blob: 0faf389aa385c617337be26b3ba4a19ec89ee97f [file] [log] [blame]
use crate::dep_graph::SerializedDepNodeIndex;
use crate::mir::interpret::{GlobalId, LitToConstInput};
use crate::traits;
use crate::traits::query::{
CanonicalPredicateGoal, CanonicalProjectionGoal, CanonicalTyGoal,
CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal,
CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal,
};
use crate::ty::query::queries;
use crate::ty::subst::{GenericArg, SubstsRef};
use crate::ty::{self, ParamEnvAnd, Ty, TyCtxt};
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId};
use rustc_query_system::query::QueryDescription;
use rustc_span::symbol::Symbol;
use std::borrow::Cow;
fn describe_as_module(def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
if def_id.is_top_level_module() {
"top-level module".to_string()
} else {
format!("module `{}`", tcx.def_path_str(def_id.to_def_id()))
}
}
// Each of these queries corresponds to a function pointer field in the
// `Providers` struct for requesting a value of that type, and a method
// on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way
// which memoizes and does dep-graph tracking, wrapping around the actual
// `Providers` that the driver creates (using several `rustc_*` crates).
//
// The result type of each query must implement `Clone`, and additionally
// `ty::query::values::Value`, which produces an appropriate placeholder
// (error) value if the query resulted in a query cycle.
// Queries marked with `fatal_cycle` do not need the latter implementation,
// as they will raise an fatal error on query cycles instead.
rustc_queries! {
Other {
query trigger_delay_span_bug(key: DefId) -> () {
desc { "trigger a delay span bug" }
}
}
Other {
// Represents crate as a whole (as distinct from the top-level crate module).
// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`),
// we will have to assume that any change means that you need to be recompiled.
// This is because the `hir_crate` query gives you access to all other items.
// To avoid this fate, do not call `tcx.hir().krate()`; instead,
// prefer wrappers like `tcx.visit_all_items_in_krate()`.
query hir_crate(key: CrateNum) -> &'tcx Crate<'tcx> {
eval_always
no_hash
desc { "get the crate HIR" }
}
// The indexed HIR. This can be conveniently accessed by `tcx.hir()`.
// Avoid calling this query directly.
query index_hir(_: CrateNum) -> &'tcx map::IndexedHir<'tcx> {
eval_always
no_hash
desc { "index HIR" }
}
// The items in a module.
//
// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`.
// Avoid calling this query directly.
query hir_module_items(key: LocalDefId) -> &'tcx hir::ModuleItems {
eval_always
desc { |tcx| "HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) }
}
// Gives access to the HIR node for the HIR owner `key`.
//
// This can be conveniently accessed by methods on `tcx.hir()`.
// Avoid calling this query directly.
query hir_owner(key: LocalDefId) -> Option<&'tcx crate::hir::Owner<'tcx>> {
eval_always
desc { |tcx| "HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) }
}
// Gives access to the HIR nodes and bodies inside the HIR owner `key`.
//
// This can be conveniently accessed by methods on `tcx.hir()`.
// Avoid calling this query directly.
query hir_owner_nodes(key: LocalDefId) -> Option<&'tcx crate::hir::OwnerNodes<'tcx>> {
eval_always
desc { |tcx| "HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// Records the type of every item.
query type_of(key: DefId) -> Ty<'tcx> {
desc { |tcx| "computing type of `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
query analysis(key: CrateNum) -> Result<(), ErrorReported> {
eval_always
desc { "running analysis passes on this crate" }
}
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to its
/// associated generics.
query generics_of(key: DefId) -> ty::Generics {
desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
load_cached(tcx, id) {
let generics: Option<ty::Generics> = tcx.queries.on_disk_cache
.try_load_query_result(tcx, id);
generics
}
}
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
/// predicates (where-clauses) that must be proven true in order
/// to reference it. This is almost always the "predicates query"
/// that you want.
///
/// `predicates_of` builds on `predicates_defined_on` -- in fact,
/// it is almost always the same as that query, except for the
/// case of traits. For traits, `predicates_of` contains
/// an additional `Self: Trait<...>` predicate that users don't
/// actually write. This reflects the fact that to invoke the
/// trait (e.g., via `Default::default`) you must supply types
/// that actually implement the trait. (However, this extra
/// predicate gets in the way of some checks, which are intended
/// to operate over only the actual where-clauses written by the
/// user.)
query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Returns the list of predicates that can be used for
/// `SelectionCandidate::ProjectionCandidate` and
/// `ProjectionTyCandidate::TraitDef`.
