blob: d8959966fe5ad38a8f846780af27892a77fba621 [file] [log] [blame]
// This is pretty much entirely stolen from TreeSet, since BTreeMap has an identical interface
// to TreeMap
use core::borrow::Borrow;
use core::cmp::Ordering::{Equal, Greater, Less};
use core::cmp::{max, min};
use core::fmt::{self, Debug};
use core::iter::{FromIterator, FusedIterator, Peekable};
use core::ops::{BitAnd, BitOr, BitXor, RangeBounds, Sub};
use super::map::{BTreeMap, Keys};
use super::Recover;
// FIXME(conventions): implement bounded iterators
/// A set based on a B-Tree.
///
/// See [`BTreeMap`]'s documentation for a detailed discussion of this collection's performance
/// benefits and drawbacks.
///
/// It is a logic error for an item to be modified in such a way that the item's ordering relative
/// to any other item, as determined by the [`Ord`] trait, changes while it is in the set. This is
/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
///
/// [`BTreeMap`]: struct.BTreeMap.html
/// [`Ord`]: ../../std/cmp/trait.Ord.html
/// [`Cell`]: ../../std/cell/struct.Cell.html
/// [`RefCell`]: ../../std/cell/struct.RefCell.html
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// // Type inference lets us omit an explicit type signature (which
/// // would be `BTreeSet<&str>` in this example).
/// let mut books = BTreeSet::new();
///
/// // Add some books.
/// books.insert("A Dance With Dragons");
/// books.insert("To Kill a Mockingbird");
/// books.insert("The Odyssey");
/// books.insert("The Great Gatsby");
///
/// // Check for a specific one.
/// if !books.contains("The Winds of Winter") {
/// println!("We have {} books, but The Winds of Winter ain't one.",
/// books.len());
/// }
///
/// // Remove a book.
/// books.remove("The Odyssey");
///
/// // Iterate over everything.
/// for book in &books {
/// println!("{}", book);
/// }
/// ```
#[derive(Hash, PartialEq, Eq, Ord, PartialOrd)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BTreeSet<T> {
map: BTreeMap<T, ()>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for BTreeSet<T> {
fn clone(&self) -> Self {
BTreeSet { map: self.map.clone() }
}
fn clone_from(&mut self, other: &Self) {
self.map.clone_from(&other.map);
}
}
/// An iterator over the items of a `BTreeSet`.
///
/// This `struct` is created by the [`iter`] method on [`BTreeSet`].
/// See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`iter`]: struct.BTreeSet.html#method.iter
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
iter: Keys<'a, T, ()>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Iter").field(&self.iter.clone()).finish()
}
}
/// An owning iterator over the items of a `BTreeSet`.
///
/// This `struct` is created by the [`into_iter`] method on [`BTreeSet`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`into_iter`]: struct.BTreeSet.html#method.into_iter
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct IntoIter<T> {
iter: super::map::IntoIter<T, ()>,
}
/// An iterator over a sub-range of items in a `BTreeSet`.
///
/// This `struct` is created by the [`range`] method on [`BTreeSet`].
/// See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`range`]: struct.BTreeSet.html#method.range
#[derive(Debug)]
#[stable(feature = "btree_range", since = "1.17.0")]
pub struct Range<'a, T: 'a> {
iter: super::map::Range<'a, T, ()>,
}
/// Core of SymmetricDifference and Union.
/// More efficient than btree.map.MergeIter,
/// and crucially for SymmetricDifference, nexts() reports on both sides.
