blob: e794a6949d2f0eb5af50522f5103c460e51f8846 [file] [log] [blame]
//! Validates the MIR to ensure that invariants are upheld.
use super::{MirPass, MirSource};
use rustc_middle::mir::visit::Visitor;
use rustc_middle::{
mir::{
BasicBlock, Body, Location, Operand, Rvalue, Statement, StatementKind, Terminator,
TerminatorKind,
},
ty::{
self,
relate::{Relate, RelateResult, TypeRelation},
ParamEnv, Ty, TyCtxt,
},
};
#[derive(Copy, Clone, Debug)]
enum EdgeKind {
Unwind,
Normal,
}
pub struct Validator {
/// Describes at which point in the pipeline this validation is happening.
pub when: String,
}
impl<'tcx> MirPass<'tcx> for Validator {
fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut Body<'tcx>) {
let param_env = tcx.param_env(source.def_id());
TypeChecker { when: &self.when, source, body, tcx, param_env }.visit_body(body);
}
}
/// Returns whether the two types are equal up to lifetimes.
/// All lifetimes, including higher-ranked ones, get ignored for this comparison.
/// (This is unlike the `erasing_regions` methods, which keep higher-ranked lifetimes for soundness reasons.)
///
/// The point of this function is to approximate "equal up to subtyping". However,
/// the approximation is incorrect as variance is ignored.
pub fn equal_up_to_regions(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
src: Ty<'tcx>,
dest: Ty<'tcx>,
) -> bool {
// Fast path.
if src == dest {
return true;
}
struct LifetimeIgnoreRelation<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
impl TypeRelation<'tcx> for LifetimeIgnoreRelation<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn tag(&self) -> &'static str {
"librustc_mir::transform::validate"
}
fn a_is_expected(&self) -> bool {
true
}
fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
_: ty::Variance,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
// Ignore variance, require types to be exactly the same.
self.relate(a, b)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
if a == b {
// Short-circuit.
return Ok(a);
}
ty::relate::super_relate_tys(self, a, b)
}
fn regions(
&mut self,
a: ty::Region<'tcx>,
_b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
// Ignore regions.
Ok(a)
}
fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
ty::relate::super_relate_consts(self, a, b)
}
fn binders<T>(
&mut self,
a: ty::Binder<T>,
b: ty::Binder<T>,
) -> RelateResult<'tcx, ty::Binder<T>>
where
T: Relate<'tcx>,
{
self.relate(a.skip_binder(), b.skip_binder())?;
Ok(a.clone())
}
}
// Instantiate and run relation.
let mut relator: LifetimeIgnoreRelation<'tcx> = LifetimeIgnoreRelation { tcx: tcx, param_env };
relator.relate(src, dest).is_ok()
}
struct TypeChecker<'a, 'tcx> {
when: &'a str,
source: MirSource<'tcx>,
body: &'a Body<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
}
impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
fn fail(&self, location: Location, msg: impl AsRef<str>) {
let span = self.body.source_info(location).span;
// We use `delay_span_bug` as we might see broken MIR when other errors have already
// occurred.
self.tcx.sess.diagnostic().delay_span_bug(
span,
&format!(
"broken MIR in {:?} ({}) at {:?}:\n{}",
self.source.instance,
self.when,
location,
msg.as_ref()
),
);
}
fn check_edge(&self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
if let Some(bb) = self.body.basic_blocks().get(bb) {
let src = self.body.basic_blocks().get(location.block).unwrap();
match (src.is_cleanup, bb.is_cleanup, edge_kind) {
// Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
(false, false, EdgeKind::Normal)
// Non-cleanup blocks can jump to cleanup blocks along unwind edges
| (false, true, EdgeKind::Unwind)
// Cleanup blocks can jump to cleanup blocks along non-unwind edges
| (true, true, EdgeKind::Normal) => {}
// All other jumps are invalid
_ => {
self.fail(
location,
format!(
"{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
edge_kind,
bb,
src.is_cleanup,
bb.is_cleanup,
)
)
}
}
} else {
self.fail(location, format!("encountered jump to invalid basic block {:?}", bb))
}
}
/// Check if src can be assigned into dest.
/// This is not precise, it will accept some incorrect assignments.
fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
// Fast path before we normalize.
if src == dest {
// Equal types, all is good.
return true;
}
// Normalize projections and things like that.