/// Specifically this is the bounds (equivalent to) those
/// written on the trait's type definition, or those
/// after the `impl` keyword
///
/// type X: Bound + 'lt
/// ^^^^^^^^^^^
/// impl Debug + Display
/// ^^^^^^^^^^^^^^^
///
/// `key` is the `DefId` of the associated type or opaque type.
query projection_predicates(key: DefId) -> &'tcx ty::List<ty::Predicate<'tcx>> {
desc { |tcx| "finding projection predicates for `{}`", tcx.def_path_str(key) }
}
query native_libraries(_: CrateNum) -> Lrc<Vec<NativeLib>> {
desc { "looking up the native libraries of a linked crate" }
}
query lint_levels(_: CrateNum) -> LintLevelMap {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "computing the lint levels for items in this crate" }
}
query parent_module_from_def_id(key: LocalDefId) -> LocalDefId {
eval_always
desc { |tcx| "parent module of `{}`", tcx.def_path_str(key.to_def_id()) }
}
}
Codegen {
query is_panic_runtime(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate is_panic_runtime" }
}
}
Codegen {
/// Set of all the `DefId`s in this crate that have MIR associated with
/// them. This includes all the body owners, but also things like struct
/// constructors.
query mir_keys(_: CrateNum) -> FxHashSet<LocalDefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "getting a list of all mir_keys" }
}
/// Maps DefId's that have an associated `mir::Body` to the result
/// of the MIR const-checking pass. This is the set of qualifs in
/// the final value of a `const`.
query mir_const_qualif(key: DefId) -> mir::ConstQualifs {
desc { |tcx| "const checking `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Fetch the MIR for a given `DefId` right after it's built - this includes
/// unreachable code.
query mir_built(key: LocalDefId) -> Steal<mir::Body<'tcx>> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// Fetch the MIR for a given `DefId` up till the point where it is
/// ready for const qualification.
///
/// See the README for the `mir` module for details.
query mir_const(key: DefId) -> Steal<mir::Body<'tcx>> {
desc { |tcx| "processing MIR for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
no_hash
}
query mir_drops_elaborated_and_const_checked(key: LocalDefId) -> Steal<mir::Body<'tcx>> {
storage(ArenaCacheSelector<'tcx>)
no_hash
desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.to_def_id()) }
}
query mir_validated(key: LocalDefId) ->
(
Steal<mir::Body<'tcx>>,
Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>>
) {
storage(ArenaCacheSelector<'tcx>)
no_hash
desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// MIR after our optimization passes have run. This is MIR that is ready
/// for codegen. This is also the only query that can fetch non-local MIR, at present.
query optimized_mir(key: DefId) -> mir::Body<'tcx> {
desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
/// Returns coverage summary info for a function, after executing the `InstrumentCoverage`
/// MIR pass (assuming the -Zinstrument-coverage option is enabled).
query coverageinfo(key: DefId) -> mir::CoverageInfo {
desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
query promoted_mir(key: DefId) -> IndexVec<mir::Promoted, mir::Body<'tcx>> {
desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
}
TypeChecking {
// Erases regions from `ty` to yield a new type.
// Normally you would just use `tcx.erase_regions(&value)`,
// however, which uses this query as a kind of cache.
query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> {
// This query is not expected to have input -- as a result, it
// is not a good candidates for "replay" because it is essentially a
// pure function of its input (and hence the expectation is that
// no caller would be green **apart** from just these
// queries). Making it anonymous avoids hashing the result, which
// may save a bit of time.
anon
desc { "erasing regions from `{:?}`", ty }
}
}
Linking {
query wasm_import_module_map(_: CrateNum) -> FxHashMap<DefId, String> {
storage(ArenaCacheSelector<'tcx>)
desc { "wasm import module map" }
}
}
Other {
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
/// predicates (where-clauses) directly defined on it. This is
/// equal to the `explicit_predicates_of` predicates plus the
/// `inferred_outlives_of` predicates.
query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
}
/// Returns the predicates written explicitly by the user.
query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) }
}
/// Returns the inferred outlives predicates (e.g., for `struct
/// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`).
query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) }
}
/// Maps from the `DefId` of a trait to the list of
/// super-predicates. This is a subset of the full list of
/// predicates. We store these in a separate map because we must
/// evaluate them even during type conversion, often before the
/// full predicates are available (note that supertraits have
/// additional acyclicity requirements).
query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing the supertraits of `{}`", tcx.def_path_str(key) }
}
/// To avoid cycles within the predicates of a single item we compute
/// per-type-parameter predicates for resolving `T::AssocTy`.
query type_param_predicates(key: (DefId, LocalDefId)) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing the bounds for type parameter `{}`", {
let id = tcx.hir().as_local_hir_id(key.1);
tcx.hir().ty_param_name(id)
}}
}
query trait_def(key: DefId) -> ty::TraitDef {
desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
}
query adt_def(key: DefId) -> &'tcx ty::AdtDef {
desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) }
}
query adt_destructor(key: DefId) -> Option<ty::Destructor> {
desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) }
}
// The cycle error here should be reported as an error by `check_representable`.
// We consider the type as Sized in the meanwhile to avoid
// further errors (done in impl Value for AdtSizedConstraint).
// Use `cycle_delay_bug` to delay the cycle error here to be emitted later
// in case we accidentally otherwise don't emit an error.
query adt_sized_constraint(
key: DefId
) -> AdtSizedConstraint<'tcx> {
desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) }
cycle_delay_bug
}
query adt_dtorck_constraint(
key: DefId
) -> Result<DtorckConstraint<'tcx>, NoSolution> {
desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate
/// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might
/// not have the feature gate active).