#[derive(Clone)]
struct MergeIterInner<I>
where
I: Iterator,
I::Item: Copy,
{
a: I,
b: I,
peeked: Option<MergeIterPeeked<I>>,
}
#[derive(Copy, Clone, Debug)]
enum MergeIterPeeked<I: Iterator> {
A(I::Item),
B(I::Item),
}
impl<I> MergeIterInner<I>
where
I: ExactSizeIterator + FusedIterator,
I::Item: Copy + Ord,
{
fn new(a: I, b: I) -> Self {
MergeIterInner { a, b, peeked: None }
}
fn nexts(&mut self) -> (Option<I::Item>, Option<I::Item>) {
let mut a_next = match self.peeked {
Some(MergeIterPeeked::A(next)) => Some(next),
_ => self.a.next(),
};
let mut b_next = match self.peeked {
Some(MergeIterPeeked::B(next)) => Some(next),
_ => self.b.next(),
};
let ord = match (a_next, b_next) {
(None, None) => Equal,
(_, None) => Less,
(None, _) => Greater,
(Some(a1), Some(b1)) => a1.cmp(&b1),
};
self.peeked = match ord {
Less => b_next.take().map(MergeIterPeeked::B),
Equal => None,
Greater => a_next.take().map(MergeIterPeeked::A),
};
(a_next, b_next)
}
fn lens(&self) -> (usize, usize) {
match self.peeked {
Some(MergeIterPeeked::A(_)) => (1 + self.a.len(), self.b.len()),
Some(MergeIterPeeked::B(_)) => (self.a.len(), 1 + self.b.len()),
_ => (self.a.len(), self.b.len()),
}
}
}
impl<I> Debug for MergeIterInner<I>
where
I: Iterator + Debug,
I::Item: Copy + Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("MergeIterInner").field(&self.a).field(&self.b).finish()
}
}
/// A lazy iterator producing elements in the difference of `BTreeSet`s.
///
/// This `struct` is created by the [`difference`] method on [`BTreeSet`].
/// See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`difference`]: struct.BTreeSet.html#method.difference
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Difference<'a, T: 'a> {
inner: DifferenceInner<'a, T>,
}
#[derive(Debug)]
enum DifferenceInner<'a, T: 'a> {
Stitch {
// iterate all of `self` and some of `other`, spotting matches along the way
self_iter: Iter<'a, T>,
other_iter: Peekable<Iter<'a, T>>,
},
Search {
// iterate `self`, look up in `other`
self_iter: Iter<'a, T>,
other_set: &'a BTreeSet<T>,
},
Iterate(Iter<'a, T>), // simply produce all values in `self`
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Difference<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Difference").field(&self.inner).finish()
}
}
/// A lazy iterator producing elements in the symmetric difference of `BTreeSet`s.
///
/// This `struct` is created by the [`symmetric_difference`] method on
/// [`BTreeSet`]. See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`symmetric_difference`]: struct.BTreeSet.html#method.symmetric_difference
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SymmetricDifference<'a, T: 'a>(MergeIterInner<Iter<'a, T>>);
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for SymmetricDifference<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("SymmetricDifference").field(&self.0).finish()
}
}
/// A lazy iterator producing elements in the intersection of `BTreeSet`s.
///
/// This `struct` is created by the [`intersection`] method on [`BTreeSet`].
/// See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`intersection`]: struct.BTreeSet.html#method.intersection
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Intersection<'a, T: 'a> {
inner: IntersectionInner<'a, T>,
}
#[derive(Debug)]
enum IntersectionInner<'a, T: 'a> {
Stitch {
// iterate similarly sized sets jointly, spotting matches along the way
a: Iter<'a, T>,
b: Iter<'a, T>,
},
Search {
// iterate a small set, look up in the large set
small_iter: Iter<'a, T>,
large_set: &'a BTreeSet<T>,
},
Answer(Option<&'a T>), // return a specific value or emptiness
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Intersection<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Intersection").field(&self.inner).finish()
}
}
/// A lazy iterator producing elements in the union of `BTreeSet`s.
///
/// This `struct` is created by the [`union`] method on [`BTreeSet`].
/// See its documentation for more.
///
/// [`BTreeSet`]: struct.BTreeSet.html
/// [`union`]: struct.BTreeSet.html#method.union
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Union<'a, T: 'a>(MergeIterInner<Iter<'a, T>>);
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Union<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Union").field(&self.0).finish()
}
}
// This constant is used by functions that compare two sets.
