self.mk_expr(span, self.mk_range(Some(lhs), rhs, limits)?, AttrVec::new()))
}
fn is_at_start_of_range_notation_rhs(&self) -> bool {
if self.token.can_begin_expr() {
// Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
if self.token == token::OpenDelim(token::Brace) {
return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
}
true
} else {
false
}
}
/// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
fn parse_prefix_range_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
// Check for deprecated `...` syntax.
if self.token == token::DotDotDot {
self.err_dotdotdot_syntax(self.token.span);
}
debug_assert!(
[token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
"parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
self.token
);
let limits = match self.token.kind {
token::DotDot => RangeLimits::HalfOpen,
_ => RangeLimits::Closed,
};
let op = AssocOp::from_token(&self.token);
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let lo = self.token.span;
self.bump();
let (span, opt_end) = if self.is_at_start_of_range_notation_rhs() {
// RHS must be parsed with more associativity than the dots.
self.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
.map(|x| (lo.to(x.span), Some(x)))?
} else {
(lo, None)
};
Ok(self.mk_expr(span, self.mk_range(None, opt_end, limits)?, attrs))
}
/// Parses a prefix-unary-operator expr.
fn parse_prefix_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
self.maybe_collect_tokens(!attrs.is_empty(), |this| {
let lo = this.token.span;
// Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
let (hi, ex) = match this.token.uninterpolate().kind {
token::Not => this.parse_unary_expr(lo, UnOp::Not), // `!expr`
token::Tilde => this.recover_tilde_expr(lo), // `~expr`
token::BinOp(token::Minus) => this.parse_unary_expr(lo, UnOp::Neg), // `-expr`
token::BinOp(token::Star) => this.parse_unary_expr(lo, UnOp::Deref), // `*expr`
token::BinOp(token::And) | token::AndAnd => this.parse_borrow_expr(lo),
token::Ident(..) if this.token.is_keyword(kw::Box) => this.parse_box_expr(lo),
token::Ident(..) if this.is_mistaken_not_ident_negation() => {
this.recover_not_expr(lo)
}
_ => return this.parse_dot_or_call_expr(Some(attrs)),
}?;
Ok(this.mk_expr(lo.to(hi), ex, attrs))
})
}
fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
self.bump();
let expr = self.parse_prefix_expr(None);
let (span, expr) = self.interpolated_or_expr_span(expr)?;
Ok((lo.to(span), expr))
}
fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
let (span, expr) = self.parse_prefix_expr_common(lo)?;
Ok((span, self.mk_unary(op, expr)))
}
// Recover on `!` suggesting for bitwise negation instead.
fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.struct_span_err(lo, "`~` cannot be used as a unary operator")
.span_suggestion_short(
lo,
"use `!` to perform bitwise not",
"!".to_owned(),
Applicability::MachineApplicable,
)
.emit();
self.parse_unary_expr(lo, UnOp::Not)
}
/// Parse `box expr`.
fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
let (span, expr) = self.parse_prefix_expr_common(lo)?;
self.sess.gated_spans.gate(sym::box_syntax, span);
Ok((span, ExprKind::Box(expr)))
}
fn is_mistaken_not_ident_negation(&self) -> bool {
let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
// These tokens can start an expression after `!`, but
// can't continue an expression after an ident
token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
token::Literal(..) | token::Pound => true,
_ => t.is_whole_expr(),
};
self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
}
/// Recover on `not expr` in favor of `!expr`.
fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
// Emit the error...
let not_token = self.look_ahead(1, |t| t.clone());
self.struct_span_err(
not_token.span,
&format!("unexpected {} after identifier", super::token_descr(&not_token)),
)
.span_suggestion_short(
// Span the `not` plus trailing whitespace to avoid
// trailing whitespace after the `!` in our suggestion
self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
"use `!` to perform logical negation",
"!".to_owned(),
Applicability::MachineApplicable,
)
.emit();
// ...and recover!
self.parse_unary_expr(lo, UnOp::Not)
}
/// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
fn interpolated_or_expr_span(
&self,
expr: PResult<'a, P<Expr>>,
) -> PResult<'a, (Span, P<Expr>)> {
expr.map(|e| {
(
match self.prev_token.kind {
TokenKind::Interpolated(..) => self.prev_token.span,
_ => e.span,
},
e,
)
})
}
fn parse_assoc_op_cast(
&mut self,
lhs: P<Expr>,
lhs_span: Span,
expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
) -> PResult<'a, P<Expr>> {
let mk_expr = |this: &mut Self, rhs: P<Ty>| {
this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), AttrVec::new())
};
// Save the state of the parser before parsing type normally, in case there is a
// LessThan comparison after this cast.
let parser_snapshot_before_type = self.clone();
let cast_expr = match self.parse_ty_no_plus() {
Ok(rhs) => mk_expr(self, rhs),
Err(mut type_err) => {
// Rewind to before attempting to parse the type with generics, to recover
// from situations like `x as usize < y` in which we first tried to parse
// `usize < y` as a type with generic arguments.
let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
match self.parse_path(PathStyle::Expr) {
Ok(path) => {
let (op_noun, op_verb) = match self.token.kind {
token::Lt => ("comparison", "comparing"),
token::BinOp(token::Shl) => ("shift", "shifting"),
_ => {
// We can end up here even without `<` being the next token, for
// example because `parse_ty_no_plus` returns `Err` on keywords,
// but `parse_path` returns `Ok` on them due to error recovery.
// Return original error and parser state.
*self = parser_snapshot_after_type;
return Err(type_err);
}
};
// Successfully parsed the type path leaving a `<` yet to parse.
type_err.cancel();
// Report non-fatal diagnostics, keep `x as usize` as an expression
// in AST and continue parsing.
let msg = format!(
"`<` is interpreted as a start of generic arguments for `{}`, not a {}",
pprust::path_to_string(&path),
op_noun,
);
let span_after_type = parser_snapshot_after_type.token.span;
let expr = mk_expr(self, self.mk_ty(path.span, TyKind::Path(None, path)));
let expr_str = self
.span_to_snippet(expr.span)
.unwrap_or_else(|_| pprust::expr_to_string(&expr));
self.struct_span_err(self.token.span, &msg)
.span_label(
self.look_ahead(1, |t| t.span).to(span_after_type),
"interpreted as generic arguments",
)
.span_label(self.token.span, format!("not interpreted as {}", op_noun))
.span_suggestion(
expr.span,
&format!("try {} the cast value", op_verb),
format!("({})", expr_str),
Applicability::MachineApplicable,
)
.emit();
expr
}
Err(mut path_err) => {
// Couldn't parse as a path, return original error and parser state.
path_err.cancel();
*self = parser_snapshot_after_type;
return Err(type_err);
}
}
}
};
self.parse_and_disallow_postfix_after_cast(cast_expr)
}
/// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
/// then emits an error and returns the newly parsed tree.
/// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
fn parse_and_disallow_postfix_after_cast(
&mut self,
cast_expr: P<Expr>,
) -> PResult<'a, P<Expr>> {
// Save the memory location of expr before parsing any following postfix operators.
// This will be compared with the memory location of the output expression.
// If they different we can assume we parsed another expression because the existing expression is not reallocated.
let addr_before = &*cast_expr as *const _ as usize;
let span = cast_expr.span;
let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
let changed = addr_before != &*with_postfix as *const _ as usize;
// Check if an illegal postfix operator has been added after the cast.
// If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
let msg = format!(
"casts cannot be followed by {}",
match with_postfix.kind {
ExprKind::Index(_, _) => "indexing",
ExprKind::Try(_) => "?",
ExprKind::Field(_, _) => "a field access",
ExprKind::MethodCall(_, _) => "a method call",
ExprKind::Call(_, _) => "a function call",
ExprKind::Await(_) => "`.await`",
ExprKind::Err => return Ok(with_postfix),
_ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
}
);
let mut err = self.struct_span_err(span, &msg);
// If type ascription is "likely an error", the user will already be getting a useful
// help message, and doesn't need a second.
if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
self.maybe_annotate_with_ascription(&mut err, false);
} else {
let suggestions = vec![
(span.shrink_to_lo(), "(".to_string()),
(span.shrink_to_hi(), ")".to_string()),
];
err.multipart_suggestion(
"try surrounding the expression in parentheses",
suggestions,
Applicability::MachineApplicable,
);
}
err.emit();
};
Ok(with_postfix)
}
fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
let maybe_path = self.could_ascription_be_path(&lhs.kind);
self.last_type_ascription = Some((self.prev_token.span, maybe_path));
let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
Ok(lhs)
}
/// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.expect_and()?;
let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
let expr = self.parse_prefix_expr(None);
let (hi, expr) = self.interpolated_or_expr_span(expr)?;
let span = lo.to(hi);
if let Some(lt) = lifetime {
self.error_remove_borrow_lifetime(span, lt.ident.span);
}
Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
}
fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
.span_label(lt_span, "annotated with lifetime here")
.span_suggestion(
lt_span,
"remove the lifetime annotation",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
/// Parse `mut?` or `raw [ const | mut ]`.
fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
// `raw [ const | mut ]`.
let found_raw = self.eat_keyword(kw::Raw);
assert!(found_raw);
let mutability = self.parse_const_or_mut().unwrap();
self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
(ast::BorrowKind::Raw, mutability)
} else {
// `mut?`
(ast::BorrowKind::Ref, self.parse_mutability())
}
}
/// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let base = self.parse_bottom_expr();
let (span, base) = self.interpolated_or_expr_span(base)?;
self.parse_dot_or_call_expr_with(base, span, attrs)
}
pub(super) fn parse_dot_or_call_expr_with(
&mut self,
e0: P<Expr>,
lo: Span,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
// Stitch the list of outer attributes onto the return value.
// A little bit ugly, but the best way given the current code
// structure
self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
expr.map(|mut expr| {
attrs.extend::<Vec<_>>(expr.attrs.into());
expr.attrs = attrs;
expr
})
})
}
fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
loop {
if self.eat(&token::Question) {
// `expr?`
e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
continue;
}
if self.eat(&token::Dot) {
// expr.f
e = self.parse_dot_suffix_expr(lo, e)?;
continue;
}
if self.expr_is_complete(&e) {
return Ok(e);
}
e = match self.token.kind {
token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
_ => return Ok(e),
}
}
}
fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
match self.token.uninterpolate().kind {
token::Ident(..) => self.parse_dot_suffix(base, lo),
token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix))
}
token::Literal(token::Lit { kind: token::Float, symbol, .. }) => {
self.recover_field_access_by_float_lit(lo, base, symbol)
}
_ => {
self.error_unexpected_after_dot();
Ok(base)
}
}
}
fn error_unexpected_after_dot(&self) {
// FIXME Could factor this out into non_fatal_unexpected or something.
let actual = pprust::token_to_string(&self.token);
self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
}
fn recover_field_access_by_float_lit(
&mut self,
lo: Span,
base: P<Expr>,
sym: Symbol,
) -> PResult<'a, P<Expr>> {
self.bump();
let fstr = sym.as_str();
let msg = format!("unexpected token: `{}`", sym);
let mut err = self.struct_span_err(self.prev_token.span, &msg);
err.span_label(self.prev_token.span, "unexpected token");
if fstr.chars().all(|x| "0123456789.".contains(x)) {
let float = match fstr.parse::<f64>() {
Ok(f) => f,
Err(_) => {
err.emit();
return Ok(base);
}
};
let sugg = pprust::to_string(|s| {
s.popen();
s.print_expr(&base);
s.s.word(".");
s.print_usize(float.trunc() as usize);
s.pclose();
s.s.word(".");
s.s.word(fstr.splitn(2, '.').last().unwrap().to_string())
});
err.span_suggestion(
lo.to(self.prev_token.span),
"try parenthesizing the first index",
sugg,
Applicability::MachineApplicable,
);
}
Err(err)
}
fn parse_tuple_field_access_expr(
&mut self,
lo: Span,
base: P<Expr>,
field: Symbol,
suffix: Option<Symbol>,
) -> P<Expr> {
self.bump();
let span = self.prev_token.span;
let field = ExprKind::Field(base, Ident::new(field, span));
self.expect_no_suffix(span, "a tuple index", suffix);
self.mk_expr(lo.to(span), field, AttrVec::new())
}
/// Parse a function call expression, `expr(...)`.
fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
let seq = self.parse_paren_expr_seq().map(|args| {
self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
});
self.recover_seq_parse_error(token::Paren, lo, seq)
}
/// Parse an indexing expression `expr[...]`.
fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
self.bump(); // `[`
let index = self.parse_expr()?;
self.expect(&token::CloseDelim(token::Bracket))?;
Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
}
/// Assuming we have just parsed `.`, continue parsing into an expression.
fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
return self.mk_await_expr(self_arg, lo);
}
let segment = self.parse_path_segment(PathStyle::Expr)?;
self.check_trailing_angle_brackets(&segment, token::OpenDelim(token::Paren));
if self.check(&token::OpenDelim(token::Paren)) {
// Method call `expr.f()`
let mut args = self.parse_paren_expr_seq()?;
args.insert(0, self_arg);
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args), AttrVec::new()))
} else {
// Field access `expr.f`
if let Some(args) = segment.args {
self.struct_span_err(
args.span(),
"field expressions cannot have generic arguments",
)
.emit();
}
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
}
}
/// At the bottom (top?) of the precedence hierarchy,
/// Parses things like parenthesized exprs, macros, `return`, etc.