///
/// **Do not call this function manually.** It is only meant to cache the base data for the
/// `is_const_fn` function.
query is_const_fn_raw(key: DefId) -> bool {
desc { |tcx| "checking if item is const fn: `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a const `impl`. **Do not call this function manually.**
///
/// This query caches the base data for the `is_const_impl` helper function, which also
/// takes into account stability attributes (e.g., `#[rustc_const_unstable]`).
query is_const_impl_raw(key: DefId) -> bool {
desc { |tcx| "checking if item is const impl: `{}`", tcx.def_path_str(key) }
}
query asyncness(key: DefId) -> hir::IsAsync {
desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if calls to the function may be promoted.
///
/// This is either because the function is e.g., a tuple-struct or tuple-variant
/// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should
/// be removed in the future in favour of some form of check which figures out whether the
/// function does not inspect the bits of any of its arguments (so is essentially just a
/// constructor function).
query is_promotable_const_fn(key: DefId) -> bool {
desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) }
}
query const_fn_is_allowed_fn_ptr(key: DefId) -> bool {
desc { |tcx| "checking if const fn allows `fn()` types: `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`).
query is_foreign_item(key: DefId) -> bool {
desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) }
}
/// Returns `Some(mutability)` if the node pointed to by `def_id` is a static item.
query static_mutability(def_id: DefId) -> Option<hir::Mutability> {
desc { |tcx| "looking up static mutability of `{}`", tcx.def_path_str(def_id) }
}
/// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator.
query generator_kind(def_id: DefId) -> Option<hir::GeneratorKind> {
desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) }
}
/// Gets a map with the variance of every item; use `item_variance` instead.
query crate_variances(_: CrateNum) -> ty::CrateVariancesMap<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { "computing the variances for items in this crate" }
}
/// Maps from the `DefId` of a type or region parameter to its (inferred) variance.
query variances_of(def_id: DefId) -> &'tcx [ty::Variance] {
desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) }
}
}
TypeChecking {
/// Maps from thee `DefId` of a type to its (inferred) outlives.
query inferred_outlives_crate(_: CrateNum)
-> ty::CratePredicatesMap<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { "computing the inferred outlives predicates for items in this crate" }
}
}
Other {
/// Maps from an impl/trait `DefId to a list of the `DefId`s of its items.
query associated_item_def_ids(key: DefId) -> &'tcx [DefId] {
desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) }
}
/// Maps from a trait item to the trait item "descriptor".
query associated_item(key: DefId) -> ty::AssocItem {
desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
}
/// Collects the associated items defined on a trait or impl.
query associated_items(key: DefId) -> ty::AssociatedItems<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) }
}
query impl_trait_ref(key: DefId) -> Option<ty::TraitRef<'tcx>> {
desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(key) }
}
query impl_polarity(key: DefId) -> ty::ImplPolarity {
desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(key) }
}
query issue33140_self_ty(key: DefId) -> Option<ty::Ty<'tcx>> {
desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) }
}
}
TypeChecking {
/// Maps a `DefId` of a type to a list of its inherent impls.
/// Contains implementations of methods that are inherent to a type.
/// Methods in these implementations don't need to be exported.
query inherent_impls(key: DefId) -> &'tcx [DefId] {
desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) }
eval_always
}
}
TypeChecking {
/// The result of unsafety-checking this `DefId`.
query unsafety_check_result(key: LocalDefId) -> mir::UnsafetyCheckResult {
desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
storage(ArenaCacheSelector<'tcx>)
}
/// HACK: when evaluated, this reports a "unsafe derive on repr(packed)" error.
///
/// Unsafety checking is executed for each method separately, but we only want
/// to emit this error once per derive. As there are some impls with multiple
/// methods, we use a query for deduplication.
query unsafe_derive_on_repr_packed(key: LocalDefId) -> () {
desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// The signature of functions.
query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> {
desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) }
}
}
Other {
query lint_mod(key: LocalDefId) -> () {
desc { |tcx| "linting {}", describe_as_module(key, tcx) }
}
/// Checks the attributes in the module.
query check_mod_attrs(key: LocalDefId) -> () {
desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) }
}
query check_mod_unstable_api_usage(key: LocalDefId) -> () {
desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) }
}
/// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`).
query check_mod_const_bodies(key: LocalDefId) -> () {
desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) }
}
/// Checks the loops in the module.
query check_mod_loops(key: LocalDefId) -> () {
desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) }
}
query check_mod_item_types(key: LocalDefId) -> () {
desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) }
}
query check_mod_privacy(key: LocalDefId) -> () {
desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) }
}
query check_mod_intrinsics(key: LocalDefId) -> () {
desc { |tcx| "checking intrinsics in {}", describe_as_module(key, tcx) }
}
query check_mod_liveness(key: LocalDefId) -> () {
desc { |tcx| "checking liveness of variables in {}", describe_as_module(key, tcx) }
}
query check_mod_impl_wf(key: LocalDefId) -> () {
desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) }
}
query collect_mod_item_types(key: LocalDefId) -> () {
desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) }
}
/// Caches `CoerceUnsized` kinds for impls on custom types.