// It estimates the relative size at which searching performs better
// than iterating, based on the benchmarks in
// https://github.com/ssomers/rust_bench_btreeset_intersection;
// It's used to divide rather than multiply sizes, to rule out overflow,
// and it's a power of two to make that division cheap.
const ITER_PERFORMANCE_TIPPING_SIZE_DIFF: usize = 16;
impl<T: Ord> BTreeSet<T> {
/// Makes a new `BTreeSet` with a reasonable choice of B.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// use std::collections::BTreeSet;
///
/// let mut set: BTreeSet<i32> = BTreeSet::new();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_btree_new", issue = "71835")]
pub const fn new() -> BTreeSet<T> {
BTreeSet { map: BTreeMap::new() }
}
/// Constructs a double-ended iterator over a sub-range of elements in the set.
/// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
/// yield elements from min (inclusive) to max (exclusive).
/// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
/// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
/// range from 4 to 10.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
/// use std::ops::Bound::Included;
///
/// let mut set = BTreeSet::new();
/// set.insert(3);
/// set.insert(5);
/// set.insert(8);
/// for &elem in set.range((Included(&4), Included(&8))) {
/// println!("{}", elem);
/// }
/// assert_eq!(Some(&5), set.range(4..).next());
/// ```
#[stable(feature = "btree_range", since = "1.17.0")]
pub fn range<K: ?Sized, R>(&self, range: R) -> Range<'_, T>
where
K: Ord,
T: Borrow<K>,
R: RangeBounds<K>,
{
Range { iter: self.map.range(range) }
}
/// Visits the values representing the difference,
/// i.e., the values that are in `self` but not in `other`,
/// in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
/// a.insert(2);
///
/// let mut b = BTreeSet::new();
/// b.insert(2);
/// b.insert(3);
///
/// let diff: Vec<_> = a.difference(&b).cloned().collect();
/// assert_eq!(diff, [1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn difference<'a>(&'a self, other: &'a BTreeSet<T>) -> Difference<'a, T> {
let (self_min, self_max) =
if let (Some(self_min), Some(self_max)) = (self.first(), self.last()) {
(self_min, self_max)
} else {
return Difference { inner: DifferenceInner::Iterate(self.iter()) };
};
let (other_min, other_max) =
if let (Some(other_min), Some(other_max)) = (other.first(), other.last()) {
(other_min, other_max)
} else {
return Difference { inner: DifferenceInner::Iterate(self.iter()) };
};
Difference {
inner: match (self_min.cmp(other_max), self_max.cmp(other_min)) {
(Greater, _) | (_, Less) => DifferenceInner::Iterate(self.iter()),
(Equal, _) => {
let mut self_iter = self.iter();
self_iter.next();
DifferenceInner::Iterate(self_iter)
}
(_, Equal) => {
let mut self_iter = self.iter();
self_iter.next_back();
DifferenceInner::Iterate(self_iter)
}
_ if self.len() <= other.len() / ITER_PERFORMANCE_TIPPING_SIZE_DIFF => {
DifferenceInner::Search { self_iter: self.iter(), other_set: other }
}
_ => DifferenceInner::Stitch {
self_iter: self.iter(),
other_iter: other.iter().peekable(),
},
},
}
}
/// Visits the values representing the symmetric difference,
/// i.e., the values that are in `self` or in `other` but not in both,
/// in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
/// a.insert(2);
///
/// let mut b = BTreeSet::new();
/// b.insert(2);
/// b.insert(3);
///
/// let sym_diff: Vec<_> = a.symmetric_difference(&b).cloned().collect();
/// assert_eq!(sym_diff, [1, 3]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn symmetric_difference<'a>(
&'a self,
other: &'a BTreeSet<T>,
) -> SymmetricDifference<'a, T> {
SymmetricDifference(MergeIterInner::new(self.iter(), other.iter()))
}
/// Visits the values representing the intersection,
/// i.e., the values that are both in `self` and `other`,
/// in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
/// a.insert(2);
///
/// let mut b = BTreeSet::new();
/// b.insert(2);
/// b.insert(3);
///
/// let intersection: Vec<_> = a.intersection(&b).cloned().collect();
/// assert_eq!(intersection, [2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn intersection<'a>(&'a self, other: &'a BTreeSet<T>) -> Intersection<'a, T> {
let (self_min, self_max) =
if let (Some(self_min), Some(self_max)) = (self.first(), self.last()) {
(self_min, self_max)
} else {
return Intersection { inner: IntersectionInner::Answer(None) };
};
let (other_min, other_max) =
if let (Some(other_min), Some(other_max)) = (other.first(), other.last()) {
(other_min, other_max)
} else {
return Intersection { inner: IntersectionInner::Answer(None) };
};
Intersection {
inner: match (self_min.cmp(other_max), self_max.cmp(other_min)) {
