blob: 81553150b54a1e0189c41a13de6ed4e456fcc92d [file] [log] [blame]
//! Implementation of find-usages functionality.
//!
//! It is based on the standard ide trick: first, we run a fast text search to
//! get a super-set of matches. Then, we we confirm each match using precise
//! name resolution.
use std::{convert::TryInto, mem};
use hir::{DefWithBody, HasSource, Module, ModuleSource, Semantics, Visibility};
use once_cell::unsync::Lazy;
use ra_db::{FileId, FileRange, SourceDatabaseExt};
use ra_prof::profile;
use ra_syntax::{ast, match_ast, AstNode, TextRange, TextSize};
use rustc_hash::FxHashMap;
use crate::{
defs::{classify_name_ref, Definition, NameRefClass},
RootDatabase,
};
#[derive(Debug, Clone)]
pub struct Reference {
pub file_range: FileRange,
pub kind: ReferenceKind,
pub access: Option<ReferenceAccess>,
}
#[derive(Debug, Clone, PartialEq)]
pub enum ReferenceKind {
FieldShorthandForField,
FieldShorthandForLocal,
StructLiteral,
Other,
}
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum ReferenceAccess {
Read,
Write,
}
/// Generally, `search_scope` returns files that might contain references for the element.
/// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates.
/// In some cases, the location of the references is known to within a `TextRange`,
/// e.g. for things like local variables.
pub struct SearchScope {
entries: FxHashMap<FileId, Option<TextRange>>,
}
impl SearchScope {
fn new(entries: FxHashMap<FileId, Option<TextRange>>) -> SearchScope {
SearchScope { entries }
}
pub fn empty() -> SearchScope {
SearchScope::new(FxHashMap::default())
}
pub fn single_file(file: FileId) -> SearchScope {
SearchScope::new(std::iter::once((file, None)).collect())
}
pub fn intersection(&self, other: &SearchScope) -> SearchScope {
let (mut small, mut large) = (&self.entries, &other.entries);
if small.len() > large.len() {
mem::swap(&mut small, &mut large)
}
let res = small
.iter()
.filter_map(|(file_id, r1)| {
let r2 = large.get(file_id)?;
let r = intersect_ranges(*r1, *r2)?;
Some((*file_id, r))
})
.collect();
return SearchScope::new(res);
fn intersect_ranges(
r1: Option<TextRange>,
r2: Option<TextRange>,
) -> Option<Option<TextRange>> {
match (r1, r2) {
(None, r) | (r, None) => Some(r),
(Some(r1), Some(r2)) => {
let r = r1.intersect(r2)?;
Some(Some(r))
}
}
}
}
}
impl IntoIterator for SearchScope {
type Item = (FileId, Option<TextRange>);
type IntoIter = std::collections::hash_map::IntoIter<FileId, Option<TextRange>>;
fn into_iter(self) -> Self::IntoIter {
self.entries.into_iter()
}
}
impl Definition {
fn search_scope(&self, db: &RootDatabase) -> SearchScope {
let _p = profile("search_scope");
let module = match self.module(db) {
Some(it) => it,
None => return SearchScope::empty(),
};
let module_src = module.definition_source(db);
let file_id = module_src.file_id.original_file(db);
if let Definition::Local(var) = self {
let range = match var.parent(db) {
DefWithBody::Function(f) => f.source(db).value.syntax().text_range(),
DefWithBody::Const(c) => c.source(db).value.syntax().text_range(),
DefWithBody::Static(s) => s.source(db).value.syntax().text_range(),
};
let mut res = FxHashMap::default();
res.insert(file_id, Some(range));
return SearchScope::new(res);
}
let vis = self.visibility(db);
if let Some(Visibility::Module(module)) = vis.and_then(|it| it.into()) {
let module: Module = module.into();
let mut res = FxHashMap::default();
let mut to_visit = vec![module];
let mut is_first = true;
while let Some(module) = to_visit.pop() {
let src = module.definition_source(db);
let file_id = src.file_id.original_file(db);
match src.value {
ModuleSource::Module(m) => {
if is_first {
let range = Some(m.syntax().text_range());
res.insert(file_id, range);
} else {
// We have already added the enclosing file to the search scope,
// so do nothing.
