blob: 25edfad86e8ec8a932fa84ffd6188b9e33305b2f [file] [log] [blame]
use rustc_ast::ast::{FloatTy, InlineAsmTemplatePiece, IntTy, UintTy};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_index::vec::Idx;
use rustc_middle::ty::layout::{LayoutError, SizeSkeleton};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::lint;
use rustc_span::{sym, Span, Symbol, DUMMY_SP};
use rustc_target::abi::{Pointer, VariantIdx};
use rustc_target::asm::{InlineAsmRegOrRegClass, InlineAsmType};
use rustc_target::spec::abi::Abi::RustIntrinsic;
fn check_mod_intrinsics(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
tcx.hir().visit_item_likes_in_module(module_def_id, &mut ItemVisitor { tcx }.as_deep_visitor());
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { check_mod_intrinsics, ..*providers };
}
struct ItemVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
struct ExprVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
tables: &'tcx ty::TypeckTables<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
/// If the type is `Option<T>`, it will return `T`, otherwise
/// the type itself. Works on most `Option`-like types.
fn unpack_option_like<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let (def, substs) = match ty.kind {
ty::Adt(def, substs) => (def, substs),
_ => return ty,
};
if def.variants.len() == 2 && !def.repr.c() && def.repr.int.is_none() {
let data_idx;
let one = VariantIdx::new(1);
let zero = VariantIdx::new(0);
if def.variants[zero].fields.is_empty() {
data_idx = one;
} else if def.variants[one].fields.is_empty() {
data_idx = zero;
} else {
return ty;
}
if def.variants[data_idx].fields.len() == 1 {
return def.variants[data_idx].fields[0].ty(tcx, substs);
}
}
ty
}
impl ExprVisitor<'tcx> {
fn def_id_is_transmute(&self, def_id: DefId) -> bool {
self.tcx.fn_sig(def_id).abi() == RustIntrinsic
&& self.tcx.item_name(def_id) == sym::transmute
}
fn check_transmute(&self, span: Span, from: Ty<'tcx>, to: Ty<'tcx>) {
let sk_from = SizeSkeleton::compute(from, self.tcx, self.param_env);
let sk_to = SizeSkeleton::compute(to, self.tcx, self.param_env);
// Check for same size using the skeletons.
if let (Ok(sk_from), Ok(sk_to)) = (sk_from, sk_to) {
if sk_from.same_size(sk_to) {
return;
}
// Special-case transmutting from `typeof(function)` and
// `Option<typeof(function)>` to present a clearer error.
let from = unpack_option_like(self.tcx, from);
if let (&ty::FnDef(..), SizeSkeleton::Known(size_to)) = (&from.kind, sk_to) {
if size_to == Pointer.size(&self.tcx) {
struct_span_err!(self.tcx.sess, span, E0591, "can't transmute zero-sized type")
.note(&format!("source type: {}", from))
.note(&format!("target type: {}", to))
.help("cast with `as` to a pointer instead")
.emit();
return;
}
}
}
// Try to display a sensible error with as much information as possible.
let skeleton_string = |ty: Ty<'tcx>, sk| match sk {
Ok(SizeSkeleton::Known(size)) => format!("{} bits", size.bits()),
Ok(SizeSkeleton::Pointer { tail, .. }) => format!("pointer to `{}`", tail),
Err(LayoutError::Unknown(bad)) => {
if bad == ty {
"this type does not have a fixed size".to_owned()
} else {
format!("size can vary because of {}", bad)
}
}
Err(err) => err.to_string(),
};
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0512,
"cannot transmute between types of different sizes, \
or dependently-sized types"
);
if from == to {
err.note(&format!("`{}` does not have a fixed size", from));
} else {
err.note(&format!("source type: `{}` ({})", from, skeleton_string(from, sk_from)))
.note(&format!("target type: `{}` ({})", to, skeleton_string(to, sk_to)));
}
err.emit()
}
fn is_thin_ptr_ty(&self, ty: Ty<'tcx>) -> bool {
if ty.is_sized(self.tcx.at(DUMMY_SP), self.param_env) {
return true;
}
if let ty::Foreign(..) = ty.kind {
return true;
}
false
}
fn check_asm_operand_type(
&self,
idx: usize,
reg: InlineAsmRegOrRegClass,
expr: &hir::Expr<'tcx>,
template: &[InlineAsmTemplatePiece],
tied_input: Option<(&hir::Expr<'tcx>, Option<InlineAsmType>)>,
) -> Option<InlineAsmType> {
// Check the type against the allowed types for inline asm.