query coerce_unsized_info(key: DefId)
-> ty::adjustment::CoerceUnsizedInfo {
desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) }
}
}
TypeChecking {
query typeck_item_bodies(_: CrateNum) -> () {
desc { "type-checking all item bodies" }
}
query typeck_tables_of(key: LocalDefId) -> &'tcx ty::TypeckTables<'tcx> {
desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
query diagnostic_only_typeck_tables_of(key: LocalDefId) -> &'tcx ty::TypeckTables<'tcx> {
desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
load_cached(tcx, id) {
let typeck_tables: Option<ty::TypeckTables<'tcx>> = tcx
.queries.on_disk_cache
.try_load_query_result(tcx, id);
typeck_tables.map(|x| &*tcx.arena.alloc(x))
}
}
}
Other {
query used_trait_imports(key: LocalDefId) -> &'tcx FxHashSet<LocalDefId> {
desc { |tcx| "used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
}
TypeChecking {
query has_typeck_tables(def_id: DefId) -> bool {
desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) }
}
query coherent_trait(def_id: DefId) -> () {
desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) }
}
}
BorrowChecking {
/// Borrow-checks the function body. If this is a closure, returns
/// additional requirements that the closure's creator must verify.
query mir_borrowck(key: LocalDefId) -> mir::BorrowCheckResult<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if(tcx, opt_result) {
tcx.is_closure(key.to_def_id())
|| opt_result.map_or(false, |r| !r.concrete_opaque_types.is_empty())
}
}
}
TypeChecking {
/// Gets a complete map from all types to their inherent impls.
/// Not meant to be used directly outside of coherence.
/// (Defined only for `LOCAL_CRATE`.)
query crate_inherent_impls(k: CrateNum)
-> CrateInherentImpls {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "all inherent impls defined in crate `{:?}`", k }
}
/// Checks all types in the crate for overlap in their inherent impls. Reports errors.
/// Not meant to be used directly outside of coherence.
/// (Defined only for `LOCAL_CRATE`.)
query crate_inherent_impls_overlap_check(_: CrateNum)
-> () {
eval_always
desc { "check for overlap between inherent impls defined in this crate" }
}
}
Other {
/// Evaluates a constant without running sanity checks.
///
/// **Do not use this** outside const eval. Const eval uses this to break query cycles
/// during validation. Please add a comment to every use site explaining why using
/// `const_eval_validated` isn't sufficient. The returned constant also isn't in a suitable
/// form to be used outside of const eval.
query const_eval_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
-> ConstEvalRawResult<'tcx> {
desc { |tcx|
"const-evaluating `{}`",
tcx.def_path_str(key.value.instance.def.def_id())
}
}
/// Results of evaluating const items or constants embedded in
/// other items (such as enum variant explicit discriminants).
///
/// In contrast to `const_eval_raw` this performs some validation on the constant, and
/// returns a proper constant that is usable by the rest of the compiler.
///
/// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`,
/// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`.
query const_eval_validated(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
-> ConstEvalResult<'tcx> {
desc { |tcx|
"const-evaluating + checking `{}`",
tcx.def_path_str(key.value.instance.def.def_id())
}
cache_on_disk_if(_, opt_result) {
// Only store results without errors
opt_result.map_or(true, |r| r.is_ok())
}
}
/// Destructure a constant ADT or array into its variant index and its
/// field values.
query destructure_const(
key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>>
) -> mir::DestructuredConst<'tcx> {
desc { "destructure constant" }
}
query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> {
desc { "get a &core::panic::Location referring to a span" }
}
query lit_to_const(
key: LitToConstInput<'tcx>
) -> Result<&'tcx ty::Const<'tcx>, LitToConstError> {
desc { "converting literal to const" }
}
}
TypeChecking {
query check_match(key: DefId) {
desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Performs part of the privacy check and computes "access levels".
query privacy_access_levels(_: CrateNum) -> &'tcx AccessLevels {
eval_always
desc { "privacy access levels" }
}
query check_private_in_public(_: CrateNum) -> () {
eval_always
desc { "checking for private elements in public interfaces" }
}
}
Other {
query reachable_set(_: CrateNum) -> &'tcx HirIdSet {
desc { "reachability" }
}
/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
/// in the case of closures, this will be redirected to the enclosing function.
query region_scope_tree(def_id: DefId) -> &'tcx region::ScopeTree {
desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) }
}
query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) }
}
/// The `symbol_name` query provides the symbol name for calling a
/// given instance from the local crate. In particular, it will also
/// look up the correct symbol name of instances from upstream crates.
