blob: 6e0608fdbaf2e95720dd8406cdbd59d902d8f58e [file] [log] [blame]
/// A few elementary UTF-8 encoding and decoding functions used by the matching
/// engines.
///
/// In an ideal world, the matching engines operate on `&str` and we can just
/// lean on the standard library for all our UTF-8 needs. However, to support
/// byte based regexes (that can match on arbitrary bytes which may contain
/// UTF-8), we need to be capable of searching and decoding UTF-8 on a `&[u8]`.
/// The standard library doesn't really recognize this use case, so we have
/// to build it out ourselves.
///
/// Should this be factored out into a separate crate? It seems independently
/// useful. There are other crates that already exist (e.g., `utf-8`) that have
/// overlapping use cases. Not sure what to do.
use std::char;
const TAG_CONT: u8 = 0b1000_0000;
const TAG_TWO: u8 = 0b1100_0000;
const TAG_THREE: u8 = 0b1110_0000;
const TAG_FOUR: u8 = 0b1111_0000;
/// Returns the smallest possible index of the next valid UTF-8 sequence
/// starting after `i`.
pub fn next_utf8(text: &[u8], i: usize) -> usize {
let b = match text.get(i) {
None => return i + 1,
Some(&b) => b,
};
let inc = if b <= 0x7F {
1
} else if b <= 0b110_11111 {
2
} else if b <= 0b1110_1111 {
3
} else {
4
};
i + inc
}
/// Decode a single UTF-8 sequence into a single Unicode codepoint from `src`.
///
/// If no valid UTF-8 sequence could be found, then `None` is returned.
/// Otherwise, the decoded codepoint and the number of bytes read is returned.
/// The number of bytes read (for a valid UTF-8 sequence) is guaranteed to be
/// 1, 2, 3 or 4.
///
/// Note that a UTF-8 sequence is invalid if it is incorrect UTF-8, encodes a
/// codepoint that is out of range (surrogate codepoints are out of range) or
/// is not the shortest possible UTF-8 sequence for that codepoint.
#[inline]
pub fn decode_utf8(src: &[u8]) -> Option<(char, usize)> {
let b0 = match src.get(0) {
None => return None,
Some(&b) if b <= 0x7F => return Some((b as char, 1)),
Some(&b) => b,
};
match b0 {
0b110_00000..=0b110_11111 => {
if src.len() < 2 {
return None;
}
let b1 = src[1];
if 0b11_000000 & b1 != TAG_CONT {
return None;
}
let cp = ((b0 & !TAG_TWO) as u32) << 6 | ((b1 & !TAG_CONT) as u32);
match cp {
0x80..=0x7FF => char::from_u32(cp).map(|cp| (cp, 2)),
_ => None,
}
}
0b1110_0000..=0b1110_1111 => {
if src.len() < 3 {
return None;
}
let (b1, b2) = (src[1], src[2]);
if 0b11_000000 & b1 != TAG_CONT {
return None;
}
if 0b11_000000 & b2 != TAG_CONT {
return None;
}
let cp = ((b0 & !TAG_THREE) as u32) << 12
| ((b1 & !TAG_CONT) as u32) << 6
| ((b2 & !TAG_CONT) as u32);
match cp {
// char::from_u32 will disallow surrogate codepoints.
0x800..=0xFFFF => char::from_u32(cp).map(|cp| (cp, 3)),
_ => None,
}
}
0b11110_000..=0b11110_111 => {
if src.len() < 4 {
return None;
}
let (b1, b2, b3) = (src[1], src[2], src[3]);
if 0b11_000000 & b1 != TAG_CONT {
return None;
}
if 0b11_000000 & b2 != TAG_CONT {
return None;
}
if 0b11_000000 & b3 != TAG_CONT {
return None;
}
let cp = ((b0 & !TAG_FOUR) as u32) << 18
| ((b1 & !TAG_CONT) as u32) << 12
| ((b2 & !TAG_CONT) as u32) << 6
| ((b3 & !TAG_CONT) as u32);
match cp {
0x10000..=0x10FFFF => char::from_u32(cp).map(|cp| (cp, 4)),
_ => None,
}
}
_ => None,
}
}
/// Like `decode_utf8`, but decodes the last UTF-8 sequence in `src` instead
/// of the first.
