blob: 6942acc5e2b07346e2ff13b64833e128b8147f35 [file] [log] [blame]
//! Implements "Stacked Borrows". See <https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md>
//! for further information.
use std::cell::RefCell;
use std::fmt;
use std::num::NonZeroU64;
use std::rc::Rc;
use log::trace;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::mir::RetagKind;
use rustc_middle::ty;
use rustc_target::abi::{Align, LayoutOf, Size};
use rustc_hir::Mutability;
use crate::*;
pub type PtrId = NonZeroU64;
pub type CallId = NonZeroU64;
pub type AllocExtra = Stacks;
/// Tracking pointer provenance
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum Tag {
Tagged(PtrId),
Untagged,
}
impl fmt::Debug for Tag {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Tag::Tagged(id) => write!(f, "<{}>", id),
Tag::Untagged => write!(f, "<untagged>"),
}
}
}
/// Indicates which permission is granted (by this item to some pointers)
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub enum Permission {
/// Grants unique mutable access.
Unique,
/// Grants shared mutable access.
SharedReadWrite,
/// Grants shared read-only access.
SharedReadOnly,
/// Grants no access, but separates two groups of SharedReadWrite so they are not
/// all considered mutually compatible.
Disabled,
}
/// An item in the per-location borrow stack.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub struct Item {
/// The permission this item grants.
perm: Permission,
/// The pointers the permission is granted to.
tag: Tag,
/// An optional protector, ensuring the item cannot get popped until `CallId` is over.
protector: Option<CallId>,
}
impl fmt::Debug for Item {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{:?} for {:?}", self.perm, self.tag)?;
if let Some(call) = self.protector {
write!(f, " (call {})", call)?;
}
write!(f, "]")?;
Ok(())
}
}
/// Extra per-location state.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Stack {
/// Used *mostly* as a stack; never empty.
/// Invariants:
/// * Above a `SharedReadOnly` there can only be more `SharedReadOnly`.
/// * Except for `Untagged`, no tag occurs in the stack more than once.
borrows: Vec<Item>,
}
/// Extra per-allocation state.
#[derive(Clone, Debug)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
stacks: RefCell<RangeMap<Stack>>,
// Pointer to global state
global: MemoryExtra,
}
/// Extra global state, available to the memory access hooks.
#[derive(Debug)]
pub struct GlobalState {
/// Next unused pointer ID (tag).
next_ptr_id: PtrId,
/// Table storing the "base" tag for each allocation.
/// The base tag is the one used for the initial pointer.
/// We need this in a separate table to handle cyclic statics.
base_ptr_ids: FxHashMap<AllocId, Tag>,
/// Next unused call ID (for protectors).
next_call_id: CallId,
/// Those call IDs corresponding to functions that are still running.
active_calls: FxHashSet<CallId>,
/// The pointer id to trace
tracked_pointer_tag: Option<PtrId>,
/// The call id to trace
tracked_call_id: Option<CallId>,
}
/// Memory extra state gives us interior mutable access to the global state.
pub type MemoryExtra = Rc<RefCell<GlobalState>>;
/// Indicates which kind of access is being performed.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum AccessKind {
Read,
Write,
}
impl fmt::Display for AccessKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
AccessKind::Read => write!(f, "read access"),
AccessKind::Write => write!(f, "write access"),
}
}
}
/// Indicates which kind of reference is being created.
/// Used by high-level `reborrow` to compute which permissions to grant to the
/// new pointer.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub enum RefKind {
/// `&mut` and `Box`.
Unique { two_phase: bool },
/// `&` with or without interior mutability.
Shared,
/// `*mut`/`*const` (raw pointers).