query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName {
desc { "computing the symbol for `{}`", key }
cache_on_disk_if { true }
}
query def_kind(def_id: DefId) -> DefKind {
desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) }
}
query def_span(def_id: DefId) -> Span {
desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) }
// FIXME(mw): DefSpans are not really inputs since they are derived from
// HIR. But at the moment HIR hashing still contains some hacks that allow
// to make type debuginfo to be source location independent. Declaring
// DefSpan an input makes sure that changes to these are always detected
// regardless of HIR hashing.
eval_always
}
query lookup_stability(def_id: DefId) -> Option<&'tcx attr::Stability> {
desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) }
}
query lookup_const_stability(def_id: DefId) -> Option<&'tcx attr::ConstStability> {
desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) }
}
query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> {
desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) }
}
query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] {
desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) }
}
}
Codegen {
query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs {
desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { true }
}
}
Other {
query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] {
desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) }
}
/// Gets the rendered value of the specified constant or associated constant.
/// Used by rustdoc.
query rendered_const(def_id: DefId) -> String {
desc { |tcx| "rendering constant intializer of `{}`", tcx.def_path_str(def_id) }
}
query impl_parent(def_id: DefId) -> Option<DefId> {
desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) }
}
}
TypeChecking {
query trait_of_item(def_id: DefId) -> Option<DefId> {
desc { |tcx| "finding trait defining `{}`", tcx.def_path_str(def_id) }
}
}
Codegen {
query is_mir_available(key: DefId) -> bool {
desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) }
}
}
Other {
query vtable_methods(key: ty::PolyTraitRef<'tcx>)
-> &'tcx [Option<(DefId, SubstsRef<'tcx>)>] {
desc { |tcx| "finding all methods for trait {}", tcx.def_path_str(key.def_id()) }
}
}
Codegen {
query codegen_fulfill_obligation(
key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>)
) -> Result<ImplSource<'tcx, ()>, ErrorReported> {
cache_on_disk_if { true }
desc { |tcx|
"checking if `{}` fulfills its obligations",
tcx.def_path_str(key.1.def_id())
}
}
}
TypeChecking {
query all_local_trait_impls(key: CrateNum) -> &'tcx BTreeMap<DefId, Vec<hir::HirId>> {
desc { "local trait impls" }
}
query trait_impls_of(key: DefId) -> ty::trait_def::TraitImpls {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "trait impls of `{}`", tcx.def_path_str(key) }
}
query specialization_graph_of(key: DefId) -> specialization_graph::Graph {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(key) }
cache_on_disk_if { true }
}
query object_safety_violations(key: DefId) -> &'tcx [traits::ObjectSafetyViolation] {
desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(key) }
}
/// Gets the ParameterEnvironment for a given item; this environment
/// will be in "user-facing" mode, meaning that it is suitable for
/// type-checking etc, and it does not normalize specializable
/// associated types. This is almost always what you want,
/// unless you are doing MIR optimizations, in which case you
/// might want to use `reveal_all()` method to change modes.
query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> {
desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) }
}
/// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`,
/// `ty.is_copy()`, etc, since that will prune the environment where possible.
query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is `Copy`", env.value }
}
/// Query backing `TyS::is_sized`.
query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is `Sized`", env.value }
}
/// Query backing `TyS::is_freeze`.
query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is freeze", env.value }
}
/// Query backing `TyS::needs_drop`.
query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` needs drop", env.value }
}
/// Query backing `TyS::is_structural_eq_shallow`.
///
/// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types
/// correctly.
query has_structural_eq_impls(ty: Ty<'tcx>) -> bool {
desc {
"computing whether `{:?}` implements `PartialStructuralEq` and `StructuralEq`",
ty
}
}
/// A list of types where the ADT requires drop if and only if any of
/// those types require drop. If the ADT is known to always need drop
/// then `Err(AlwaysRequiresDrop)` is returned.
query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) }
cache_on_disk_if { true }
}
query layout_raw(
env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
) -> Result<&'tcx rustc_target::abi::Layout, ty::layout::LayoutError<'tcx>> {
desc { "computing layout of `{}`", env.value }
}
}
Other {
query dylib_dependency_formats(_: CrateNum)
-> &'tcx [(CrateNum, LinkagePreference)] {
desc { "dylib dependency formats of crate" }
}
query dependency_formats(_: CrateNum)
-> Lrc<crate::middle::dependency_format::Dependencies>
{
desc { "get the linkage format of all dependencies" }
}
}
Codegen {
query is_compiler_builtins(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate is_compiler_builtins" }
}
query has_global_allocator(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate has_global_allocator" }
}
query has_panic_handler(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate has_panic_handler" }
}
query is_profiler_runtime(_: CrateNum) -> bool {
fatal_cycle
desc { "query a crate is `#![profiler_runtime]`" }
}
query panic_strategy(_: CrateNum) -> PanicStrategy {
fatal_cycle
desc { "query a crate's configured panic strategy" }
}
query is_no_builtins(_: CrateNum) -> bool {
fatal_cycle
desc { "test whether a crate has `#![no_builtins]`" }
}
query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion {
fatal_cycle
desc { "query a crate's symbol mangling version" }
}
query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> {
eval_always
desc { "getting crate's ExternCrateData" }
}
}
TypeChecking {
query specializes(_: (DefId, DefId)) -> bool {
desc { "computing whether impls specialize one another" }
}
query in_scope_traits_map(_: LocalDefId)
-> Option<&'tcx FxHashMap<ItemLocalId, StableVec<TraitCandidate>>> {
eval_always
desc { "traits in scope at a block" }
}
}
Other {
query module_exports(def_id: LocalDefId) -> Option<&'tcx [Export<LocalDefId>]> {
desc { |tcx| "looking up items exported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
eval_always
}
}
TypeChecking {
query impl_defaultness(def_id: DefId) -> hir::Defaultness {
desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) }
}
query check_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
query check_trait_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
query check_impl_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
}
Linking {
// The `DefId`s of all non-generic functions and statics in the given crate
// that can be reached from outside the crate.