(Greater, _) | (_, Less) => IntersectionInner::Answer(None),
(Equal, _) => IntersectionInner::Answer(Some(self_min)),
(_, Equal) => IntersectionInner::Answer(Some(self_max)),
_ if self.len() <= other.len() / ITER_PERFORMANCE_TIPPING_SIZE_DIFF => {
IntersectionInner::Search { small_iter: self.iter(), large_set: other }
}
_ if other.len() <= self.len() / ITER_PERFORMANCE_TIPPING_SIZE_DIFF => {
IntersectionInner::Search { small_iter: other.iter(), large_set: self }
}
_ => IntersectionInner::Stitch { a: self.iter(), b: other.iter() },
},
}
}
/// Visits the values representing the union,
/// i.e., all the values in `self` or `other`, without duplicates,
/// in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
///
/// let mut b = BTreeSet::new();
/// b.insert(2);
///
/// let union: Vec<_> = a.union(&b).cloned().collect();
/// assert_eq!(union, [1, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn union<'a>(&'a self, other: &'a BTreeSet<T>) -> Union<'a, T> {
Union(MergeIterInner::new(self.iter(), other.iter()))
}
/// Clears the set, removing all values.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// v.insert(1);
/// v.clear();
/// assert!(v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
self.map.clear()
}
/// Returns `true` if the set contains a value.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
/// assert_eq!(set.contains(&1), true);
/// assert_eq!(set.contains(&4), false);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Ord,
{
self.map.contains_key(value)
}
/// Returns a reference to the value in the set, if any, that is equal to the given value.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
/// assert_eq!(set.get(&2), Some(&2));
/// assert_eq!(set.get(&4), None);
/// ```
#[stable(feature = "set_recovery", since = "1.9.0")]
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
where
T: Borrow<Q>,
Q: Ord,
{
Recover::get(&self.map, value)
}
/// Returns `true` if `self` has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
/// let mut b = BTreeSet::new();
///
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(4);
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(1);
/// assert_eq!(a.is_disjoint(&b), false);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_disjoint(&self, other: &BTreeSet<T>) -> bool {
self.intersection(other).next().is_none()
}
/// Returns `true` if the set is a subset of another,
/// i.e., `other` contains at least all the values in `self`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sup: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
/// let mut set = BTreeSet::new();
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(2);
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(4);
/// assert_eq!(set.is_subset(&sup), false);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_subset(&self, other: &BTreeSet<T>) -> bool {
// Same result as self.difference(other).next().is_none()
// but the code below is faster (hugely in some cases).
if self.len() > other.len() {
return false;
}
let (self_min, self_max) =
if let (Some(self_min), Some(self_max)) = (self.first(), self.last()) {
(self_min, self_max)
} else {
return true; // self is empty
};
let (other_min, other_max) =
if let (Some(other_min), Some(other_max)) = (other.first(), other.last()) {
(other_min, other_max)
} else {
return false; // other is empty
};
let mut self_iter = self.iter();
match self_min.cmp(other_min) {
Less => return false,
Equal => {
self_iter.next();
}
Greater => (),
}
match self_max.cmp(other_max) {
Greater => return false,
Equal => {
self_iter.next_back();
}
Less => (),
}
if self_iter.len() <= other.len() / ITER_PERFORMANCE_TIPPING_SIZE_DIFF {
for next in self_iter {
if !other.contains(next) {
return false;
}
}
} else {
let mut other_iter = other.iter();
other_iter.next();
other_iter.next_back();
let mut self_next = self_iter.next();
while let Some(self1) = self_next {
match other_iter.next().map_or(Less, |other1| self1.cmp(other1)) {
Less => return false,
Equal => self_next = self_iter.next(),
Greater => (),
}
}
}
true
}
/// Returns `true` if the set is a superset of another,
/// i.e., `self` contains at least all the values in `other`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let sub: BTreeSet<_> = [1, 2].iter().cloned().collect();
/// let mut set = BTreeSet::new();
///
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(0);
/// set.insert(1);
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(2);
/// assert_eq!(set.is_superset(&sub), true);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_superset(&self, other: &BTreeSet<T>) -> bool {
other.is_subset(self)
}
/// Returns a reference to the first value in the set, if any.