Raw { mutable: bool },
}
impl fmt::Display for RefKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
RefKind::Unique { two_phase: false } => write!(f, "unique"),
RefKind::Unique { two_phase: true } => write!(f, "unique (two-phase)"),
RefKind::Shared => write!(f, "shared"),
RefKind::Raw { mutable: true } => write!(f, "raw (mutable)"),
RefKind::Raw { mutable: false } => write!(f, "raw (constant)"),
}
}
}
/// Utilities for initialization and ID generation
impl GlobalState {
pub fn new(tracked_pointer_tag: Option<PtrId>, tracked_call_id: Option<CallId>) -> Self {
GlobalState {
next_ptr_id: NonZeroU64::new(1).unwrap(),
base_ptr_ids: FxHashMap::default(),
next_call_id: NonZeroU64::new(1).unwrap(),
active_calls: FxHashSet::default(),
tracked_pointer_tag,
tracked_call_id,
}
}
fn new_ptr(&mut self) -> PtrId {
let id = self.next_ptr_id;
self.next_ptr_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn new_call(&mut self) -> CallId {
let id = self.next_call_id;
trace!("new_call: Assigning ID {}", id);
if Some(id) == self.tracked_call_id {
register_diagnostic(NonHaltingDiagnostic::CreatedCallId(id));
}
assert!(self.active_calls.insert(id));
self.next_call_id = NonZeroU64::new(id.get() + 1).unwrap();
id
}
pub fn end_call(&mut self, id: CallId) {
assert!(self.active_calls.remove(&id));
}
fn is_active(&self, id: CallId) -> bool {
self.active_calls.contains(&id)
}
pub fn global_base_ptr(&mut self, id: AllocId) -> Tag {
self.base_ptr_ids.get(&id).copied().unwrap_or_else(|| {
let tag = Tag::Tagged(self.new_ptr());
trace!("New allocation {:?} has base tag {:?}", id, tag);
self.base_ptr_ids.insert(id, tag).unwrap_none();
tag
})
}
}
/// Error reporting
fn err_sb_ub(msg: String) -> InterpError<'static> {
err_machine_stop!(TerminationInfo::ExperimentalUb {
msg,
url: format!("https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md"),
})
}
// # Stacked Borrows Core Begin
/// We need to make at least the following things true:
///
/// U1: After creating a `Uniq`, it is at the top.
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it it.
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
///
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
/// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces:
/// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
/// gets popped.
/// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
/// F3: If an access happens with an `&` outside `UnsafeCell`,
/// it requires the `SharedReadOnly` to still be in the stack.
/// Core relation on `Permission` to define which accesses are allowed
impl Permission {
/// This defines for a given permission, whether it permits the given kind of access.
fn grants(self, access: AccessKind) -> bool {
// Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access.
self != Permission::Disabled
&& (access == AccessKind::Read || self != Permission::SharedReadOnly)
}
}
/// Core per-location operations: access, dealloc, reborrow.
impl<'tcx> Stack {
/// Find the item granting the given kind of access to the given tag, and return where
/// it is on the stack.
fn find_granting(&self, access: AccessKind, tag: Tag) -> Option<usize> {
self.borrows
.iter()
.enumerate() // we also need to know *where* in the stack
.rev() // search top-to-bottom
// Return permission of first item that grants access.
// We require a permission with the right tag, ensuring U3 and F3.
.find_map(
|(idx, item)| {
if tag == item.tag && item.perm.grants(access) { Some(idx) } else { None }
},
)
}
/// Find the first write-incompatible item above the given one --
/// i.e, find the height to which the stack will be truncated when writing to `granting`.
fn find_first_write_incompatible(&self, granting: usize) -> usize {
let perm = self.borrows[granting].perm;
match perm {
Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"),
Permission::Disabled => bug!("Cannot use Disabled for anything"),
// On a write, everything above us is incompatible.
Permission::Unique => granting + 1,
Permission::SharedReadWrite => {
// The SharedReadWrite *just* above us are compatible, to skip those.
let mut idx = granting + 1;
while let Some(item) = self.borrows.get(idx) {
if item.perm == Permission::SharedReadWrite {
// Go on.
idx += 1;
} else {
// Found first incompatible!
break;
}
}
idx
}
}
}
/// Check if the given item is protected.
fn check_protector(item: &Item, tag: Option<Tag>, global: &GlobalState) -> InterpResult<'tcx> {
if let Tag::Tagged(id) = item.tag {
if Some(id) == global.tracked_pointer_tag {
register_diagnostic(NonHaltingDiagnostic::PoppedPointerTag(item.clone()));
}
}
if let Some(call) = item.protector {
if global.is_active(call) {
if let Some(tag) = tag {
Err(err_sb_ub(format!(
"not granting access to tag {:?} because incompatible item is protected: {:?}",
tag, item
)))?
} else {
Err(err_sb_ub(format!(
"deallocating while item is protected: {:?}",
item
)))?
}
}
}
Ok(())
}
/// Test if a memory `access` using pointer tagged `tag` is granted.
/// If yes, return the index of the item that granted it.
fn access(&mut self, access: AccessKind, tag: Tag, global: &GlobalState) -> InterpResult<'tcx> {
// Two main steps: Find granting item, remove incompatible items above.