//
// We expect this items to be available for being linked to.
//
// This query can also be called for `LOCAL_CRATE`. In this case it will
// compute which items will be reachable to other crates, taking into account
// the kind of crate that is currently compiled. Crates with only a
// C interface have fewer reachable things.
//
// Does not include external symbols that don't have a corresponding DefId,
// like the compiler-generated `main` function and so on.
query reachable_non_generics(_: CrateNum)
-> DefIdMap<SymbolExportLevel> {
storage(ArenaCacheSelector<'tcx>)
desc { "looking up the exported symbols of a crate" }
}
query is_reachable_non_generic(def_id: DefId) -> bool {
desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) }
}
query is_unreachable_local_definition(def_id: DefId) -> bool {
desc { |tcx|
"checking whether `{}` is reachable from outside the crate",
tcx.def_path_str(def_id),
}
}
}
Codegen {
/// The entire set of monomorphizations the local crate can safely link
/// to because they are exported from upstream crates. Do not depend on
/// this directly, as its value changes anytime a monomorphization gets
/// added or removed in any upstream crate. Instead use the narrower
/// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even
/// better, `Instance::upstream_monomorphization()`.
query upstream_monomorphizations(
k: CrateNum
) -> DefIdMap<FxHashMap<SubstsRef<'tcx>, CrateNum>> {
storage(ArenaCacheSelector<'tcx>)
desc { "collecting available upstream monomorphizations `{:?}`", k }
}
/// Returns the set of upstream monomorphizations available for the
/// generic function identified by the given `def_id`. The query makes
/// sure to make a stable selection if the same monomorphization is
/// available in multiple upstream crates.
///
/// You likely want to call `Instance::upstream_monomorphization()`
/// instead of invoking this query directly.
query upstream_monomorphizations_for(def_id: DefId)
-> Option<&'tcx FxHashMap<SubstsRef<'tcx>, CrateNum>> {
desc { |tcx|
"collecting available upstream monomorphizations for `{}`",
tcx.def_path_str(def_id),
}
}
/// Returns the upstream crate that exports drop-glue for the given
/// type (`substs` is expected to be a single-item list containing the
/// type one wants drop-glue for).
///
/// This is a subset of `upstream_monomorphizations_for` in order to
/// increase dep-tracking granularity. Otherwise adding or removing any
/// type with drop-glue in any upstream crate would invalidate all
/// functions calling drop-glue of an upstream type.
///
/// You likely want to call `Instance::upstream_monomorphization()`
/// instead of invoking this query directly.
///
/// NOTE: This query could easily be extended to also support other
/// common functions that have are large set of monomorphizations
/// (like `Clone::clone` for example).
query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option<CrateNum> {
desc { "available upstream drop-glue for `{:?}`", substs }
}
}
Other {
query foreign_modules(_: CrateNum) -> &'tcx [ForeignModule] {
desc { "looking up the foreign modules of a linked crate" }
}
/// Identifies the entry-point (e.g., the `main` function) for a given
/// crate, returning `None` if there is no entry point (such as for library crates).