let ty = self.tables.expr_ty_adjusted(expr);
let asm_ty_isize = match self.tcx.sess.target.ptr_width {
16 => InlineAsmType::I16,
32 => InlineAsmType::I32,
64 => InlineAsmType::I64,
_ => unreachable!(),
};
let asm_ty = match ty.kind {
ty::Never | ty::Error(_) => return None,
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Some(InlineAsmType::I8),
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Some(InlineAsmType::I16),
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Some(InlineAsmType::I32),
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Some(InlineAsmType::I64),
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Some(InlineAsmType::I128),
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Some(asm_ty_isize),
ty::Float(FloatTy::F32) => Some(InlineAsmType::F32),
ty::Float(FloatTy::F64) => Some(InlineAsmType::F64),
ty::FnPtr(_) => Some(asm_ty_isize),
ty::RawPtr(ty::TypeAndMut { ty, mutbl: _ }) if self.is_thin_ptr_ty(ty) => {
Some(asm_ty_isize)
}
ty::Adt(adt, substs) if adt.repr.simd() => {
let fields = &adt.non_enum_variant().fields;
let elem_ty = fields[0].ty(self.tcx, substs);
match elem_ty.kind {
ty::Never | ty::Error(_) => return None,
ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => {
Some(InlineAsmType::VecI8(fields.len() as u64))
}
ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => {
Some(InlineAsmType::VecI16(fields.len() as u64))
}
ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => {
Some(InlineAsmType::VecI32(fields.len() as u64))
}
ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => {
Some(InlineAsmType::VecI64(fields.len() as u64))
}
ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
Some(InlineAsmType::VecI128(fields.len() as u64))
}
ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
Some(match self.tcx.sess.target.ptr_width {
16 => InlineAsmType::VecI16(fields.len() as u64),
32 => InlineAsmType::VecI32(fields.len() as u64),
64 => InlineAsmType::VecI64(fields.len() as u64),
_ => unreachable!(),
})
}
ty::Float(FloatTy::F32) => Some(InlineAsmType::VecF32(fields.len() as u64)),
ty::Float(FloatTy::F64) => Some(InlineAsmType::VecF64(fields.len() as u64)),
_ => None,
}
}
_ => None,
};
let asm_ty = match asm_ty {
Some(asm_ty) => asm_ty,
None => {
let msg = &format!("cannot use value of type `{}` for inline assembly", ty);
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(
"only integers, floats, SIMD vectors, pointers and function pointers \
can be used as arguments for inline assembly",
);
err.emit();
return None;
}
};
// Check that the type implements Copy. The only case where this can
// possibly fail is for SIMD types which don't #[derive(Copy)].
if !ty.is_copy_modulo_regions(self.tcx.at(DUMMY_SP), self.param_env) {
let msg = "arguments for inline assembly must be copyable";
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(&format!("`{}` does not implement the Copy trait", ty));
err.emit();
}
// Ideally we wouldn't need to do this, but LLVM's register allocator
// really doesn't like it when tied operands have different types.
//
// This is purely an LLVM limitation, but we have to live with it since
// there is no way to hide this with implicit conversions.
//
// For the purposes of this check we only look at the `InlineAsmType`,
// which means that pointers and integers are treated as identical (modulo
// size).
if let Some((in_expr, Some(in_asm_ty))) = tied_input {
if in_asm_ty != asm_ty {
let msg = "incompatible types for asm inout argument";
let mut err = self.tcx.sess.struct_span_err(vec![in_expr.span, expr.span], msg);
err.span_label(
in_expr.span,
&format!("type `{}`", self.tables.expr_ty_adjusted(in_expr)),
);
err.span_label(expr.span, &format!("type `{}`", ty));
err.note(
"asm inout arguments must have the same type, \
unless they are both pointers or integers of the same size",
);
err.emit();
}
// All of the later checks have already been done on the input, so
// let's not emit errors and warnings twice.
return Some(asm_ty);
}
// Check the type against the list of types supported by the selected
// register class.
let asm_arch = self.tcx.sess.asm_arch.unwrap();
let reg_class = reg.reg_class();
let supported_tys = reg_class.supported_types(asm_arch);
let feature = match supported_tys.iter().find(|&&(t, _)| t == asm_ty) {
Some((_, feature)) => feature,
None => {
let msg = &format!("type `{}` cannot be used with this register class", ty);
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
let supported_tys: Vec<_> =
supported_tys.iter().map(|(t, _)| t.to_string()).collect();
err.note(&format!(
"register class `{}` supports these types: {}",
reg_class.name(),
supported_tys.join(", "),
));
if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
err.help(&format!(
"consider using the `{}` register class instead",
suggest.name()
));
}
err.emit();
return Some(asm_ty);
}
};
// Check whether the selected type requires a target feature. Note that
// this is different from the feature check we did earlier in AST
// lowering. While AST lowering checked that this register class is
// usable at all with the currently enabled features, some types may
// only be usable with a register class when a certain feature is
// enabled. We check this here since it depends on the results of typeck.