///
/// N.B., this does not parse outer attributes, and is private because it only works
/// correctly if called from `parse_dot_or_call_expr()`.
fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
maybe_recover_from_interpolated_ty_qpath!(self, true);
maybe_whole_expr!(self);
// Outer attributes are already parsed and will be
// added to the return value after the fact.
//
// Therefore, prevent sub-parser from parsing
// attributes by giving them a empty "already-parsed" list.
let attrs = AttrVec::new();
// Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
let lo = self.token.span;
if let token::Literal(_) = self.token.kind {
// This match arm is a special-case of the `_` match arm below and
// could be removed without changing functionality, but it's faster
// to have it here, especially for programs with large constants.
self.parse_lit_expr(attrs)
} else if self.check(&token::OpenDelim(token::Paren)) {
self.parse_tuple_parens_expr(attrs)
} else if self.check(&token::OpenDelim(token::Brace)) {
self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
} else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
self.parse_closure_expr(attrs)
} else if self.check(&token::OpenDelim(token::Bracket)) {
self.parse_array_or_repeat_expr(attrs)
} else if self.eat_lt() {
let (qself, path) = self.parse_qpath(PathStyle::Expr)?;
Ok(self.mk_expr(lo.to(path.span), ExprKind::Path(Some(qself), path), attrs))
} else if self.check_path() {
self.parse_path_start_expr(attrs)
} else if self.check_keyword(kw::Move) || self.check_keyword(kw::Static) {
self.parse_closure_expr(attrs)
} else if self.eat_keyword(kw::If) {
self.parse_if_expr(attrs)
} else if self.check_keyword(kw::For) {
if self.choose_generics_over_qpath(1) {
// NOTE(Centril, eddyb): DO NOT REMOVE! Beyond providing parser recovery,
// this is an insurance policy in case we allow qpaths in (tuple-)struct patterns.
// When `for <Foo as Bar>::Proj in $expr $block` is wanted,
// you can disambiguate in favor of a pattern with `(...)`.
self.recover_quantified_closure_expr(attrs)
} else {
assert!(self.eat_keyword(kw::For));
self.parse_for_expr(None, self.prev_token.span, attrs)
}
} else if self.eat_keyword(kw::While) {
self.parse_while_expr(None, self.prev_token.span, attrs)
} else if let Some(label) = self.eat_label() {
self.parse_labeled_expr(label, attrs)
} else if self.eat_keyword(kw::Loop) {
self.parse_loop_expr(None, self.prev_token.span, attrs)
} else if self.eat_keyword(kw::Continue) {
let kind = ExprKind::Continue(self.eat_label());
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
} else if self.eat_keyword(kw::Match) {
let match_sp = self.prev_token.span;
self.parse_match_expr(attrs).map_err(|mut err| {
err.span_label(match_sp, "while parsing this match expression");
err
})
} else if self.eat_keyword(kw::Unsafe) {
self.parse_block_expr(None, lo, BlockCheckMode::Unsafe(ast::UserProvided), attrs)
} else if self.is_do_catch_block() {
self.recover_do_catch(attrs)
} else if self.is_try_block() {
self.expect_keyword(kw::Try)?;
self.parse_try_block(lo, attrs)
} else if self.eat_keyword(kw::Return) {
self.parse_return_expr(attrs)
} else if self.eat_keyword(kw::Break) {
self.parse_break_expr(attrs)
} else if self.eat_keyword(kw::Yield) {
self.parse_yield_expr(attrs)
} else if self.eat_keyword(kw::Let) {
self.parse_let_expr(attrs)
} else if !self.unclosed_delims.is_empty() && self.check(&token::Semi) {
// Don't complain about bare semicolons after unclosed braces
// recovery in order to keep the error count down. Fixing the
// delimiters will possibly also fix the bare semicolon found in
// expression context. For example, silence the following error:
//
// error: expected expression, found `;`
// --> file.rs:2:13
// |
// 2 | foo(bar(;
// | ^ expected expression
self.bump();
Ok(self.mk_expr_err(self.token.span))
} else if self.token.uninterpolated_span().rust_2018() {
// `Span::rust_2018()` is somewhat expensive; don't get it repeatedly.
if self.check_keyword(kw::Async) {
if self.is_async_block() {
// Check for `async {` and `async move {`.
self.parse_async_block(attrs)
} else {
self.parse_closure_expr(attrs)
}
} else if self.eat_keyword(kw::Await) {
self.recover_incorrect_await_syntax(lo, self.prev_token.span, attrs)
} else {
self.parse_lit_expr(attrs)
}
} else {
self.parse_lit_expr(attrs)
}
}
fn maybe_collect_tokens(
&mut self,
has_outer_attrs: bool,
f: impl FnOnce(&mut Self) -> PResult<'a, P<Expr>>,
) -> PResult<'a, P<Expr>> {
if has_outer_attrs {
let (mut expr, tokens) = self.collect_tokens(f)?;
debug!("maybe_collect_tokens: Collected tokens for {:?} (tokens {:?}", expr, tokens);
expr.tokens = Some(tokens);
Ok(expr)
} else {
f(self)
}
}
fn parse_lit_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
match self.parse_opt_lit() {
Some(literal) => {
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(literal), attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
None => self.try_macro_suggestion(),
}
}
fn parse_tuple_parens_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.expect(&token::OpenDelim(token::Paren))?;
attrs.extend(self.parse_inner_attributes()?); // `(#![foo] a, b, ...)` is OK.
let (es, trailing_comma) = match self.parse_seq_to_end(
&token::CloseDelim(token::Paren),
SeqSep::trailing_allowed(token::Comma),
|p| p.parse_expr_catch_underscore(),
) {
Ok(x) => x,
Err(err) => return Ok(self.recover_seq_parse_error(token::Paren, lo, Err(err))),
};
let kind = if es.len() == 1 && !trailing_comma {
// `(e)` is parenthesized `e`.