query entry_fn(_: CrateNum) -> Option<(LocalDefId, EntryFnType)> {
desc { "looking up the entry function of a crate" }
}
query plugin_registrar_fn(_: CrateNum) -> Option<DefId> {
desc { "looking up the plugin registrar for a crate" }
}
query proc_macro_decls_static(_: CrateNum) -> Option<DefId> {
desc { "looking up the derive registrar for a crate" }
}
query crate_disambiguator(_: CrateNum) -> CrateDisambiguator {
eval_always
desc { "looking up the disambiguator a crate" }
}
query crate_hash(_: CrateNum) -> Svh {
eval_always
desc { "looking up the hash a crate" }
}
query crate_host_hash(_: CrateNum) -> Option<Svh> {
eval_always
desc { "looking up the hash of a host version of a crate" }
}
query original_crate_name(_: CrateNum) -> Symbol {
eval_always
desc { "looking up the original name a crate" }
}
query extra_filename(_: CrateNum) -> String {
eval_always
desc { "looking up the extra filename for a crate" }
}
query crate_extern_paths(_: CrateNum) -> Vec<PathBuf> {
eval_always
desc { "looking up the paths for extern crates" }
}
}
TypeChecking {
query implementations_of_trait(_: (CrateNum, DefId))
-> &'tcx [DefId] {
desc { "looking up implementations of a trait in a crate" }
}
query all_trait_implementations(_: CrateNum)
-> &'tcx [DefId] {
desc { "looking up all (?) trait implementations" }
}
}
Other {
query dllimport_foreign_items(_: CrateNum)
-> FxHashSet<DefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "dllimport_foreign_items" }
}
query is_dllimport_foreign_item(def_id: DefId) -> bool {
desc { |tcx| "is_dllimport_foreign_item({})", tcx.def_path_str(def_id) }
}
query is_statically_included_foreign_item(def_id: DefId) -> bool {
desc { |tcx| "is_statically_included_foreign_item({})", tcx.def_path_str(def_id) }
}
query native_library_kind(def_id: DefId)
-> Option<NativeLibKind> {
desc { |tcx| "native_library_kind({})", tcx.def_path_str(def_id) }
}
}
Linking {
query link_args(_: CrateNum) -> Lrc<Vec<String>> {
eval_always
desc { "looking up link arguments for a crate" }
}
}
BorrowChecking {
/// Lifetime resolution. See `middle::resolve_lifetimes`.
query resolve_lifetimes(_: CrateNum) -> ResolveLifetimes {
storage(ArenaCacheSelector<'tcx>)
desc { "resolving lifetimes" }
}
query named_region_map(_: LocalDefId) ->
Option<&'tcx FxHashMap<ItemLocalId, Region>> {
desc { "looking up a named region" }
}
query is_late_bound_map(_: LocalDefId) ->
Option<&'tcx FxHashSet<ItemLocalId>> {
desc { "testing if a region is late bound" }
}
query object_lifetime_defaults_map(_: LocalDefId)
-> Option<&'tcx FxHashMap<ItemLocalId, Vec<ObjectLifetimeDefault>>> {
desc { "looking up lifetime defaults for a region" }
}
}
TypeChecking {
query visibility(def_id: DefId) -> ty::Visibility {
desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) }
}
}
Other {
query dep_kind(_: CrateNum) -> DepKind {
eval_always
desc { "fetching what a dependency looks like" }
}
query crate_name(_: CrateNum) -> Symbol {
eval_always
desc { "fetching what a crate is named" }
}
query item_children(def_id: DefId) -> &'tcx [Export<hir::HirId>] {
desc { |tcx| "collecting child items of `{}`", tcx.def_path_str(def_id) }
}
query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> {
desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
query get_lib_features(_: CrateNum) -> LibFeatures {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the lib features map" }
}
query defined_lib_features(_: CrateNum)
-> &'tcx [(Symbol, Option<Symbol>)] {
desc { "calculating the lib features defined in a crate" }
}
/// Returns the lang items defined in another crate by loading it from metadata.
// FIXME: It is illegal to pass a `CrateNum` other than `LOCAL_CRATE` here, just get rid
// of that argument?
query get_lang_items(_: CrateNum) -> LanguageItems {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the lang items map" }
}
/// Returns all diagnostic items defined in all crates.
query all_diagnostic_items(_: CrateNum) -> FxHashMap<Symbol, DefId> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the diagnostic items map" }
}
/// Returns the lang items defined in another crate by loading it from metadata.
query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] {
desc { "calculating the lang items defined in a crate" }
}
/// Returns the diagnostic items defined in a crate.
query diagnostic_items(_: CrateNum) -> FxHashMap<Symbol, DefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "calculating the diagnostic items map in a crate" }
}
query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] {
desc { "calculating the missing lang items in a crate" }
}
query visible_parent_map(_: CrateNum)
-> DefIdMap<DefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "calculating the visible parent map" }
}
query missing_extern_crate_item(_: CrateNum) -> bool {
eval_always
desc { "seeing if we're missing an `extern crate` item for this crate" }
}
query used_crate_source(_: CrateNum) -> Lrc<CrateSource> {
eval_always
desc { "looking at the source for a crate" }
}
query postorder_cnums(_: CrateNum) -> &'tcx [CrateNum] {
eval_always
desc { "generating a postorder list of CrateNums" }
}
query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> {
desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) }
eval_always
}
query maybe_unused_trait_import(def_id: LocalDefId) -> bool {
eval_always
desc { |tcx| "maybe_unused_trait_import for `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
query maybe_unused_extern_crates(_: CrateNum)
-> &'tcx [(LocalDefId, Span)] {
eval_always
desc { "looking up all possibly unused extern crates" }
}
query names_imported_by_glob_use(def_id: LocalDefId)
-> &'tcx FxHashSet<Symbol> {
eval_always
desc { |tcx| "names_imported_by_glob_use for `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
query stability_index(_: CrateNum) -> stability::Index<'tcx> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the stability index for the local crate" }
}
query all_crate_nums(_: CrateNum) -> &'tcx [CrateNum] {
eval_always
desc { "fetching all foreign CrateNum instances" }
}
/// A vector of every trait accessible in the whole crate
/// (i.e., including those from subcrates). This is used only for
/// error reporting.
query all_traits(_: CrateNum) -> &'tcx [DefId] {
desc { "fetching all foreign and local traits" }
}
}
Linking {
/// The list of symbols exported from the given crate.
