blob: 4dd4f9802d6ecf93bf48027fe64baccf9820080b [file] [log] [blame]
//! Type inference for patterns.
use std::iter::repeat;
use std::sync::Arc;
use hir_def::{
expr::{BindingAnnotation, Expr, Literal, Pat, PatId, RecordFieldPat},
path::Path,
type_ref::Mutability,
FieldId,
};
use hir_expand::name::Name;
use test_utils::mark;
use super::{BindingMode, Expectation, InferenceContext};
use crate::{utils::variant_data, Substs, Ty, TypeCtor};
impl<'a> InferenceContext<'a> {
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
default_bm: BindingMode,
id: PatId,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
let var_data = def.map(|it| variant_data(self.db.upcast(), it));
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default();
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = var_data
.as_ref()
.and_then(|d| d.field(&Name::new_tuple_field(i)))
.map_or(Ty::Unknown, |field| field_tys[field].clone().subst(&substs));
let expected_ty = self.normalize_associated_types_in(expected_ty);
self.infer_pat(subpat, &expected_ty, default_bm);
}
ty
}
fn infer_record_pat(
&mut self,
path: Option<&Path>,
subpats: &[RecordFieldPat],
expected: &Ty,
default_bm: BindingMode,
id: PatId,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
let var_data = def.map(|it| variant_data(self.db.upcast(), it));
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default();
for subpat in subpats {
let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name));
if let Some(local_id) = matching_field {
let field_def = FieldId { parent: def.unwrap(), local_id };
self.result.record_field_pat_resolutions.insert(subpat.pat, field_def);
}
let expected_ty =
matching_field.map_or(Ty::Unknown, |field| field_tys[field].clone().subst(&substs));
let expected_ty = self.normalize_associated_types_in(expected_ty);
self.infer_pat(subpat.pat, &expected_ty, default_bm);
}
ty
}
pub(super) fn infer_pat(
&mut self,
pat: PatId,
mut expected: &Ty,
mut default_bm: BindingMode,
) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
if is_non_ref_pat(&body, pat) {
while let Some((inner, mutability)) = expected.as_reference() {
expected = inner;
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
}
}
} else if let Pat::Ref { .. } = &body[pat] {
mark::hit!(match_ergonomics_ref);
// When you encounter a `&pat` pattern, reset to Move.
// This is so that `w` is by value: `let (_, &w) = &(1, &2);`
default_bm = BindingMode::Move;
}
// Lose mutability.
let default_bm = default_bm;
let expected = expected;
let ty = match &body[pat] {
Pat::Tuple { ref args, .. } => {
let expectations = match expected.as_tuple() {
Some(parameters) => &*parameters.0,
_ => &[],
};
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
let inner_tys = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
.collect();
Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
}
Pat::Or(ref pats) => {
if let Some((first_pat, rest)) = pats.split_first() {
let ty = self.infer_pat(*first_pat, expected, default_bm);
for pat in rest {
self.infer_pat(*pat, expected, default_bm);
}
ty
} else {
Ty::Unknown
}
}
Pat::Ref { pat, mutability } => {
let expectation = match expected.as_reference() {
Some((inner_ty, exp_mut)) => {
if *mutability != exp_mut {
// FIXME: emit type error?
}
inner_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation, default_bm);
Ty::apply_one(TypeCtor::Ref(*mutability), subty)
}
Pat::TupleStruct { path: p, args: subpats, .. } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm, pat)
}
Pat::Record { path: p, args: fields, ellipsis: _ } => {
self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
}
Pat::Path(path) => {
// FIXME use correct resolver for the surrounding expression
let resolver = self.resolver.clone();
self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
}
Pat::Bind { mode, name: _, subpat } => {
let mode = if mode == &BindingAnnotation::Unannotated {
default_bm
} else {
BindingMode::convert(*mode)
};
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected, default_bm)
} else {
expected.clone()
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingMode::Ref(mutability) => {
Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
}
BindingMode::Move => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
Pat::Slice { prefix, slice, suffix } => {
let (container_ty, elem_ty) = match &expected {
ty_app!(TypeCtor::Array, st) => (TypeCtor::Array, st.as_single().clone()),
ty_app!(TypeCtor::Slice, st) => (TypeCtor::Slice, st.as_single().clone()),
_ => (TypeCtor::Slice, Ty::Unknown),
};
for pat_id in prefix.iter().chain(suffix) {
self.infer_pat(*pat_id, &elem_ty, default_bm);
}
let pat_ty = Ty::apply_one(container_ty, elem_ty);
if let Some(slice_pat_id) = slice {
self.infer_pat(*slice_pat_id, &pat_ty, default_bm);
}
pat_ty
}
Pat::Wild => expected.clone(),
Pat::Range { start, end } => {
let start_ty = self.infer_expr(*start, &Expectation::has_type(expected.clone()));
let end_ty = self.infer_expr(*end, &Expectation::has_type(start_ty));
end_ty
}
Pat::Lit(expr) => self.infer_expr(*expr, &Expectation::has_type(expected.clone())),
Pat::Missing => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
if !self.unify(&ty, expected) {
// FIXME record mismatch, we need to change the type of self.type_mismatches for that
}
let ty = self.resolve_ty_as_possible(ty);
self.write_pat_ty(pat, ty.clone());
ty
}
}
fn is_non_ref_pat(body: &hir_def::body::Body, pat: PatId) -> bool {
match &body[pat] {
Pat::Tuple { .. }
| Pat::TupleStruct { .. }
| Pat::Record { .. }
| Pat::Range { .. }
| Pat::Slice { .. } => true,
Pat::Or(pats) => pats.iter().all(|p| is_non_ref_pat(body, *p)),
// FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
Pat::Path(..) => true,
Pat::Lit(expr) => match body[*expr] {
Expr::Literal(Literal::String(..)) => false,
_ => true,
},
Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
}
}