pub fn decode_last_utf8(src: &[u8]) -> Option<(char, usize)> {
if src.is_empty() {
return None;
}
let mut start = src.len() - 1;
if src[start] <= 0x7F {
return Some((src[start] as char, 1));
}
while start > src.len().saturating_sub(4) {
start -= 1;
if is_start_byte(src[start]) {
break;
}
}
match decode_utf8(&src[start..]) {
None => None,
Some((_, n)) if n < src.len() - start => None,
Some((cp, n)) => Some((cp, n)),
}
}
fn is_start_byte(b: u8) -> bool {
b & 0b11_000000 != 0b1_0000000
}
#[cfg(test)]
mod tests {
use std::str;
use quickcheck::quickcheck;
use super::{
decode_last_utf8, decode_utf8, TAG_CONT, TAG_FOUR, TAG_THREE, TAG_TWO,
};
#[test]
fn prop_roundtrip() {
fn p(given_cp: char) -> bool {
let mut tmp = [0; 4];
let encoded_len = given_cp.encode_utf8(&mut tmp).len();
let (got_cp, got_len) = decode_utf8(&tmp[..encoded_len]).unwrap();
encoded_len == got_len && given_cp == got_cp
}
quickcheck(p as fn(char) -> bool)
}
#[test]
fn prop_roundtrip_last() {
fn p(given_cp: char) -> bool {
let mut tmp = [0; 4];
let encoded_len = given_cp.encode_utf8(&mut tmp).len();
let (got_cp, got_len) =
decode_last_utf8(&tmp[..encoded_len]).unwrap();
encoded_len == got_len && given_cp == got_cp
}
quickcheck(p as fn(char) -> bool)
}
#[test]
fn prop_encode_matches_std() {
fn p(cp: char) -> bool {
let mut got = [0; 4];
let n = cp.encode_utf8(&mut got).len();
let expected = cp.to_string();
&got[..n] == expected.as_bytes()
}
quickcheck(p as fn(char) -> bool)
}
#[test]
fn prop_decode_matches_std() {
fn p(given_cp: char) -> bool {
let mut tmp = [0; 4];
let n = given_cp.encode_utf8(&mut tmp).len();
let (got_cp, _) = decode_utf8(&tmp[..n]).unwrap();
let expected_cp =
str::from_utf8(&tmp[..n]).unwrap().chars().next().unwrap();
got_cp == expected_cp
}
quickcheck(p as fn(char) -> bool)
}
#[test]
fn prop_decode_last_matches_std() {
fn p(given_cp: char) -> bool {
let mut tmp = [0; 4];
let n = given_cp.encode_utf8(&mut tmp).len();
let (got_cp, _) = decode_last_utf8(&tmp[..n]).unwrap();
let expected_cp = str::from_utf8(&tmp[..n])
.unwrap()
.chars()
.rev()
.next()
.unwrap();
got_cp == expected_cp
}
quickcheck(p as fn(char) -> bool)
}
#[test]
fn reject_invalid() {
// Invalid start byte
assert_eq!(decode_utf8(&[0xFF]), None);
// Surrogate pair
assert_eq!(decode_utf8(&[0xED, 0xA0, 0x81]), None);
// Invalid continuation byte.
assert_eq!(decode_utf8(&[0xD4, 0xC2]), None);
// Bad lengths
assert_eq!(decode_utf8(&[0xC3]), None); // 2 bytes
assert_eq!(decode_utf8(&[0xEF, 0xBF]), None); // 3 bytes
assert_eq!(decode_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes
// Not a minimal UTF-8 sequence
assert_eq!(decode_utf8(&[TAG_TWO, TAG_CONT | b'a']), None);
assert_eq!(decode_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a']), None);
assert_eq!(
decode_utf8(&[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',]),
None
);
}
#[test]
fn reject_invalid_last() {
// Invalid start byte
assert_eq!(decode_last_utf8(&[0xFF]), None);
// Surrogate pair
assert_eq!(decode_last_utf8(&[0xED, 0xA0, 0x81]), None);
// Bad lengths
assert_eq!(decode_last_utf8(&[0xC3]), None); // 2 bytes
assert_eq!(decode_last_utf8(&[0xEF, 0xBF]), None); // 3 bytes
assert_eq!(decode_last_utf8(&[0xF4, 0x8F, 0xBF]), None); // 4 bytes
// Not a minimal UTF-8 sequence
assert_eq!(decode_last_utf8(&[TAG_TWO, TAG_CONT | b'a']), None);
assert_eq!(
decode_last_utf8(&[TAG_THREE, TAG_CONT, TAG_CONT | b'a',]),
None
);
assert_eq!(
decode_last_utf8(
&[TAG_FOUR, TAG_CONT, TAG_CONT, TAG_CONT | b'a',]
),
None
);
}
}