///
/// - All names contained in `exported_symbols(cnum)` are guaranteed to
/// correspond to a publicly visible symbol in `cnum` machine code.
/// - The `exported_symbols` sets of different crates do not intersect.
query exported_symbols(_: CrateNum)
-> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] {
desc { "exported_symbols" }
}
}
Codegen {
query collect_and_partition_mono_items(_: CrateNum)
-> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
eval_always
desc { "collect_and_partition_mono_items" }
}
query is_codegened_item(def_id: DefId) -> bool {
desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) }
}
query codegen_unit(_: Symbol) -> &'tcx CodegenUnit<'tcx> {
desc { "codegen_unit" }
}
query backend_optimization_level(_: CrateNum) -> OptLevel {
desc { "optimization level used by backend" }
}
}
Other {
query output_filenames(_: CrateNum) -> Arc<OutputFilenames> {
eval_always
desc { "output_filenames" }
}
}
TypeChecking {
/// Do not call this query directly: invoke `normalize` instead.
query normalize_projection_ty(
goal: CanonicalProjectionGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: invoke `normalize_erasing_regions` instead.
query normalize_generic_arg_after_erasing_regions(
goal: ParamEnvAnd<'tcx, GenericArg<'tcx>>
) -> GenericArg<'tcx> {
desc { "normalizing `{}`", goal.value }
}
query implied_outlives_bounds(
goal: CanonicalTyGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
NoSolution,
> {
desc { "computing implied outlives bounds for `{:?}`", goal }
}
/// Do not call this query directly: invoke `infcx.at().dropck_outlives()` instead.
query dropck_outlives(
goal: CanonicalTyGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>,
NoSolution,
> {
desc { "computing dropck types for `{:?}`", goal }
}
/// Do not call this query directly: invoke `infcx.predicate_may_hold()` or
/// `infcx.predicate_must_hold()` instead.
query evaluate_obligation(
goal: CanonicalPredicateGoal<'tcx>
) -> Result<traits::EvaluationResult, traits::OverflowError> {
desc { "evaluating trait selection obligation `{}`", goal.value.value }
}
query evaluate_goal(
goal: traits::ChalkCanonicalGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution
> {
desc { "evaluating trait selection obligation `{}`", goal.value }
}
query type_implements_trait(
key: (DefId, Ty<'tcx>, SubstsRef<'tcx>, ty::ParamEnv<'tcx>, )
) -> bool {
desc { "evaluating `type_implements_trait` `{:?}`", key }
}
/// Do not call this query directly: part of the `Eq` type-op
query type_op_ascribe_user_type(
goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Eq` type-op
query type_op_eq(
goal: CanonicalTypeOpEqGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_eq` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Subtype` type-op
query type_op_subtype(
goal: CanonicalTypeOpSubtypeGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_subtype` `{:?}`", goal }
}
/// Do not call this query directly: part of the `ProvePredicate` type-op
query type_op_prove_predicate(
goal: CanonicalTypeOpProvePredicateGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_prove_predicate` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_ty(
goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_predicate(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_poly_fn_sig(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_fn_sig(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
query substitute_normalize_and_test_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool {
desc { |tcx|
"testing substituted normalized predicates:`{}`",
tcx.def_path_str(key.0)
}
}
query method_autoderef_steps(
goal: CanonicalTyGoal<'tcx>
) -> MethodAutoderefStepsResult<'tcx> {
desc { "computing autoderef types for `{:?}`", goal }
}
}
Other {
query supported_target_features(_: CrateNum) -> FxHashMap<String, Option<Symbol>> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "looking up supported target features" }
}
// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning.
query instance_def_size_estimate(def: ty::InstanceDef<'tcx>)
-> usize {
desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) }
}
query features_query(_: CrateNum) -> &'tcx rustc_feature::Features {
eval_always
desc { "looking up enabled feature gates" }
}
/// Attempt to resolve the given `DefId` to an `Instance`, for the
/// given generics args (`SubstsRef`), returning one of:
/// * `Ok(Some(instance))` on success
/// * `Ok(None)` when the `SubstsRef` are still too generic,
/// and therefore don't allow finding the final `Instance`
/// * `Err(ErrorReported)` when the `Instance` resolution process
/// couldn't complete due to errors elsewhere - this is distinct
/// from `Ok(None)` to avoid misleading diagnostics when an error
/// has already been/will be emitted, for the original cause
query resolve_instance(
key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>
) -> Result<Option<ty::Instance<'tcx>>, ErrorReported> {
desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) }
}
}
}