// Step 1: Find granting item.
let granting_idx = self.find_granting(access, tag).ok_or_else(|| {
err_sb_ub(format!(
"no item granting {} to tag {:?} found in borrow stack.",
access, tag
))
})?;
// Step 2: Remove incompatible items above them. Make sure we do not remove protected
// items. Behavior differs for reads and writes.
if access == AccessKind::Write {
// Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique
// pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses).
let first_incompatible_idx = self.find_first_write_incompatible(granting_idx);
for item in self.borrows.drain(first_incompatible_idx..).rev() {
trace!("access: popping item {:?}", item);
Stack::check_protector(&item, Some(tag), global)?;
}
} else {
// On a read, *disable* all `Unique` above the granting item. This ensures U2 for read accesses.
// The reason this is not following the stack discipline (by removing the first Unique and
// everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement
// would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the
// `SharedReadWrite` for `raw`.
// This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared
// reference and use that.
// We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs.
for idx in ((granting_idx + 1)..self.borrows.len()).rev() {
let item = &mut self.borrows[idx];
if item.perm == Permission::Unique {
trace!("access: disabling item {:?}", item);
Stack::check_protector(item, Some(tag), global)?;
item.perm = Permission::Disabled;
}
}
}
// Done.
Ok(())
}
/// Deallocate a location: Like a write access, but also there must be no
/// active protectors at all because we will remove all items.
fn dealloc(&mut self, tag: Tag, global: &GlobalState) -> InterpResult<'tcx> {
// Step 1: Find granting item.
self.find_granting(AccessKind::Write, tag).ok_or_else(|| {
err_sb_ub(format!(
"no item granting write access for deallocation to tag {:?} found in borrow stack",
tag,
))
})?;
// Step 2: Remove all items. Also checks for protectors.
for item in self.borrows.drain(..).rev() {
Stack::check_protector(&item, None, global)?;
}
Ok(())
}
/// Derived a new pointer from one with the given tag.
/// `weak` controls whether this operation is weak or strong: weak granting does not act as
/// an access, and they add the new item directly on top of the one it is derived
/// from instead of all the way at the top of the stack.
fn grant(&mut self, derived_from: Tag, new: Item, global: &GlobalState) -> InterpResult<'tcx> {
// Figure out which access `perm` corresponds to.
let access =
if new.perm.grants(AccessKind::Write) { AccessKind::Write } else { AccessKind::Read };
// Now we figure out which item grants our parent (`derived_from`) this kind of access.
// We use that to determine where to put the new item.
let granting_idx = self.find_granting(access, derived_from)
.ok_or_else(|| err_sb_ub(format!(
"trying to reborrow for {:?}, but parent tag {:?} does not have an appropriate item in the borrow stack",
new.perm, derived_from,
)))?;
// Compute where to put the new item.
// Either way, we ensure that we insert the new item in a way such that between
// `derived_from` and the new one, there are only items *compatible with* `derived_from`.
let new_idx = if new.perm == Permission::SharedReadWrite {
assert!(
access == AccessKind::Write,
"this case only makes sense for stack-like accesses"
);
// SharedReadWrite can coexist with "existing loans", meaning they don't act like a write
// access. Instead of popping the stack, we insert the item at the place the stack would
// be popped to (i.e., we insert it above all the write-compatible items).
// This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`.
self.find_first_write_incompatible(granting_idx)
} else {
// A "safe" reborrow for a pointer that actually expects some aliasing guarantees.
// Here, creating a reference actually counts as an access.
// This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
self.access(access, derived_from, global)?;
// We insert "as far up as possible": We know only compatible items are remaining
// on top of `derived_from`, and we want the new item at the top so that we
// get the strongest possible guarantees.
// This ensures U1 and F1.
self.borrows.len()
};
// Put the new item there. As an optimization, deduplicate if it is equal to one of its new neighbors.
if self.borrows[new_idx - 1] == new || self.borrows.get(new_idx) == Some(&new) {
// Optimization applies, done.
trace!("reborrow: avoiding adding redundant item {:?}", new);
} else {
trace!("reborrow: adding item {:?}", new);
self.borrows.insert(new_idx, new);
}
Ok(())
}
}
// # Stacked Borrows Core End
/// Map per-stack operations to higher-level per-location-range operations.
impl<'tcx> Stacks {
/// Creates new stack with initial tag.
fn new(size: Size, perm: Permission, tag: Tag, extra: MemoryExtra) -> Self {
let item = Item { perm, tag, protector: None };
let stack = Stack { borrows: vec![item] };
Stacks { stacks: RefCell::new(RangeMap::new(size, stack)), global: extra }
}
/// Call `f` on every stack in the range.
