blob: 5703f95d0e6bac1987cae4476dbb7e18beea2273 [file] [log] [blame]
#![feature(test)]
extern crate fnv;
extern crate rand;
extern crate test;
#[macro_use]
extern crate lazy_static;
use fnv::FnvHasher;
use std::hash::BuildHasherDefault;
use std::hash::Hash;
type FnvBuilder = BuildHasherDefault<FnvHasher>;
use test::black_box;
use test::Bencher;
extern crate indexmap;
use indexmap::IndexMap;
use std::collections::HashMap;
use std::iter::FromIterator;
use rand::rngs::SmallRng;
use rand::seq::SliceRandom;
use rand::SeedableRng;
#[bench]
fn new_hashmap(b: &mut Bencher) {
b.iter(|| HashMap::<String, String>::new());
}
#[bench]
fn new_orderedmap(b: &mut Bencher) {
b.iter(|| IndexMap::<String, String>::new());
}
#[bench]
fn with_capacity_10e5_hashmap(b: &mut Bencher) {
b.iter(|| HashMap::<String, String>::with_capacity(10_000));
}
#[bench]
fn with_capacity_10e5_orderedmap(b: &mut Bencher) {
b.iter(|| IndexMap::<String, String>::with_capacity(10_000));
}
#[bench]
fn insert_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_orderedmap_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_hashmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn insert_orderedmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn insert_hashmap_str_10_000(b: &mut Bencher) {
let c = 10_000;
let ss = Vec::from_iter((0..c).map(|x| x.to_string()));
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for key in &ss {
map.insert(&key[..], ());
}
map
});
}
#[bench]
fn insert_orderedmap_str_10_000(b: &mut Bencher) {
let c = 10_000;
let ss = Vec::from_iter((0..c).map(|x| x.to_string()));
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for key in &ss {
map.insert(&key[..], ());
}
map
});
}
#[bench]
fn insert_hashmap_int_bigvalue_10_000(b: &mut Bencher) {
let c = 10_000;
let value = [0u64; 10];
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for i in 0..c {
map.insert(i, value);
}
map
});
}
#[bench]
fn insert_orderedmap_int_bigvalue_10_000(b: &mut Bencher) {
let c = 10_000;
let value = [0u64; 10];
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for i in 0..c {
map.insert(i, value);
}
map
});
}
#[bench]
fn insert_hashmap_100_000(b: &mut Bencher) {
let c = 100_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_orderedmap_100_000(b: &mut Bencher) {
let c = 100_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_hashmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_orderedmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn entry_hashmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.entry(x).or_insert(());
}
map
});
}
#[bench]
fn entry_orderedmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.entry(x).or_insert(());
}
map
});
}
#[bench]
fn iter_sum_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| map.keys().sum::<usize>());
}
#[bench]
fn iter_sum_orderedmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| map.keys().sum::<usize>());
}
#[bench]
fn iter_black_box_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| {
for &key in map.keys() {
black_box(key);
}
});
}
#[bench]
fn iter_black_box_orderedmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| {
for &key in map.keys() {
black_box(key);
}
});
}
fn shuffled_keys<I>(iter: I) -> Vec<I::Item>
where
I: IntoIterator,
{
let mut v = Vec::from_iter(iter);
let mut rng = SmallRng::from_entropy();
v.shuffle(&mut rng);
v
}
#[bench]
fn lookup_hashmap_10_000_exist(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in 5000..c {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_hashmap_10_000_noexist(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in c..15000 {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_orderedmap_10_000_exist(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in 5000..c {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_orderedmap_10_000_noexist(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in c..15000 {