// FIXME: We need to reveal_all, as some optimizations change types in ways
// that require unfolding opaque types.
let param_env = self.param_env.with_reveal_all();
let src = self.tcx.normalize_erasing_regions(param_env, src);
let dest = self.tcx.normalize_erasing_regions(param_env, dest);
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences. So we compare ignoring lifetimes.
equal_up_to_regions(self.tcx, param_env, src, dest)
}
}
impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
// `Operand::Copy` is only supposed to be used with `Copy` types.
if let Operand::Copy(place) = operand {
let ty = place.ty(&self.body.local_decls, self.tcx).ty;
let span = self.body.source_info(location).span;
if !ty.is_copy_modulo_regions(self.tcx.at(span), self.param_env) {
self.fail(location, format!("`Operand::Copy` with non-`Copy` type {}", ty));
}
}
self.super_operand(operand, location);
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (dest, rvalue)) => {
// LHS and RHS of the assignment must have the same type.
let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);
if !self.mir_assign_valid_types(right_ty, left_ty) {
self.fail(
location,
format!(
"encountered `Assign` statement with incompatible types:\n\
left-hand side has type: {}\n\
right-hand side has type: {}",
left_ty, right_ty,
),
);
}
// The sides of an assignment must not alias. Currently this just checks whether the places
// are identical.
match rvalue {
Rvalue::Use(Operand::Copy(src) | Operand::Move(src)) => {
if dest == src {
self.fail(
location,
"encountered `Assign` statement with overlapping memory",
);
}
}
_ => {}
}
}
_ => {}
}
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
match &terminator.kind {
TerminatorKind::Goto { target } => {
self.check_edge(location, *target, EdgeKind::Normal);
}
TerminatorKind::SwitchInt { targets, values, switch_ty, discr } => {
let ty = discr.ty(&self.body.local_decls, self.tcx);
if ty != *switch_ty {
self.fail(
location,
format!(
"encountered `SwitchInt` terminator with type mismatch: {:?} != {:?}",
ty, switch_ty,
),
);
}
if targets.len() != values.len() + 1 {
self.fail(
location,
format!(
"encountered `SwitchInt` terminator with {} values, but {} targets (should be values+1)",
values.len(),
targets.len(),
),
);
}
for target in targets {
self.check_edge(location, *target, EdgeKind::Normal);
}
}
TerminatorKind::Drop { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::DropAndReplace { target, unwind, .. } => {
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::Call { func, destination, cleanup, .. } => {
let func_ty = func.ty(&self.body.local_decls, self.tcx);
match func_ty.kind {
ty::FnPtr(..) | ty::FnDef(..) => {}
_ => self.fail(
location,
format!("encountered non-callable type {} in `Call` terminator", func_ty),
),
}
if let Some((_, target)) = destination {
self.check_edge(location, *target, EdgeKind::Normal);
}
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
TerminatorKind::Assert { cond, target, cleanup, .. } => {
let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
if cond_ty != self.tcx.types.bool {
self.fail(
location,
format!(
"encountered non-boolean condition of type {} in `Assert` terminator",
cond_ty
),
);
}
self.check_edge(location, *target, EdgeKind::Normal);
if let Some(cleanup) = cleanup {
self.check_edge(location, *cleanup, EdgeKind::Unwind);
}
}
TerminatorKind::Yield { resume, drop, .. } => {
self.check_edge(location, *resume, EdgeKind::Normal);
if let Some(drop) = drop {
self.check_edge(location, *drop, EdgeKind::Normal);
}
}
TerminatorKind::FalseEdge { real_target, imaginary_target } => {
self.check_edge(location, *real_target, EdgeKind::Normal);
self.check_edge(location, *imaginary_target, EdgeKind::Normal);
}
TerminatorKind::FalseUnwind { real_target, unwind } => {
self.check_edge(location, *real_target, EdgeKind::Normal);
if let Some(unwind) = unwind {
self.check_edge(location, *unwind, EdgeKind::Unwind);
}
}
TerminatorKind::InlineAsm { destination, .. } => {
if let Some(destination) = destination {
self.check_edge(location, *destination, EdgeKind::Normal);
}
}
// Nothing to validate for these.
TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::GeneratorDrop => {}
}
}
}