fn for_each(
&self,
ptr: Pointer<Tag>,
size: Size,
f: impl Fn(&mut Stack, &GlobalState) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let global = self.global.borrow();
let mut stacks = self.stacks.borrow_mut();
for stack in stacks.iter_mut(ptr.offset, size) {
f(stack, &*global)?;
}
Ok(())
}
}
/// Glue code to connect with Miri Machine Hooks
impl Stacks {
pub fn new_allocation(
id: AllocId,
size: Size,
extra: MemoryExtra,
kind: MemoryKind<MiriMemoryKind>,
) -> (Self, Tag) {
let (tag, perm) = match kind {
// New unique borrow. This tag is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). That is, whenever we directly write to a local, this will pop
// everything else off the stack, invalidating all previous pointers,
// and in particular, *all* raw pointers.
MemoryKind::Stack => (Tag::Tagged(extra.borrow_mut().new_ptr()), Permission::Unique),
// `Global` memory can be referenced by global pointers from `tcx`.
// Thus we call `global_base_ptr` such that the global pointers get the same tag
// as what we use here.
// `ExternGlobal` is used for extern statics, and thus must also be listed here.
// `Env` we list because we can get away with precise tracking there.
// The base pointer is not unique, so the base permission is `SharedReadWrite`.
MemoryKind::Machine(MiriMemoryKind::Global | MiriMemoryKind::ExternGlobal | MiriMemoryKind::Env) =>
(extra.borrow_mut().global_base_ptr(id), Permission::SharedReadWrite),
// Everything else we handle entirely untagged for now.
// FIXME: experiment with more precise tracking.
_ => (Tag::Untagged, Permission::SharedReadWrite),
};
(Stacks::new(size, perm, tag, extra), tag)
}
#[inline(always)]
pub fn memory_read<'tcx>(&self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
trace!("read access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Read, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
pub fn memory_written<'tcx>(&mut self, ptr: Pointer<Tag>, size: Size) -> InterpResult<'tcx> {
trace!("write access with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| {
stack.access(AccessKind::Write, ptr.tag, global)?;
Ok(())
})
}
#[inline(always)]
pub fn memory_deallocated<'tcx>(
&mut self,
ptr: Pointer<Tag>,
size: Size,
) -> InterpResult<'tcx> {
trace!("deallocation with tag {:?}: {:?}, size {}", ptr.tag, ptr.erase_tag(), size.bytes());
self.for_each(ptr, size, |stack, global| stack.dealloc(ptr.tag, global))
}
}
/// Retagging/reborrowing. There is some policy in here, such as which permissions
/// to grant for which references, and when to add protectors.
impl<'mir, 'tcx: 'mir> EvalContextPrivExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
trait EvalContextPrivExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn reborrow(
&mut self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
kind: RefKind,
new_tag: Tag,
protect: bool,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let protector = if protect { Some(this.frame().extra.call_id) } else { None };
let ptr = place.ptr.assert_ptr();
trace!(
"reborrow: {} reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
kind,
new_tag,
ptr.tag,
place.layout.ty,
ptr.erase_tag(),
size.bytes()
);
// Get the allocation. It might not be mutable, so we cannot use `get_mut`.
let extra = &this.memory.get_raw(ptr.alloc_id)?.extra;
let stacked_borrows =
extra.stacked_borrows.as_ref().expect("we should have Stacked Borrows data");
// Update the stacks.
// Make sure that raw pointers and mutable shared references are reborrowed "weak":
// There could be existing unique pointers reborrowed from them that should remain valid!
let perm = match kind {
RefKind::Unique { two_phase: false } => Permission::Unique,
RefKind::Unique { two_phase: true } => Permission::SharedReadWrite,
RefKind::Raw { mutable: true } => Permission::SharedReadWrite,
RefKind::Shared | RefKind::Raw { mutable: false } => {
// Shared references and *const are a whole different kind of game, the
// permission is not uniform across the entire range!
// We need a frozen-sensitive reborrow.
return this.visit_freeze_sensitive(place, size, |cur_ptr, size, frozen| {
// We are only ever `SharedReadOnly` inside the frozen bits.
let perm = if frozen {
Permission::SharedReadOnly
} else {
Permission::SharedReadWrite
};
let item = Item { perm, tag: new_tag, protector };
stacked_borrows.for_each(cur_ptr, size, |stack, global| {
stack.grant(cur_ptr.tag, item, global)
})
});
}
};
let item = Item { perm, tag: new_tag, protector };
stacked_borrows.for_each(ptr, size, |stack, global| stack.grant(ptr.tag, item, global))
}
/// Retags an indidual pointer, returning the retagged version.