found += map.get(&key).is_some() as i32;
}
found
});
}
// number of items to look up
const LOOKUP_MAP_SIZE: u32 = 100_000_u32;
const LOOKUP_SAMPLE_SIZE: u32 = 5000;
const SORT_MAP_SIZE: usize = 10_000;
// use lazy_static so that comparison benchmarks use the exact same inputs
lazy_static! {
static ref KEYS: Vec<u32> = { shuffled_keys(0..LOOKUP_MAP_SIZE) };
}
lazy_static! {
static ref HMAP_100K: HashMap<u32, u32> = {
let c = LOOKUP_MAP_SIZE;
let mut map = HashMap::with_capacity(c as usize);
let keys = &*KEYS;
for &key in keys {
map.insert(key, key);
}
map
};
}
lazy_static! {
static ref OMAP_100K: IndexMap<u32, u32> = {
let c = LOOKUP_MAP_SIZE;
let mut map = IndexMap::with_capacity(c as usize);
let keys = &*KEYS;
for &key in keys {
map.insert(key, key);
}
map
};
}
lazy_static! {
static ref OMAP_SORT_U32: IndexMap<u32, u32> = {
let mut map = IndexMap::with_capacity(SORT_MAP_SIZE);
for &key in &KEYS[..SORT_MAP_SIZE] {
map.insert(key, key);
}
map
};
}
lazy_static! {
static ref OMAP_SORT_S: IndexMap<String, String> = {
let mut map = IndexMap::with_capacity(SORT_MAP_SIZE);
for &key in &KEYS[..SORT_MAP_SIZE] {
map.insert(format!("{:^16x}", &key), String::new());
}
map
};
}
#[bench]
fn lookup_hashmap_100_000_multi(b: &mut Bencher) {
let map = &*HMAP_100K;
b.iter(|| {
let mut found = 0;
for key in 0..LOOKUP_SAMPLE_SIZE {
found += map.get(&key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_ordermap_100_000_multi(b: &mut Bencher) {
let map = &*OMAP_100K;
b.iter(|| {
let mut found = 0;
for key in 0..LOOKUP_SAMPLE_SIZE {
found += map.get(&key).is_some() as u32;
}
found
});
}
// inorder: Test looking up keys in the same order as they were inserted
#[bench]
fn lookup_hashmap_100_000_inorder_multi(b: &mut Bencher) {
let map = &*HMAP_100K;
let keys = &*KEYS;
b.iter(|| {
let mut found = 0;
for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] {
found += map.get(key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_ordermap_100_000_inorder_multi(b: &mut Bencher) {
let map = &*OMAP_100K;
let keys = &*KEYS;
b.iter(|| {
let mut found = 0;
for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] {
found += map.get(key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_hashmap_100_000_single(b: &mut Bencher) {
let map = &*HMAP_100K;
let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle();
b.iter(|| {
let key = iter.next().unwrap();
map.get(&key).is_some()
});
}
#[bench]
fn lookup_ordermap_100_000_single(b: &mut Bencher) {
let map = &*OMAP_100K;
let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle();
b.iter(|| {
let key = iter.next().unwrap();
map.get(&key).is_some()
});
}
const GROW_SIZE: usize = 100_000;
type GrowKey = u32;
// Test grow/resize without preallocation
#[bench]
fn grow_fnv_hashmap_100_000(b: &mut Bencher) {
b.iter(|| {
let mut map: HashMap<_, _, FnvBuilder> = HashMap::default();
for x in 0..GROW_SIZE {
map.insert(x as GrowKey, x as GrowKey);
}
map
});
}
#[bench]
fn grow_fnv_ordermap_100_000(b: &mut Bencher) {
b.iter(|| {
let mut map: IndexMap<_, _, FnvBuilder> = IndexMap::default();
for x in 0..GROW_SIZE {
map.insert(x as GrowKey, x as GrowKey);
}
map
});
}
const MERGE: u64 = 10_000;
#[bench]
fn hashmap_merge_simple(b: &mut Bencher) {
let first_map: HashMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: HashMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
b.iter(|| {
let mut merged = first_map.clone();
merged.extend(second_map.iter().map(|(&k, &v)| (k, v)));
merged
});
}
#[bench]
fn hashmap_merge_shuffle(b: &mut Bencher) {
let first_map: HashMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: HashMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
let mut v = Vec::new();
let mut rng = SmallRng::from_entropy();
b.iter(|| {
let mut merged = first_map.clone();
v.extend(second_map.iter().map(|(&k, &v)| (k, v)));
v.shuffle(&mut rng);