ExprKind::Paren(es.into_iter().next().unwrap())
} else {
// `(e,)` is a tuple with only one field, `e`.
ExprKind::Tup(es)
};
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
fn parse_array_or_repeat_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.bump(); // `[`
attrs.extend(self.parse_inner_attributes()?);
let close = &token::CloseDelim(token::Bracket);
let kind = if self.eat(close) {
// Empty vector
ExprKind::Array(Vec::new())
} else {
// Non-empty vector
let first_expr = self.parse_expr()?;
if self.eat(&token::Semi) {
// Repeating array syntax: `[ 0; 512 ]`
let count = self.parse_anon_const_expr()?;
self.expect(close)?;
ExprKind::Repeat(first_expr, count)
} else if self.eat(&token::Comma) {
// Vector with two or more elements.
let sep = SeqSep::trailing_allowed(token::Comma);
let (remaining_exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
let mut exprs = vec![first_expr];
exprs.extend(remaining_exprs);
ExprKind::Array(exprs)
} else {
// Vector with one element
self.expect(close)?;
ExprKind::Array(vec![first_expr])
}
};
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
fn parse_path_start_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let path = self.parse_path(PathStyle::Expr)?;
let lo = path.span;
// `!`, as an operator, is prefix, so we know this isn't that.
let (hi, kind) = if self.eat(&token::Not) {
// MACRO INVOCATION expression
let mac = MacCall {
path,
args: self.parse_mac_args()?,
prior_type_ascription: self.last_type_ascription,
};
(self.prev_token.span, ExprKind::MacCall(mac))
} else if self.check(&token::OpenDelim(token::Brace)) {
if let Some(expr) = self.maybe_parse_struct_expr(&path, &attrs) {
return expr;
} else {
(path.span, ExprKind::Path(None, path))
}
} else {
(path.span, ExprKind::Path(None, path))
};
let expr = self.mk_expr(lo.to(hi), kind, attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
/// Parse `'label: $expr`. The label is already parsed.
fn parse_labeled_expr(&mut self, label: Label, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = label.ident.span;
let label = Some(label);
let ate_colon = self.eat(&token::Colon);
let expr = if self.eat_keyword(kw::While) {
self.parse_while_expr(label, lo, attrs)
} else if self.eat_keyword(kw::For) {
self.parse_for_expr(label, lo, attrs)
} else if self.eat_keyword(kw::Loop) {
self.parse_loop_expr(label, lo, attrs)
} else if self.check(&token::OpenDelim(token::Brace)) || self.token.is_whole_block() {
self.parse_block_expr(label, lo, BlockCheckMode::Default, attrs)
} else {
let msg = "expected `while`, `for`, `loop` or `{` after a label";
self.struct_span_err(self.token.span, msg).span_label(self.token.span, msg).emit();
// Continue as an expression in an effort to recover on `'label: non_block_expr`.
self.parse_expr()
}?;
if !ate_colon {
self.error_labeled_expr_must_be_followed_by_colon(lo, expr.span);
}
Ok(expr)
}
fn error_labeled_expr_must_be_followed_by_colon(&self, lo: Span, span: Span) {
self.struct_span_err(span, "labeled expression must be followed by `:`")
.span_label(lo, "the label")
.span_suggestion_short(
lo.shrink_to_hi(),
"add `:` after the label",
": ".to_string(),
Applicability::MachineApplicable,
)
.note("labels are used before loops and blocks, allowing e.g., `break 'label` to them")
.emit();
}
/// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
fn recover_do_catch(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.bump(); // `do`
self.bump(); // `catch`
let span_dc = lo.to(self.prev_token.span);
self.struct_span_err(span_dc, "found removed `do catch` syntax")
.span_suggestion(
span_dc,
"replace with the new syntax",
"try".to_string(),
Applicability::MachineApplicable,
)
.note("following RFC #2388, the new non-placeholder syntax is `try`")
.emit();
self.parse_try_block(lo, attrs)
}
/// Parse an expression if the token can begin one.
fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> {
Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
}
/// Parse `"return" expr?`.
fn parse_return_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let kind = ExprKind::Ret(self.parse_expr_opt()?);
let expr = self.mk_expr(lo.to(self.prev_token.span), kind, attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
/// Parse `"('label ":")? break expr?`.
fn parse_break_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let label = self.eat_label();
let kind = if self.token != token::OpenDelim(token::Brace)
|| !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
{
self.parse_expr_opt()?
} else {
None
};
let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind), attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
/// Parse `"yield" expr?`.
fn parse_yield_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let kind = ExprKind::Yield(self.parse_expr_opt()?);
let span = lo.to(self.prev_token.span);
self.sess.gated_spans.gate(sym::generators, span);
let expr = self.mk_expr(span, kind, attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
/// Returns a string literal if the next token is a string literal.
/// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
/// and returns `None` if the next token is not literal at all.
pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<Lit>> {
match self.parse_opt_lit() {
Some(lit) => match lit.kind {
ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
style,
symbol: lit.token.symbol,
suffix: lit.token.suffix,
span: lit.span,
symbol_unescaped,
}),
_ => Err(Some(lit)),
},
None => Err(None),
}
}
pub(super) fn parse_lit(&mut self) -> PResult<'a, Lit> {
self.parse_opt_lit().ok_or_else(|| {
let msg = format!("unexpected token: {}", super::token_descr(&self.token));
self.struct_span_err(self.token.span, &msg)
})
}
/// Matches `lit = true | false | token_lit`.
/// Returns `None` if the next token is not a literal.
pub(super) fn parse_opt_lit(&mut self) -> Option<Lit> {
let mut recovered = None;
if self.token == token::Dot {
// Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
// dot would follow an optional literal, so we do this unconditionally.
recovered = self.look_ahead(1, |next_token| {
if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
next_token.kind
{
if self.token.span.hi() == next_token.span.lo() {
let s = String::from("0.") + &symbol.as_str();
let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
return Some(Token::new(kind, self.token.span.to(next_token.span)));
}
}
None
});
if let Some(token) = &recovered {
self.bump();
self.error_float_lits_must_have_int_part(&token);
}
}
let token = recovered.as_ref().unwrap_or(&self.token);
match Lit::from_token(token) {
Ok(lit) => {
self.bump();
Some(lit)
}
Err(LitError::NotLiteral) => None,
Err(err) => {
let span = token.span;
let lit = match token.kind {
token::Literal(lit) => lit,
_ => unreachable!(),
};
self.bump();
self.report_lit_error(err, lit, span);
// Pack possible quotes and prefixes from the original literal into
// the error literal's symbol so they can be pretty-printed faithfully.
let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None);
let symbol = Symbol::intern(&suffixless_lit.to_string());
let lit = token::Lit::new(token::Err, symbol, lit.suffix);
Some(Lit::from_lit_token(lit, span).unwrap_or_else(|_| unreachable!()))
}
}
}
fn error_float_lits_must_have_int_part(&self, token: &Token) {
self.struct_span_err(token.span, "float literals must have an integer part")
.span_suggestion(
token.span,
"must have an integer part",
pprust::token_to_string(token),
Applicability::MachineApplicable,
)
.emit();
}
fn report_lit_error(&self, err: LitError, lit: token::Lit, span: Span) {
// Checks if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
let token::Lit { kind, suffix, .. } = lit;
match err {
// `NotLiteral` is not an error by itself, so we don't report
// it and give the parser opportunity to try something else.