/// `mutbl` can be `None` to make this a raw pointer.
fn retag_reference(
&mut self,
val: ImmTy<'tcx, Tag>,
kind: RefKind,
protect: bool,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let this = self.eval_context_mut();
// We want a place for where the ptr *points to*, so we get one.
let place = this.ref_to_mplace(val)?;
let size = this
.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size);
// `reborrow` relies on getting a `Pointer` and everything being in-bounds,
// so let's ensure that. However, we do not care about alignment.
// We can see dangling ptrs in here e.g. after a Box's `Unique` was
// updated using "self.0 = ..." (can happen in Box::from_raw) so we cannot ICE; see miri#1050.
let place = this.mplace_access_checked(place, Some(Align::from_bytes(1).unwrap()))?;
// Nothing to do for ZSTs.
if size == Size::ZERO {
return Ok(val);
}
// Compute new borrow.
let new_tag = match kind {
// Give up tracking for raw pointers.
// FIXME: Experiment with more precise tracking. Blocked on `&raw`
// because `Rc::into_raw` currently creates intermediate references,
// breaking `Rc::from_raw`.
RefKind::Raw { .. } => Tag::Untagged,
// All other pointesr are properly tracked.
_ => Tag::Tagged(
this.memory.extra.stacked_borrows.as_ref().unwrap().borrow_mut().new_ptr(),
),
};
// Reborrow.
this.reborrow(place, size, kind, new_tag, protect)?;
let new_place = place.replace_tag(new_tag);
// Return new pointer.
Ok(ImmTy::from_immediate(new_place.to_ref(), val.layout))
}
}
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn retag(&mut self, kind: RetagKind, place: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Determine mutability and whether to add a protector.
// Cannot use `builtin_deref` because that reports *immutable* for `Box`,
// making it useless.
fn qualify(ty: ty::Ty<'_>, kind: RetagKind) -> Option<(RefKind, bool)> {
match ty.kind {
// References are simple.
ty::Ref(_, _, Mutability::Mut) => Some((
RefKind::Unique { two_phase: kind == RetagKind::TwoPhase },
kind == RetagKind::FnEntry,
)),
ty::Ref(_, _, Mutability::Not) =>
Some((RefKind::Shared, kind == RetagKind::FnEntry)),
// Raw pointers need to be enabled.
ty::RawPtr(tym) if kind == RetagKind::Raw =>
Some((RefKind::Raw { mutable: tym.mutbl == Mutability::Mut }, false)),
// Boxes do not get a protector: protectors reflect that references outlive the call
// they were passed in to; that's just not the case for boxes.
ty::Adt(..) if ty.is_box() => Some((RefKind::Unique { two_phase: false }, false)),
_ => None,
}
}
// We only reborrow "bare" references/boxes.
// Not traversing into fields helps with <https://github.com/rust-lang/unsafe-code-guidelines/issues/125>,
// but might also cost us optimization and analyses. We will have to experiment more with this.
if let Some((mutbl, protector)) = qualify(place.layout.ty, kind) {
// Fast path.
let val = this.read_immediate(this.place_to_op(place)?)?;
let val = this.retag_reference(val, mutbl, protector)?;
this.write_immediate(*val, place)?;
}
Ok(())
}
/// After a stack frame got pushed, retag the return place so that we are sure
/// it does not alias with anything.
///
/// This is a HACK because there is nothing in MIR that would make the retag
/// explicit. Also see https://github.com/rust-lang/rust/issues/71117.
fn retag_return_place(&mut self) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let return_place = if let Some(return_place) = this.frame_mut().return_place {
return_place
} else {
// No return place, nothing to do.
return Ok(());
};
if return_place.layout.is_zst() {
// There may not be any memory here, nothing to do.
return Ok(());
}
// We need this to be in-memory to use tagged pointers.
let return_place = this.force_allocation(return_place)?;
// We have to turn the place into a pointer to use the existing code.
// (The pointer type does not matter, so we use a raw pointer.)
let ptr_layout = this.layout_of(this.tcx.mk_mut_ptr(return_place.layout.ty))?;
let val = ImmTy::from_immediate(return_place.to_ref(), ptr_layout);
// Reborrow it.
let val = this.retag_reference(val, RefKind::Unique { two_phase: false }, /*protector*/ true)?;
// And use reborrowed pointer for return place.
let return_place = this.ref_to_mplace(val)?;
this.frame_mut().return_place = Some(return_place.into());
Ok(())
}
}