merged.extend(v.drain(..));
merged
});
}
#[bench]
fn ordermap_merge_simple(b: &mut Bencher) {
let first_map: IndexMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: IndexMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
b.iter(|| {
let mut merged = first_map.clone();
merged.extend(second_map.iter().map(|(&k, &v)| (k, v)));
merged
});
}
#[bench]
fn ordermap_merge_shuffle(b: &mut Bencher) {
let first_map: IndexMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: IndexMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
let mut v = Vec::new();
let mut rng = SmallRng::from_entropy();
b.iter(|| {
let mut merged = first_map.clone();
v.extend(second_map.iter().map(|(&k, &v)| (k, v)));
v.shuffle(&mut rng);
merged.extend(v.drain(..));
merged
});
}
#[bench]
fn swap_remove_ordermap_100_000(b: &mut Bencher) {
let map = OMAP_100K.clone();
let mut keys = Vec::from_iter(map.keys().cloned());
let mut rng = SmallRng::from_entropy();
keys.shuffle(&mut rng);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.swap_remove(key);
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn shift_remove_ordermap_100_000_few(b: &mut Bencher) {
let map = OMAP_100K.clone();
let mut keys = Vec::from_iter(map.keys().cloned());
let mut rng = SmallRng::from_entropy();
keys.shuffle(&mut rng);
keys.truncate(50);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.shift_remove(key);
}
assert_eq!(map.len(), OMAP_100K.len() - keys.len());
map
});
}
#[bench]
fn shift_remove_ordermap_2_000_full(b: &mut Bencher) {
let mut keys = KEYS[..2_000].to_vec();
let mut map = IndexMap::with_capacity(keys.len());
for &key in &keys {
map.insert(key, key);
}
let mut rng = SmallRng::from_entropy();
keys.shuffle(&mut rng);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.shift_remove(key);
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn pop_ordermap_100_000(b: &mut Bencher) {
let map = OMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
while !map.is_empty() {
map.pop();
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn few_retain_ordermap_100_000(b: &mut Bencher) {
let map = OMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 7 == 0);
map
});
}
#[bench]
fn few_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 7 == 0);
map
});
}
#[bench]
fn half_retain_ordermap_100_000(b: &mut Bencher) {
let map = OMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 2 == 0);
map
});
}
#[bench]
fn half_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 2 == 0);
map
});
}
#[bench]
fn many_retain_ordermap_100_000(b: &mut Bencher) {
let map = OMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 100 != 0);
map
});
}
#[bench]
fn many_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 100 != 0);
map
});
}
// simple sort impl for comparison
pub fn simple_sort<K: Ord + Hash, V>(m: &mut IndexMap<K, V>) {
let mut ordered: Vec<_> = m.drain(..).collect();
ordered.sort_by(|left, right| left.0.cmp(&right.0));
m.extend(ordered);
}
#[bench]
fn ordermap_sort_s(b: &mut Bencher) {
let map = OMAP_SORT_S.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
map.sort_keys();
map
});
}
#[bench]
fn ordermap_simple_sort_s(b: &mut Bencher) {
let map = OMAP_SORT_S.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
simple_sort(&mut map);
map
});
}
#[bench]
fn ordermap_sort_u32(b: &mut Bencher) {
let map = OMAP_SORT_U32.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
map.sort_keys();
map
});
}
#[bench]
fn ordermap_simple_sort_u32(b: &mut Bencher) {
let map = OMAP_SORT_U32.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
simple_sort(&mut map);
map
});
}
// measure the fixed overhead of cloning in sort benchmarks
#[bench]
fn ordermap_clone_for_sort_s(b: &mut Bencher) {
let map = OMAP_SORT_S.clone();
b.iter(|| map.clone());
}
#[bench]
fn ordermap_clone_for_sort_u32(b: &mut Bencher) {
let map = OMAP_SORT_U32.clone();
b.iter(|| map.clone());
}