LitError::NotLiteral => {}
// `LexerError` *is* an error, but it was already reported
// by lexer, so here we don't report it the second time.
LitError::LexerError => {}
LitError::InvalidSuffix => {
self.expect_no_suffix(
span,
&format!("{} {} literal", kind.article(), kind.descr()),
suffix,
);
}
LitError::InvalidIntSuffix => {
let suf = suffix.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['i', 'u'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
self.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for integer literal", suf);
self.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
.emit();
}
}
LitError::InvalidFloatSuffix => {
let suf = suffix.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['f'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
self.struct_span_err(span, &msg).help("valid widths are 32 and 64").emit();
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
self.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
}
LitError::NonDecimalFloat(base) => {
let descr = match base {
16 => "hexadecimal",
8 => "octal",
2 => "binary",
_ => unreachable!(),
};
self.struct_span_err(span, &format!("{} float literal is not supported", descr))
.span_label(span, "not supported")
.emit();
}
LitError::IntTooLarge => {
self.struct_span_err(span, "integer literal is too large").emit();
}
}
}
pub(super) fn expect_no_suffix(&self, sp: Span, kind: &str, suffix: Option<Symbol>) {
if let Some(suf) = suffix {
let mut err = if kind == "a tuple index"
&& [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suf)
{
// #59553: warn instead of reject out of hand to allow the fix to percolate
// through the ecosystem when people fix their macros
let mut err = self
.sess
.span_diagnostic
.struct_span_warn(sp, &format!("suffixes on {} are invalid", kind));
err.note(&format!(
"`{}` is *temporarily* accepted on tuple index fields as it was \
incorrectly accepted on stable for a few releases",
suf,
));
err.help(
"on proc macros, you'll want to use `syn::Index::from` or \
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
to tuple field access",
);
err.note(
"see issue #60210 <https://github.com/rust-lang/rust/issues/60210> \
for more information",
);
err
} else {
self.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
};
err.span_label(sp, format!("invalid suffix `{}`", suf));
err.emit();
}
}
/// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
/// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> {
maybe_whole_expr!(self);
let lo = self.token.span;
let minus_present = self.eat(&token::BinOp(token::Minus));
let lit = self.parse_lit()?;
let expr = self.mk_expr(lit.span, ExprKind::Lit(lit), AttrVec::new());
if minus_present {
Ok(self.mk_expr(
lo.to(self.prev_token.span),
self.mk_unary(UnOp::Neg, expr),
AttrVec::new(),
))
} else {
Ok(expr)
}
}
/// Parses a block or unsafe block.
pub(super) fn parse_block_expr(
&mut self,
opt_label: Option<Label>,
lo: Span,
blk_mode: BlockCheckMode,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
if let Some(label) = opt_label {
self.sess.gated_spans.gate(sym::label_break_value, label.ident.span);
}
if self.token.is_whole_block() {
self.struct_span_err(self.token.span, "cannot use a `block` macro fragment here")
.span_label(lo.to(self.token.span), "the `block` fragment is within this context")
.emit();
}
let (inner_attrs, blk) = self.parse_block_common(lo, blk_mode)?;
attrs.extend(inner_attrs);
Ok(self.mk_expr(blk.span, ExprKind::Block(blk, opt_label), attrs))
}
/// Recover on an explicitly quantified closure expression, e.g., `for<'a> |x: &'a u8| *x + 1`.
fn recover_quantified_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
let _ = self.parse_late_bound_lifetime_defs()?;
let span_for = lo.to(self.prev_token.span);
let closure = self.parse_closure_expr(attrs)?;
self.struct_span_err(span_for, "cannot introduce explicit parameters for a closure")
.span_label(closure.span, "the parameters are attached to this closure")
.span_suggestion(
span_for,
"remove the parameters",
String::new(),
Applicability::MachineApplicable,
)
.emit();
Ok(self.mk_expr_err(lo.to(closure.span)))
}
/// Parses a closure expression (e.g., `move |args| expr`).
fn parse_closure_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
let movability =
if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable };
let asyncness = if self.token.uninterpolated_span().rust_2018() {
self.parse_asyncness()
} else {
Async::No
};
if let Async::Yes { span, .. } = asyncness {
// Feature-gate `async ||` closures.
self.sess.gated_spans.gate(sym::async_closure, span);
}
let capture_clause = self.parse_capture_clause();
let decl = self.parse_fn_block_decl()?;
let decl_hi = self.prev_token.span;
let body = match decl.output {
FnRetTy::Default(_) => {
let restrictions = self.restrictions - Restrictions::STMT_EXPR;
self.parse_expr_res(restrictions, None)?
}
_ => {
// If an explicit return type is given, require a block to appear (RFC 968).
let body_lo = self.token.span;
self.parse_block_expr(None, body_lo, BlockCheckMode::Default, AttrVec::new())?
}
};
Ok(self.mk_expr(
lo.to(body.span),
ExprKind::Closure(capture_clause, asyncness, movability, decl, body, lo.to(decl_hi)),
attrs,
))
}
/// Parses an optional `move` prefix to a closure-like construct.
fn parse_capture_clause(&mut self) -> CaptureBy {
if self.eat_keyword(kw::Move) { CaptureBy::Value } else { CaptureBy::Ref }
}
/// Parses the `|arg, arg|` header of a closure.
fn parse_fn_block_decl(&mut self) -> PResult<'a, P<FnDecl>> {
let inputs = if self.eat(&token::OrOr) {
Vec::new()
} else {
self.expect(&token::BinOp(token::Or))?;
let args = self
.parse_seq_to_before_tokens(
&[&token::BinOp(token::Or), &token::OrOr],
SeqSep::trailing_allowed(token::Comma),
TokenExpectType::NoExpect,
|p| p.parse_fn_block_param(),
)?
