blob: 323bb6e2fe7b2ed0c3e2ad9f4b2119dde3f9bd27 [file] [log] [blame]
//! This crate provides fast functions for printing integer primitives to an
//! [`io::Write`] or a [`fmt::Write`]. The implementation comes straight from
//! [libcore] but avoids the performance penalty of going through
//! [`fmt::Formatter`].
//!
//! See also [`dtoa`] for printing floating point primitives.
//!
//! [`io::Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
//! [`fmt::Write`]: https://doc.rust-lang.org/core/fmt/trait.Write.html
//! [libcore]: https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L201-L254
//! [`fmt::Formatter`]: https://doc.rust-lang.org/std/fmt/struct.Formatter.html
//! [`dtoa`]: https://github.com/dtolnay/dtoa
//!
//! <br>
//!
//! # Performance (lower is better)
//!
//! ![performance](https://raw.githubusercontent.com/dtolnay/itoa/master/performance.png)
//!
//! <br>
//!
//! # Examples
//!
//! ```edition2018
//! use std::{fmt, io};
//!
//! fn demo_itoa_write() -> io::Result<()> {
//! // Write to a vector or other io::Write.
//! let mut buf = Vec::new();
//! itoa::write(&mut buf, 128u64)?;
//! println!("{:?}", buf);
//!
//! // Write to a stack buffer.
//! let mut bytes = [0u8; 20];
//! let n = itoa::write(&mut bytes[..], 128u64)?;
//! println!("{:?}", &bytes[..n]);
//!
//! Ok(())
//! }
//!
//! fn demo_itoa_fmt() -> fmt::Result {
//! // Write to a string.
//! let mut s = String::new();
//! itoa::fmt(&mut s, 128u64)?;
//! println!("{}", s);
//!
//! Ok(())
//! }
//! ```
#![doc(html_root_url = "https://docs.rs/itoa/0.4.4")]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#![cfg_attr(
feature = "cargo-clippy",
allow(const_static_lifetime, transmute_ptr_to_ptr),
)]
#[cfg(feature = "i128")]
mod udiv128;
#[cfg(feature = "std")]
use std::{fmt, io, mem, ptr, slice, str};
#[cfg(not(feature = "std"))]
use core::{fmt, mem, ptr, slice, str};
/// Write integer to an `io::Write`.
#[cfg(feature = "std")]
#[inline]
pub fn write<W: io::Write, V: Integer>(mut wr: W, value: V) -> io::Result<usize> {
let mut buf = Buffer::new();
let s = buf.format(value);
try!(wr.write_all(s.as_bytes()));
Ok(s.len())
}
/// Write integer to an `fmt::Write`.
#[inline]
pub fn fmt<W: fmt::Write, V: Integer>(mut wr: W, value: V) -> fmt::Result {
let mut buf = Buffer::new();
wr.write_str(buf.format(value))
}
/// A safe API for formatting integers to text.
///
/// # Example
///
/// ```
/// let mut buffer = itoa::Buffer::new();
/// let printed = buffer.format(1234);
/// assert_eq!(printed, "1234");
/// ```
#[derive(Copy)]
pub struct Buffer {
bytes: [u8; I128_MAX_LEN],
}
impl Default for Buffer {
#[inline]
fn default() -> Buffer {
Buffer::new()
}
}
impl Clone for Buffer {
#[inline]
fn clone(&self) -> Self {
Buffer::new()
}
}
impl Buffer {
/// This is a cheap operation; you don't need to worry about reusing buffers
/// for efficiency.
#[inline]
pub fn new() -> Buffer {
Buffer {
bytes: unsafe { mem::uninitialized() },
}
}
/// Print an integer into this buffer and return a reference to its string representation
/// within the buffer.
pub fn format<I: Integer>(&mut self, i: I) -> &str {
i.write(self)
}
}
// Seal to prevent downstream implementations of the Integer trait.
mod private {
pub trait Sealed {}
}
/// An integer that can be formatted by `itoa::write` and `itoa::fmt`.
///
/// This trait is sealed and cannot be implemented for types outside of itoa.
pub trait Integer: private::Sealed {
// Not public API.