}
}
ModuleSource::SourceFile(_) => {
res.insert(file_id, None);
}
};
is_first = false;
to_visit.extend(module.children(db));
}
return SearchScope::new(res);
}
if let Some(Visibility::Public) = vis {
let source_root_id = db.file_source_root(file_id);
let source_root = db.source_root(source_root_id);
let mut res = source_root.iter().map(|id| (id, None)).collect::<FxHashMap<_, _>>();
let krate = module.krate();
for rev_dep in krate.reverse_dependencies(db) {
let root_file = rev_dep.root_file(db);
let source_root_id = db.file_source_root(root_file);
let source_root = db.source_root(source_root_id);
res.extend(source_root.iter().map(|id| (id, None)));
}
return SearchScope::new(res);
}
let mut res = FxHashMap::default();
let range = match module_src.value {
ModuleSource::Module(m) => Some(m.syntax().text_range()),
ModuleSource::SourceFile(_) => None,
};
res.insert(file_id, range);
SearchScope::new(res)
}
pub fn find_usages(
&self,
sema: &Semantics<RootDatabase>,
search_scope: Option<SearchScope>,
) -> Vec<Reference> {
let _p = profile("Definition::find_usages");
let search_scope = {
let base = self.search_scope(sema.db);
match search_scope {
None => base,
Some(scope) => base.intersection(&scope),
}
};
let name = match self.name(sema.db) {
None => return Vec::new(),
Some(it) => it.to_string(),
};
let pat = name.as_str();
let mut refs = vec![];
for (file_id, search_range) in search_scope {
let text = sema.db.file_text(file_id);
let search_range =
search_range.unwrap_or(TextRange::up_to(TextSize::of(text.as_str())));
let tree = Lazy::new(|| sema.parse(file_id).syntax().clone());
for (idx, _) in text.match_indices(pat) {
let offset: TextSize = idx.try_into().unwrap();
if !search_range.contains_inclusive(offset) {
continue;
}
let name_ref: ast::NameRef =
if let Some(name_ref) = sema.find_node_at_offset_with_descend(&tree, offset) {
name_ref
} else {
continue;
};
match classify_name_ref(&sema, &name_ref) {
Some(NameRefClass::Definition(def)) if &def == self => {
let kind = if is_record_lit_name_ref(&name_ref)
|| is_call_expr_name_ref(&name_ref)
{
ReferenceKind::StructLiteral
} else {
ReferenceKind::Other
};
let file_range = sema.original_range(name_ref.syntax());
refs.push(Reference {
file_range,
kind,
access: reference_access(&def, &name_ref),
});
}
Some(NameRefClass::FieldShorthand { local, field }) => {
match self {
Definition::Field(_) if &field == self => refs.push(Reference {
file_range: sema.original_range(name_ref.syntax()),
kind: ReferenceKind::FieldShorthandForField,
access: reference_access(&field, &name_ref),
}),
Definition::Local(l) if &local == l => refs.push(Reference {
file_range: sema.original_range(name_ref.syntax()),
kind: ReferenceKind::FieldShorthandForLocal,
access: reference_access(&Definition::Local(local), &name_ref),
}),
_ => {} // not a usage
};
}
_ => {} // not a usage
}
}
}
refs
}
}
fn reference_access(def: &Definition, name_ref: &ast::NameRef) -> Option<ReferenceAccess> {
// Only Locals and Fields have accesses for now.
match def {
Definition::Local(_) | Definition::Field(_) => {}
_ => return None,
};
let mode = name_ref.syntax().ancestors().find_map(|node| {
match_ast! {
match (node) {
ast::BinExpr(expr) => {
if expr.op_kind()?.is_assignment() {
// If the variable or field ends on the LHS's end then it's a Write (covers fields and locals).
// FIXME: This is not terribly accurate.
if let Some(lhs) = expr.lhs() {
if lhs.syntax().text_range().end() == name_ref.syntax().text_range().end() {
return Some(ReferenceAccess::Write);
}
}
}
Some(ReferenceAccess::Read)
},
_ => None
}
}
});
// Default Locals and Fields to read
mode.or(Some(ReferenceAccess::Read))
}
fn is_call_expr_name_ref(name_ref: &ast::NameRef) -> bool {
name_ref
.syntax()
.ancestors()
.find_map(ast::CallExpr::cast)
.and_then(|c| match c.expr()? {
ast::Expr::PathExpr(p) => {
Some(p.path()?.segment()?.name_ref().as_ref() == Some(name_ref))
}
_ => None,
})
.unwrap_or(false)
}
fn is_record_lit_name_ref(name_ref: &ast::NameRef) -> bool {
name_ref
.syntax()
.ancestors()
.find_map(ast::RecordLit::cast)
.and_then(|l| l.path())
.and_then(|p| p.segment())
.map(|p| p.name_ref().as_ref() == Some(name_ref))
.unwrap_or(false)
}