blob: e05bcc1dfa3b68550f85b7eed1afdf54af5fa731 [file] [log] [blame]
use rand_core::{RngCore, SeedableRng};
use rand_pcg::{Lcg64Xsh32, Pcg32};
#[test]
fn test_lcg64xsh32_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = Lcg64Xsh32::from_seed(seed);
assert_eq!(rng1.next_u64(), 1204678643940597513);
let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1).unwrap();
assert_eq!(rng2.next_u64(), 12384929573776311845);
let mut rng3 = Lcg64Xsh32::seed_from_u64(0);
assert_eq!(rng3.next_u64(), 18195738587432868099);
// This is the same as Lcg64Xsh32, so we only have a single test:
let mut rng4 = Pcg32::seed_from_u64(0);
assert_eq!(rng4.next_u64(), 18195738587432868099);
}
#[test]
fn test_lcg64xsh32_true_values() {
// Numbers copied from official test suite.
let mut rng = Lcg64Xsh32::new(42, 54);
let mut results = [0u32; 6];
for i in results.iter_mut() { *i = rng.next_u32(); }
let expected: [u32; 6] = [0xa15c02b7, 0x7b47f409, 0xba1d3330,
0x83d2f293, 0xbfa4784b, 0xcbed606e];
assert_eq!(results, expected);
}
#[cfg(feature="serde1")]
#[test]
fn test_lcg64xsh32_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let mut rng = Lcg64Xsh32::seed_from_u64(0);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read)
.expect("Could not deserialize");
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}