blob: 93a75173a8d9335d533b8c3a04c33bab5688959e [file] [log] [blame]
#ifndef JEMALLOC_INTERNAL_RTREE_CTX_H
#define JEMALLOC_INTERNAL_RTREE_CTX_H
/*
* Number of leafkey/leaf pairs to cache in L1 and L2 level respectively. Each
* entry supports an entire leaf, so the cache hit rate is typically high even
* with a small number of entries. In rare cases extent activity will straddle
* the boundary between two leaf nodes. Furthermore, an arena may use a
* combination of dss and mmap. Note that as memory usage grows past the amount
* that this cache can directly cover, the cache will become less effective if
* locality of reference is low, but the consequence is merely cache misses
* while traversing the tree nodes.
*
* The L1 direct mapped cache offers consistent and low cost on cache hit.
* However collision could affect hit rate negatively. This is resolved by
* combining with a L2 LRU cache, which requires linear search and re-ordering
* on access but suffers no collision. Note that, the cache will itself suffer
* cache misses if made overly large, plus the cost of linear search in the LRU
* cache.
*/
#define RTREE_CTX_LG_NCACHE 4
#define RTREE_CTX_NCACHE (1 << RTREE_CTX_LG_NCACHE)
#define RTREE_CTX_NCACHE_L2 8
/*
* Zero initializer required for tsd initialization only. Proper initialization
* done via rtree_ctx_data_init().
*/
#define RTREE_CTX_ZERO_INITIALIZER {{{0}}, {{0}}}
typedef struct rtree_leaf_elm_s rtree_leaf_elm_t;
typedef struct rtree_ctx_cache_elm_s rtree_ctx_cache_elm_t;
struct rtree_ctx_cache_elm_s {
uintptr_t leafkey;
rtree_leaf_elm_t *leaf;
};
typedef struct rtree_ctx_s rtree_ctx_t;
struct rtree_ctx_s {
/* Direct mapped cache. */
rtree_ctx_cache_elm_t cache[RTREE_CTX_NCACHE];
/* L2 LRU cache. */
rtree_ctx_cache_elm_t l2_cache[RTREE_CTX_NCACHE_L2];
};
void rtree_ctx_data_init(rtree_ctx_t *ctx);
#endif /* JEMALLOC_INTERNAL_RTREE_CTX_H */