blob: fd960f30cb3f0c1236dabe1d6267afd72a31d656 [file] [log] [blame]
#include "test/jemalloc_test.h"
static unsigned
get_nsizes_impl(const char *cmd) {
unsigned ret;
size_t z;
z = sizeof(unsigned);
assert_d_eq(mallctl(cmd, (void *)&ret, &z, NULL, 0), 0,
"Unexpected mallctl(\"%s\", ...) failure", cmd);
return ret;
}
static unsigned
get_nlarge(void) {
return get_nsizes_impl("arenas.nlextents");
}
static size_t
get_size_impl(const char *cmd, size_t ind) {
size_t ret;
size_t z;
size_t mib[4];
size_t miblen = 4;
z = sizeof(size_t);
assert_d_eq(mallctlnametomib(cmd, mib, &miblen),
0, "Unexpected mallctlnametomib(\"%s\", ...) failure", cmd);
mib[2] = ind;
z = sizeof(size_t);
assert_d_eq(mallctlbymib(mib, miblen, (void *)&ret, &z, NULL, 0),
0, "Unexpected mallctlbymib([\"%s\", %zu], ...) failure", cmd, ind);
return ret;
}
static size_t
get_large_size(size_t ind) {
return get_size_impl("arenas.lextent.0.size", ind);
}
/*
* On systems which can't merge extents, tests that call this function generate
* a lot of dirty memory very quickly. Purging between cycles mitigates
* potential OOM on e.g. 32-bit Windows.
*/
static void
purge(void) {
assert_d_eq(mallctl("arena.0.purge", NULL, NULL, NULL, 0), 0,
"Unexpected mallctl error");
}
TEST_BEGIN(test_overflow) {
size_t largemax;
largemax = get_large_size(get_nlarge()-1);
assert_ptr_null(mallocx(largemax+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", largemax+1);
assert_ptr_null(mallocx(ZU(PTRDIFF_MAX)+1, 0),
"Expected OOM for mallocx(size=%#zx, 0)", ZU(PTRDIFF_MAX)+1);
assert_ptr_null(mallocx(SIZE_T_MAX, 0),
"Expected OOM for mallocx(size=%#zx, 0)", SIZE_T_MAX);
assert_ptr_null(mallocx(1, MALLOCX_ALIGN(ZU(PTRDIFF_MAX)+1)),
"Expected OOM for mallocx(size=1, MALLOCX_ALIGN(%#zx))",
ZU(PTRDIFF_MAX)+1);
}
TEST_END
TEST_BEGIN(test_oom) {
size_t largemax;
bool oom;
void *ptrs[3];
unsigned i;
/*
* It should be impossible to allocate three objects that each consume
* nearly half the virtual address space.
*/
largemax = get_large_size(get_nlarge()-1);
oom = false;
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
ptrs[i] = mallocx(largemax, 0);
if (ptrs[i] == NULL) {
oom = true;
}
}
assert_true(oom,
"Expected OOM during series of calls to mallocx(size=%zu, 0)",
largemax);
for (i = 0; i < sizeof(ptrs) / sizeof(void *); i++) {
if (ptrs[i] != NULL) {
dallocx(ptrs[i], 0);
}
}
purge();
#if LG_SIZEOF_PTR == 3
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x8000000000000000ULL)),
"Expected OOM for mallocx()");
assert_ptr_null(mallocx(0x8000000000000000ULL,
MALLOCX_ALIGN(0x80000000)),
"Expected OOM for mallocx()");
#else
assert_ptr_null(mallocx(0x80000000UL, MALLOCX_ALIGN(0x80000000UL)),
"Expected OOM for mallocx()");
#endif
}
TEST_END
TEST_BEGIN(test_basic) {
#define MAXSZ (((size_t)1) << 23)
size_t sz;
for (sz = 1; sz < MAXSZ; sz = nallocx(sz, 0) + 1) {
size_t nsz, rsz;
void *p;
nsz = nallocx(sz, 0);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
rsz = sallocx(p, 0);
assert_zu_ge(rsz, sz, "Real size smaller than expected");
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() size mismatch");
dallocx(p, 0);
p = mallocx(sz, 0);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=0) error", sz);
dallocx(p, 0);
nsz = nallocx(sz, MALLOCX_ZERO);
assert_zu_ne(nsz, 0, "Unexpected nallocx() error");
p = mallocx(sz, MALLOCX_ZERO);
assert_ptr_not_null(p,
"Unexpected mallocx(size=%zx, flags=MALLOCX_ZERO) error",
nsz);
rsz = sallocx(p, 0);
assert_zu_eq(nsz, rsz, "nallocx()/sallocx() rsize mismatch");
dallocx(p, 0);
purge();
}
#undef MAXSZ
}
TEST_END
TEST_BEGIN(test_alignment_and_size) {
const char *percpu_arena;
size_t sz = sizeof(percpu_arena);
if(mallctl("opt.percpu_arena", (void *)&percpu_arena, &sz, NULL, 0) ||
strcmp(percpu_arena, "disabled") != 0) {
test_skip("test_alignment_and_size skipped: "
"not working with percpu arena.");
};
#define MAXALIGN (((size_t)1) << 23)
#define NITER 4
size_t nsz, rsz, alignment, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++) {
ps[i] = NULL;
}
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (sz = 1;
sz < 3 * alignment && sz < (1U << 31);
sz += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
nsz = nallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_zu_ne(nsz, 0,
"nallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
ps[i] = mallocx(sz, MALLOCX_ALIGN(alignment) |
MALLOCX_ZERO);
assert_ptr_not_null(ps[i],
"mallocx() error for alignment=%zu, "
"size=%zu (%#zx)", alignment, sz, sz);
rsz = sallocx(ps[i], 0);
assert_zu_ge(rsz, sz,
"Real size smaller than expected for "
"alignment=%zu, size=%zu", alignment, sz);
assert_zu_eq(nsz, rsz,
"nallocx()/sallocx() size mismatch for "
"alignment=%zu, size=%zu", alignment, sz);
assert_ptr_null(
(void *)((uintptr_t)ps[i] & (alignment-1)),
"%p inadequately aligned for"
" alignment=%zu, size=%zu", ps[i],
alignment, sz);
total += rsz;
if (total >= (MAXALIGN << 1)) {
break;
}
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
dallocx(ps[i], 0);
ps[i] = NULL;
}
}
}
purge();
}
#undef MAXALIGN
#undef NITER
}
TEST_END
int
main(void) {
return test(
test_overflow,
test_oom,
test_basic,
test_alignment_and_size);
}