.0;
self.expect_or()?;
args
};
let output = self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes)?;
Ok(P(FnDecl { inputs, output }))
}
/// Parses a parameter in a closure header (e.g., `|arg, arg|`).
fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
let lo = self.token.span;
let attrs = self.parse_outer_attributes()?;
let pat = self.parse_pat(PARAM_EXPECTED)?;
let ty = if self.eat(&token::Colon) {
self.parse_ty()?
} else {
self.mk_ty(self.prev_token.span, TyKind::Infer)
};
Ok(Param {
attrs: attrs.into(),
ty,
pat,
span: lo.to(self.token.span),
id: DUMMY_NODE_ID,
is_placeholder: false,
})
}
/// Parses an `if` expression (`if` token already eaten).
fn parse_if_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let cond = self.parse_cond_expr()?;
// Verify that the parsed `if` condition makes sense as a condition. If it is a block, then
// verify that the last statement is either an implicit return (no `;`) or an explicit
// return. This won't catch blocks with an explicit `return`, but that would be caught by
// the dead code lint.
let thn = if self.eat_keyword(kw::Else) || !cond.returns() {
self.error_missing_if_cond(lo, cond.span)
} else {
let attrs = self.parse_outer_attributes()?; // For recovery.
let not_block = self.token != token::OpenDelim(token::Brace);
let block = self.parse_block().map_err(|mut err| {
if not_block {
err.span_label(lo, "this `if` expression has a condition, but no block");
if let ExprKind::Binary(_, _, ref right) = cond.kind {
if let ExprKind::Block(_, _) = right.kind {
err.help("maybe you forgot the right operand of the condition?");
}
}
}
err
})?;
self.error_on_if_block_attrs(lo, false, block.span, &attrs);
block
};
let els = if self.eat_keyword(kw::Else) { Some(self.parse_else_expr()?) } else { None };
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els), attrs))
}
fn error_missing_if_cond(&self, lo: Span, span: Span) -> P<ast::Block> {
let sp = self.sess.source_map().next_point(lo);
self.struct_span_err(sp, "missing condition for `if` expression")
.span_label(sp, "expected if condition here")
.emit();
self.mk_block_err(span)
}
/// Parses the condition of a `if` or `while` expression.
fn parse_cond_expr(&mut self) -> PResult<'a, P<Expr>> {
let cond = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
if let ExprKind::Let(..) = cond.kind {
// Remove the last feature gating of a `let` expression since it's stable.
self.sess.gated_spans.ungate_last(sym::let_chains, cond.span);
}
Ok(cond)
}
/// Parses a `let $pat = $expr` pseudo-expression.
/// The `let` token has already been eaten.
fn parse_let_expr(&mut self, attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.prev_token.span;
let pat = self.parse_top_pat(GateOr::No)?;
self.expect(&token::Eq)?;
let expr = self.with_res(Restrictions::NO_STRUCT_LITERAL, |this| {
this.parse_assoc_expr_with(1 + prec_let_scrutinee_needs_par(), None.into())
})?;
let span = lo.to(expr.span);
self.sess.gated_spans.gate(sym::let_chains, span);
Ok(self.mk_expr(span, ExprKind::Let(pat, expr), attrs))
}
/// Parses an `else { ... }` expression (`else` token already eaten).
fn parse_else_expr(&mut self) -> PResult<'a, P<Expr>> {
let ctx_span = self.prev_token.span; // `else`
let attrs = self.parse_outer_attributes()?; // For recovery.
let expr = if self.eat_keyword(kw::If) {
self.parse_if_expr(AttrVec::new())?
} else {
let blk = self.parse_block()?;
self.mk_expr(blk.span, ExprKind::Block(blk, None), AttrVec::new())
};
self.error_on_if_block_attrs(ctx_span, true, expr.span, &attrs);
Ok(expr)
}
fn error_on_if_block_attrs(
&self,
ctx_span: Span,
is_ctx_else: bool,
branch_span: Span,
attrs: &[ast::Attribute],
) {
let (span, last) = match attrs {
[] => return,
[x0 @ xn] | [x0, .., xn] => (x0.span.to(xn.span), xn.span),
};
let ctx = if is_ctx_else { "else" } else { "if" };
self.struct_span_err(last, "outer attributes are not allowed on `if` and `else` branches")
.span_label(branch_span, "the attributes are attached to this branch")
.span_label(ctx_span, format!("the branch belongs to this `{}`", ctx))
.span_suggestion(
span,
"remove the attributes",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
/// Parses `for <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
fn parse_for_expr(
&mut self,
opt_label: Option<Label>,
lo: Span,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
// Record whether we are about to parse `for (`.
// This is used below for recovery in case of `for ( $stuff ) $block`
// in which case we will suggest `for $stuff $block`.
let begin_paren = match self.token.kind {
token::OpenDelim(token::Paren) => Some(self.token.span),
_ => None,
};
let pat = self.parse_top_pat(GateOr::Yes)?;
if !self.eat_keyword(kw::In) {
self.error_missing_in_for_loop();
}
self.check_for_for_in_in_typo(self.prev_token.span);
let expr = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
let pat = self.recover_parens_around_for_head(pat, &expr, begin_paren);
let (iattrs, loop_block) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
let kind = ExprKind::ForLoop(pat, expr, loop_block, opt_label);
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
}
fn error_missing_in_for_loop(&self) {
let in_span = self.prev_token.span.between(self.token.span);
self.struct_span_err(in_span, "missing `in` in `for` loop")
.span_suggestion_short(
in_span,
"try adding `in` here",
" in ".into(),
// Has been misleading, at least in the past (closed Issue #48492).