/// This value is always the minimum of all values in the set.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(map_first_last)]
/// use std::collections::BTreeSet;
///
/// let mut map = BTreeSet::new();
/// assert_eq!(map.first(), None);
/// map.insert(1);
/// assert_eq!(map.first(), Some(&1));
/// map.insert(2);
/// assert_eq!(map.first(), Some(&1));
/// ```
#[unstable(feature = "map_first_last", issue = "62924")]
pub fn first(&self) -> Option<&T> {
self.map.first_key_value().map(|(k, _)| k)
}
/// Returns a reference to the last value in the set, if any.
/// This value is always the maximum of all values in the set.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(map_first_last)]
/// use std::collections::BTreeSet;
///
/// let mut map = BTreeSet::new();
/// assert_eq!(map.first(), None);
/// map.insert(1);
/// assert_eq!(map.last(), Some(&1));
/// map.insert(2);
/// assert_eq!(map.last(), Some(&2));
/// ```
#[unstable(feature = "map_first_last", issue = "62924")]
pub fn last(&self) -> Option<&T> {
self.map.last_key_value().map(|(k, _)| k)
}
/// Removes the first value from the set and returns it, if any.
/// The first value is always the minimum value in the set.
///
/// # Examples
///
/// ```
/// #![feature(map_first_last)]
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// set.insert(1);
/// while let Some(n) = set.pop_first() {
/// assert_eq!(n, 1);
/// }
/// assert!(set.is_empty());
/// ```
#[unstable(feature = "map_first_last", issue = "62924")]
pub fn pop_first(&mut self) -> Option<T> {
self.map.first_entry().map(|entry| entry.remove_entry().0)
}
/// Removes the last value from the set and returns it, if any.
/// The last value is always the maximum value in the set.
///
/// # Examples
///
/// ```
/// #![feature(map_first_last)]
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// set.insert(1);
/// while let Some(n) = set.pop_last() {
/// assert_eq!(n, 1);
/// }
/// assert!(set.is_empty());
/// ```
#[unstable(feature = "map_first_last", issue = "62924")]
pub fn pop_last(&mut self) -> Option<T> {
self.map.last_entry().map(|entry| entry.remove_entry().0)
}
/// Adds a value to the set.
///
/// If the set did not have this value present, `true` is returned.
///
/// If the set did have this value present, `false` is returned, and the
/// entry is not updated. See the [module-level documentation] for more.
///
/// [module-level documentation]: index.html#insert-and-complex-keys
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// assert_eq!(set.insert(2), true);
/// assert_eq!(set.insert(2), false);
/// assert_eq!(set.len(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
}
/// Adds a value to the set, replacing the existing value, if any, that is equal to the given
/// one. Returns the replaced value.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
/// set.insert(Vec::<i32>::new());
///
/// assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
/// set.replace(Vec::with_capacity(10));
/// assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);
/// ```
#[stable(feature = "set_recovery", since = "1.9.0")]
pub fn replace(&mut self, value: T) -> Option<T> {
Recover::replace(&mut self.map, value)
}
/// Removes a value from the set. Returns whether the value was
/// present in the set.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set = BTreeSet::new();
///
/// set.insert(2);
/// assert_eq!(set.remove(&2), true);
/// assert_eq!(set.remove(&2), false);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Ord,
{
self.map.remove(value).is_some()
}
/// Removes and returns the value in the set, if any, that is equal to the given one.