//
// Also note that this check isn't run when the operand type is never
// (!). In that case we still need the earlier check in AST lowering to
// verify that the register class is usable at all.
if let Some(feature) = feature {
if !self.tcx.sess.target_features.contains(&Symbol::intern(feature)) {
let msg = &format!("`{}` target feature is not enabled", feature);
let mut err = self.tcx.sess.struct_span_err(expr.span, msg);
err.note(&format!(
"this is required to use type `{}` with register class `{}`",
ty,
reg_class.name(),
));
err.emit();
return Some(asm_ty);
}
}
// Check whether a modifier is suggested for using this type.
if let Some((suggested_modifier, suggested_result)) =
reg_class.suggest_modifier(asm_arch, asm_ty)
{
// Search for any use of this operand without a modifier and emit
// the suggestion for them.
let mut spans = vec![];
for piece in template {
if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
{
if operand_idx == idx && modifier.is_none() {
spans.push(span);
}
}
}
if !spans.is_empty() {
let (default_modifier, default_result) =
reg_class.default_modifier(asm_arch).unwrap();
self.tcx.struct_span_lint_hir(
lint::builtin::ASM_SUB_REGISTER,
expr.hir_id,
spans,
|lint| {
let msg = "formatting may not be suitable for sub-register argument";
let mut err = lint.build(msg);
err.span_label(expr.span, "for this argument");
err.help(&format!(
"use the `{}` modifier to have the register formatted as `{}`",
suggested_modifier, suggested_result,
));
err.help(&format!(
"or use the `{}` modifier to keep the default formatting of `{}`",
default_modifier, default_result,
));
err.emit();
},
);
}
}
Some(asm_ty)
}
fn check_asm(&self, asm: &hir::InlineAsm<'tcx>) {
for (idx, op) in asm.operands.iter().enumerate() {
match *op {
hir::InlineAsmOperand::In { reg, ref expr } => {
self.check_asm_operand_type(idx, reg, expr, asm.template, None);
}
hir::InlineAsmOperand::Out { reg, late: _, ref expr } => {
if let Some(expr) = expr {
self.check_asm_operand_type(idx, reg, expr, asm.template, None);
}
}
hir::InlineAsmOperand::InOut { reg, late: _, ref expr } => {
self.check_asm_operand_type(idx, reg, expr, asm.template, None);
}
hir::InlineAsmOperand::SplitInOut { reg, late: _, ref in_expr, ref out_expr } => {
let in_ty = self.check_asm_operand_type(idx, reg, in_expr, asm.template, None);
if let Some(out_expr) = out_expr {
self.check_asm_operand_type(
idx,
reg,
out_expr,
asm.template,
Some((in_expr, in_ty)),
);
}
}
hir::InlineAsmOperand::Const { ref expr } => {
let ty = self.tables.expr_ty_adjusted(expr);
match ty.kind {
ty::Int(_) | ty::Uint(_) | ty::Float(_) => {}
_ => {
let msg =
"asm `const` arguments must be integer or floating-point values";
self.tcx.sess.span_err(expr.span, msg);
}
}
}
hir::InlineAsmOperand::Sym { .. } => {}
}
}
}
}
impl Visitor<'tcx> for ItemVisitor<'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_nested_body(&mut self, body_id: hir::BodyId) {
let owner_def_id = self.tcx.hir().body_owner_def_id(body_id);
let body = self.tcx.hir().body(body_id);
let param_env = self.tcx.param_env(owner_def_id.to_def_id());
let tables = self.tcx.typeck_tables_of(owner_def_id);
ExprVisitor { tcx: self.tcx, param_env, tables }.visit_body(body);
self.visit_body(body);
}
}
impl Visitor<'tcx> for ExprVisitor<'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Path(ref qpath) => {
let res = self.tables.qpath_res(qpath, expr.hir_id);
if let Res::Def(DefKind::Fn, did) = res {
if self.def_id_is_transmute(did) {
let typ = self.tables.node_type(expr.hir_id);
let sig = typ.fn_sig(self.tcx);
let from = sig.inputs().skip_binder()[0];
let to = sig.output().skip_binder();
self.check_transmute(expr.span, from, to);
}
}
}
hir::ExprKind::InlineAsm(asm) => self.check_asm(asm),
_ => {}
}
intravisit::walk_expr(self, expr);
}
}