Applicability::MaybeIncorrect,
)
.emit();
}
/// Parses a `while` or `while let` expression (`while` token already eaten).
fn parse_while_expr(
&mut self,
opt_label: Option<Label>,
lo: Span,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
let cond = self.parse_cond_expr()?;
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::While(cond, body, opt_label), attrs))
}
/// Parses `loop { ... }` (`loop` token already eaten).
fn parse_loop_expr(
&mut self,
opt_label: Option<Label>,
lo: Span,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::Loop(body, opt_label), attrs))
}
fn eat_label(&mut self) -> Option<Label> {
self.token.lifetime().map(|ident| {
self.bump();
Label { ident }
})
}
/// Parses a `match ... { ... }` expression (`match` token already eaten).
fn parse_match_expr(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
let match_span = self.prev_token.span;
let lo = self.prev_token.span;
let scrutinee = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, None)?;
if let Err(mut e) = self.expect(&token::OpenDelim(token::Brace)) {
if self.token == token::Semi {
e.span_suggestion_short(
match_span,
"try removing this `match`",
String::new(),
Applicability::MaybeIncorrect, // speculative
);
}
return Err(e);
}
attrs.extend(self.parse_inner_attributes()?);
let mut arms: Vec<Arm> = Vec::new();
while self.token != token::CloseDelim(token::Brace) {
match self.parse_arm() {
Ok(arm) => arms.push(arm),
Err(mut e) => {
// Recover by skipping to the end of the block.
e.emit();
self.recover_stmt();
let span = lo.to(self.token.span);
if self.token == token::CloseDelim(token::Brace) {
self.bump();
}
return Ok(self.mk_expr(span, ExprKind::Match(scrutinee, arms), attrs));
}
}
}
let hi = self.token.span;
self.bump();
Ok(self.mk_expr(lo.to(hi), ExprKind::Match(scrutinee, arms), attrs))
}
pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
let attrs = self.parse_outer_attributes()?;
let lo = self.token.span;
let pat = self.parse_top_pat(GateOr::No)?;
let guard = if self.eat_keyword(kw::If) { Some(self.parse_expr()?) } else { None };
let arrow_span = self.token.span;
self.expect(&token::FatArrow)?;
let arm_start_span = self.token.span;
let expr = self.parse_expr_res(Restrictions::STMT_EXPR, None).map_err(|mut err| {
err.span_label(arrow_span, "while parsing the `match` arm starting here");
err
})?;
let require_comma = classify::expr_requires_semi_to_be_stmt(&expr)
&& self.token != token::CloseDelim(token::Brace);
let hi = self.token.span;
if require_comma {
let sm = self.sess.source_map();
self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]).map_err(
|mut err| {
match (sm.span_to_lines(expr.span), sm.span_to_lines(arm_start_span)) {
(Ok(ref expr_lines), Ok(ref arm_start_lines))
if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col
&& expr_lines.lines.len() == 2
&& self.token == token::FatArrow =>
{
// We check whether there's any trailing code in the parse span,
// if there isn't, we very likely have the following:
//
// X | &Y => "y"
// | -- - missing comma
// | |
// | arrow_span
// X | &X => "x"
// | - ^^ self.token.span
// | |
// | parsed until here as `"y" & X`
err.span_suggestion_short(
arm_start_span.shrink_to_hi(),
"missing a comma here to end this `match` arm",
",".to_owned(),
Applicability::MachineApplicable,
);
}
_ => {
err.span_label(
arrow_span,
"while parsing the `match` arm starting here",
);
}
}
err
},
)?;
} else {
self.eat(&token::Comma);
}
Ok(ast::Arm {
attrs,
pat,
guard,
body: expr,
span: lo.to(hi),
id: DUMMY_NODE_ID,
is_placeholder: false,
})
}
/// Parses a `try {...}` expression (`try` token already eaten).
fn parse_try_block(&mut self, span_lo: Span, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
if self.eat_keyword(kw::Catch) {
let mut error = self.struct_span_err(
self.prev_token.span,
"keyword `catch` cannot follow a `try` block",
);
error.help("try using `match` on the result of the `try` block instead");
error.emit();
Err(error)
} else {
let span = span_lo.to(body.span);
self.sess.gated_spans.gate(sym::try_blocks, span);
Ok(self.mk_expr(span, ExprKind::TryBlock(body), attrs))
}
}
fn is_do_catch_block(&self) -> bool {
self.token.is_keyword(kw::Do)
&& self.is_keyword_ahead(1, &[kw::Catch])
&& self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
&& !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
}
fn is_try_block(&self) -> bool {
self.token.is_keyword(kw::Try)
&& self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
&& self.token.uninterpolated_span().rust_2018()
}
/// Parses an `async move? {...}` expression.
fn parse_async_block(&mut self, mut attrs: AttrVec) -> PResult<'a, P<Expr>> {
let lo = self.token.span;
self.expect_keyword(kw::Async)?;
let capture_clause = self.parse_capture_clause();
let (iattrs, body) = self.parse_inner_attrs_and_block()?;
attrs.extend(iattrs);
let kind = ExprKind::Async(capture_clause, DUMMY_NODE_ID, body);
Ok(self.mk_expr(lo.to(self.prev_token.span), kind, attrs))
}
fn is_async_block(&self) -> bool {
self.token.is_keyword(kw::Async)
&& ((
// `async move {`
self.is_keyword_ahead(1, &[kw::Move])
&& self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))
) || (
// `async {`
self.look_ahead(1, |t| *t == token::OpenDelim(token::Brace))
))
}
fn is_certainly_not_a_block(&self) -> bool {
self.look_ahead(1, |t| t.is_ident())
&& (
// `{ ident, ` cannot start a block.
self.look_ahead(2, |t| t == &token::Comma)
|| self.look_ahead(2, |t| t == &token::Colon)
&& (
// `{ ident: token, ` cannot start a block.
self.look_ahead(4, |t| t == &token::Comma) ||
// `{ ident: ` cannot start a block unless it's a type ascription `ident: Type`.
self.look_ahead(3, |t| !t.can_begin_type())
)
)
}
fn maybe_parse_struct_expr(
&mut self,
path: &ast::Path,
attrs: &AttrVec,
) -> Option<PResult<'a, P<Expr>>> {
let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
if struct_allowed || self.is_certainly_not_a_block() {
// This is a struct literal, but we don't can't accept them here.