#[doc(hidden)]
fn write(self, buf: &mut Buffer) -> &str;
}
trait IntegerPrivate<B> {
fn write_to(self, buf: &mut B) -> &[u8];
}
const DEC_DIGITS_LUT: &'static [u8] = b"\
0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
// Adaptation of the original implementation at
// https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L188-L266
macro_rules! impl_IntegerCommon {
($max_len:expr, $t:ident) => {
impl Integer for $t {
#[inline]
fn write(self, buf: &mut Buffer) -> &str {
unsafe {
debug_assert!($max_len <= I128_MAX_LEN);
let buf = mem::transmute::<&mut [u8; I128_MAX_LEN], &mut [u8; $max_len]>(
&mut buf.bytes,
);
let bytes = self.write_to(buf);
str::from_utf8_unchecked(bytes)
}
}
}
impl private::Sealed for $t {}
};
}
macro_rules! impl_Integer {
($($max_len:expr => $t:ident),* as $conv_fn:ident) => {$(
impl_IntegerCommon!($max_len, $t);
impl IntegerPrivate<[u8; $max_len]> for $t {
#[allow(unused_comparisons)]
#[inline]
fn write_to(self, buf: &mut [u8; $max_len]) -> &[u8] {
let is_nonnegative = self >= 0;
let mut n = if is_nonnegative {
self as $conv_fn
} else {
// convert the negative num to positive by summing 1 to it's 2 complement
(!(self as $conv_fn)).wrapping_add(1)
};
let mut curr = buf.len() as isize;
let buf_ptr = buf.as_mut_ptr();
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
unsafe {
// need at least 16 bits for the 4-characters-at-a-time to work.
if mem::size_of::<$t>() >= 2 {
// eagerly decode 4 characters at a time
while n >= 10000 {
let rem = (n % 10000) as isize;
n /= 10000;
let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2);
}
}
// if we reach here numbers are <= 9999, so at most 4 chars long
let mut n = n as isize; // possibly reduce 64bit math
// decode 2 more chars, if > 2 chars
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
// decode last 1 or 2 chars
if n < 10 {
curr -= 1;
*buf_ptr.offset(curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
if !is_nonnegative {
curr -= 1;
*buf_ptr.offset(curr) = b'-';
}
}
let len = buf.len() - curr as usize;
unsafe { slice::from_raw_parts(buf_ptr.offset(curr), len) }
}
}
)*};
}
const I8_MAX_LEN: usize = 4;
const U8_MAX_LEN: usize = 3;
const I16_MAX_LEN: usize = 6;
const U16_MAX_LEN: usize = 5;
const I32_MAX_LEN: usize = 11;
const U32_MAX_LEN: usize = 10;
const I64_MAX_LEN: usize = 20;
const U64_MAX_LEN: usize = 20;
impl_Integer!(
I8_MAX_LEN => i8,
U8_MAX_LEN => u8,
I16_MAX_LEN => i16,
U16_MAX_LEN => u16,
I32_MAX_LEN => i32,
U32_MAX_LEN => u32
as u32);
impl_Integer!(I64_MAX_LEN => i64, U64_MAX_LEN => u64 as u64);
#[cfg(target_pointer_width = "16")]
impl_Integer!(I16_MAX_LEN => isize, U16_MAX_LEN => usize as u16);
#[cfg(target_pointer_width = "32")]
impl_Integer!(I32_MAX_LEN => isize, U32_MAX_LEN => usize as u32);
#[cfg(target_pointer_width = "64")]
impl_Integer!(I64_MAX_LEN => isize, U64_MAX_LEN => usize as u64);
#[cfg(all(feature = "i128"))]
macro_rules! impl_Integer128 {
($($max_len:expr => $t:ident),*) => {$(
impl_IntegerCommon!($max_len, $t);
impl IntegerPrivate<[u8; $max_len]> for $t {
#[allow(unused_comparisons)]
#[inline]
fn write_to(self, buf: &mut [u8; $max_len]) -> &[u8] {
let is_nonnegative = self >= 0;
let n = if is_nonnegative {
self as u128
} else {
// convert the negative num to positive by summing 1 to it's 2 complement
(!(self as u128)).wrapping_add(1)
};
let mut curr = buf.len() as isize;
let buf_ptr = buf.as_mut_ptr();
unsafe {
// Divide by 10^19 which is the highest power less than 2^64.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf1 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [u8; U64_MAX_LEN];
curr -= rem.write_to(&mut *buf1).len() as isize;
if n != 0 {
// Memset the base10 leading zeros of rem.
let target = buf.len() as isize - 19;
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
curr = target;
// Divide by 10^19 again.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf2 = buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [u8; U64_MAX_LEN];
curr -= rem.write_to(&mut *buf2).len() as isize;
if n != 0 {
// Memset the leading zeros.
let target = buf.len() as isize - 38;
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
curr = target;
// There is at most one digit left
// because u128::max / 10^19 / 10^19 is 3.
curr -= 1;
*buf_ptr.offset(curr) = (n as u8) + b'0';
}
}
if !is_nonnegative {
curr -= 1;
*buf_ptr.offset(curr) = b'-';
}
let len = buf.len() - curr as usize;
slice::from_raw_parts(buf_ptr.offset(curr), len)
}
}
}
)*};
}
#[cfg(all(feature = "i128"))]
const U128_MAX_LEN: usize = 39;
const I128_MAX_LEN: usize = 40;
#[cfg(all(feature = "i128"))]
impl_Integer128!(I128_MAX_LEN => i128, U128_MAX_LEN => u128);