let expr = self.parse_struct_expr(path.clone(), attrs.clone());
if let (Ok(expr), false) = (&expr, struct_allowed) {
self.error_struct_lit_not_allowed_here(path.span, expr.span);
}
return Some(expr);
}
None
}
fn error_struct_lit_not_allowed_here(&self, lo: Span, sp: Span) {
self.struct_span_err(sp, "struct literals are not allowed here")
.multipart_suggestion(
"surround the struct literal with parentheses",
vec![(lo.shrink_to_lo(), "(".to_string()), (sp.shrink_to_hi(), ")".to_string())],
Applicability::MachineApplicable,
)
.emit();
}
pub(super) fn parse_struct_expr(
&mut self,
pth: ast::Path,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
self.bump();
let mut fields = Vec::new();
let mut base = None;
let mut recover_async = false;
attrs.extend(self.parse_inner_attributes()?);
let mut async_block_err = |e: &mut DiagnosticBuilder<'_>, span: Span| {
recover_async = true;
e.span_label(span, "`async` blocks are only allowed in the 2018 edition");
e.help("set `edition = \"2018\"` in `Cargo.toml`");
e.note("for more on editions, read https://doc.rust-lang.org/edition-guide");
};
while self.token != token::CloseDelim(token::Brace) {
if self.eat(&token::DotDot) {
let exp_span = self.prev_token.span;
match self.parse_expr() {
Ok(e) => base = Some(e),
Err(mut e) => {
e.emit();
self.recover_stmt();
}
}
self.recover_struct_comma_after_dotdot(exp_span);
break;
}
let recovery_field = self.find_struct_error_after_field_looking_code();
let parsed_field = match self.parse_field() {
Ok(f) => Some(f),
Err(mut e) => {
if pth == kw::Async {
async_block_err(&mut e, pth.span);
} else {
e.span_label(pth.span, "while parsing this struct");
}
e.emit();
// If the next token is a comma, then try to parse
// what comes next as additional fields, rather than
// bailing out until next `}`.
if self.token != token::Comma {
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
if self.token != token::Comma {
break;
}
}
None
}
};
match self.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Brace)]) {
Ok(_) => {
if let Some(f) = parsed_field.or(recovery_field) {
// Only include the field if there's no parse error for the field name.
fields.push(f);
}
}
Err(mut e) => {
if pth == kw::Async {
async_block_err(&mut e, pth.span);
} else {
e.span_label(pth.span, "while parsing this struct");
if let Some(f) = recovery_field {
fields.push(f);
e.span_suggestion(
self.prev_token.span.shrink_to_hi(),
"try adding a comma",
",".into(),
Applicability::MachineApplicable,
);
}
}
e.emit();
self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
self.eat(&token::Comma);
}
}
}
let span = pth.span.to(self.token.span);
self.expect(&token::CloseDelim(token::Brace))?;
let expr = if recover_async { ExprKind::Err } else { ExprKind::Struct(pth, fields, base) };
Ok(self.mk_expr(span, expr, attrs))
}
/// Use in case of error after field-looking code: `S { foo: () with a }`.
fn find_struct_error_after_field_looking_code(&self) -> Option<Field> {
match self.token.ident() {
Some((ident, is_raw))
if (is_raw || !ident.is_reserved())
&& self.look_ahead(1, |t| *t == token::Colon) =>
{
Some(ast::Field {
ident,
span: self.token.span,
expr: self.mk_expr_err(self.token.span),
is_shorthand: false,
attrs: AttrVec::new(),
id: DUMMY_NODE_ID,
is_placeholder: false,
})
}
_ => None,
}
}
fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
if self.token != token::Comma {
return;
}
self.struct_span_err(
span.to(self.prev_token.span),
"cannot use a comma after the base struct",
)
.span_suggestion_short(
self.token.span,
"remove this comma",
String::new(),
Applicability::MachineApplicable,
)
.note("the base struct must always be the last field")
.emit();
self.recover_stmt();
}
/// Parses `ident (COLON expr)?`.
fn parse_field(&mut self) -> PResult<'a, Field> {
let attrs = self.parse_outer_attributes()?.into();
let lo = self.token.span;
// Check if a colon exists one ahead. This means we're parsing a fieldname.
let is_shorthand = !self.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
let (ident, expr) = if is_shorthand {
// Mimic `x: x` for the `x` field shorthand.
let ident = self.parse_ident_common(false)?;
let path = ast::Path::from_ident(ident);
(ident, self.mk_expr(ident.span, ExprKind::Path(None, path), AttrVec::new()))
} else {
let ident = self.parse_field_name()?;
self.error_on_eq_field_init(ident);
self.bump(); // `:`
(ident, self.parse_expr()?)
};
Ok(ast::Field {
ident,
span: lo.to(expr.span),
expr,
is_shorthand,
attrs,
id: DUMMY_NODE_ID,
is_placeholder: false,
})
}
/// Check for `=`. This means the source incorrectly attempts to
/// initialize a field with an eq rather than a colon.
fn error_on_eq_field_init(&self, field_name: Ident) {
if self.token != token::Eq {
return;
}
self.struct_span_err(self.token.span, "expected `:`, found `=`")
.span_suggestion(
field_name.span.shrink_to_hi().to(self.token.span),
"replace equals symbol with a colon",
":".to_string(),
Applicability::MachineApplicable,
)
.emit();
}
fn err_dotdotdot_syntax(&self, span: Span) {
self.struct_span_err(span, "unexpected token: `...`")
.span_suggestion(
span,
"use `..` for an exclusive range",
"..".to_owned(),
Applicability::MaybeIncorrect,
)
.span_suggestion(
span,
"or `..=` for an inclusive range",
"..=".to_owned(),
Applicability::MaybeIncorrect,
)
.emit();
}
fn err_larrow_operator(&self, span: Span) {
self.struct_span_err(span, "unexpected token: `<-`")
.span_suggestion(
span,
"if you meant to write a comparison against a negative value, add a \
space in between `<` and `-`",
"< -".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
}
fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
ExprKind::AssignOp(binop, lhs, rhs)
}
fn mk_range(
&self,
start: Option<P<Expr>>,
end: Option<P<Expr>>,
limits: RangeLimits,
) -> PResult<'a, ExprKind> {
if end.is_none() && limits == RangeLimits::Closed {
self.error_inclusive_range_with_no_end(self.prev_token.span);
Ok(ExprKind::Err)
} else {
Ok(ExprKind::Range(start, end, limits))
}
}
fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind {
ExprKind::Unary(unop, expr)
}
fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind {
ExprKind::Binary(binop, lhs, rhs)
}
fn mk_index(&self, expr: P<Expr>, idx: P<Expr>) -> ExprKind {
ExprKind::Index(expr, idx)
}
fn mk_call(&self, f: P<Expr>, args: Vec<P<Expr>>) -> ExprKind {
ExprKind::Call(f, args)
}
fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
let span = lo.to(self.prev_token.span);
let await_expr = self.mk_expr(span, ExprKind::Await(self_arg), AttrVec::new());
self.recover_from_await_method_call();
Ok(await_expr)
}
crate fn mk_expr(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> {
P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
}
pub(super) fn mk_expr_err(&self, span: Span) -> P<Expr> {
self.mk_expr(span, ExprKind::Err, AttrVec::new())
}
}