///
/// The value may be any borrowed form of the set's value type,
/// but the ordering on the borrowed form *must* match the
/// ordering on the value type.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut set: BTreeSet<_> = [1, 2, 3].iter().cloned().collect();
/// assert_eq!(set.take(&2), Some(2));
/// assert_eq!(set.take(&2), None);
/// ```
#[stable(feature = "set_recovery", since = "1.9.0")]
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
T: Borrow<Q>,
Q: Ord,
{
Recover::take(&mut self.map, value)
}
/// Moves all elements from `other` into `Self`, leaving `other` empty.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
/// a.insert(2);
/// a.insert(3);
///
/// let mut b = BTreeSet::new();
/// b.insert(3);
/// b.insert(4);
/// b.insert(5);
///
/// a.append(&mut b);
///
/// assert_eq!(a.len(), 5);
/// assert_eq!(b.len(), 0);
///
/// assert!(a.contains(&1));
/// assert!(a.contains(&2));
/// assert!(a.contains(&3));
/// assert!(a.contains(&4));
/// assert!(a.contains(&5));
/// ```
#[stable(feature = "btree_append", since = "1.11.0")]
pub fn append(&mut self, other: &mut Self) {
self.map.append(&mut other.map);
}
/// Splits the collection into two at the given key. Returns everything after the given key,
/// including the key.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut a = BTreeSet::new();
/// a.insert(1);
/// a.insert(2);
/// a.insert(3);
/// a.insert(17);
/// a.insert(41);
///
/// let b = a.split_off(&3);
///
/// assert_eq!(a.len(), 2);
/// assert_eq!(b.len(), 3);
///
/// assert!(a.contains(&1));
/// assert!(a.contains(&2));
///
/// assert!(b.contains(&3));
/// assert!(b.contains(&17));
/// assert!(b.contains(&41));
/// ```
#[stable(feature = "btree_split_off", since = "1.11.0")]
pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
where
T: Borrow<Q>,
{
BTreeSet { map: self.map.split_off(key) }
}
/// Creates an iterator which uses a closure to determine if a value should be removed.
///
/// If the closure returns true, then the value is removed and yielded.
/// If the closure returns false, the value will remain in the list and will not be yielded
/// by the iterator.
///
/// If the iterator is only partially consumed or not consumed at all, each of the remaining
/// values will still be subjected to the closure and removed and dropped if it returns true.
///
/// It is unspecified how many more values will be subjected to the closure
/// if a panic occurs in the closure, or if a panic occurs while dropping a value, or if the
/// `DrainFilter` itself is leaked.
///
/// # Examples
///
/// Splitting a set into even and odd values, reusing the original set:
///
/// ```
/// #![feature(btree_drain_filter)]
/// use std::collections::BTreeSet;
///
/// let mut set: BTreeSet<i32> = (0..8).collect();
/// let evens: BTreeSet<_> = set.drain_filter(|v| v % 2 == 0).collect();
/// let odds = set;
/// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![0, 2, 4, 6]);
/// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 7]);
/// ```
#[unstable(feature = "btree_drain_filter", issue = "70530")]
pub fn drain_filter<'a, F>(&'a mut self, pred: F) -> DrainFilter<'a, T, F>
where
F: 'a + FnMut(&T) -> bool,
{
DrainFilter { pred, inner: self.map.drain_filter_inner() }
}
}
impl<T> BTreeSet<T> {
/// Gets an iterator that visits the values in the `BTreeSet` in ascending order.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<usize> = [1, 2, 3].iter().cloned().collect();
/// let mut set_iter = set.iter();
/// assert_eq!(set_iter.next(), Some(&1));
/// assert_eq!(set_iter.next(), Some(&2));
/// assert_eq!(set_iter.next(), Some(&3));
/// assert_eq!(set_iter.next(), None);
/// ```
///
/// Values returned by the iterator are returned in ascending order:
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<usize> = [3, 1, 2].iter().cloned().collect();
/// let mut set_iter = set.iter();
/// assert_eq!(set_iter.next(), Some(&1));
/// assert_eq!(set_iter.next(), Some(&2));
/// assert_eq!(set_iter.next(), Some(&3));
/// assert_eq!(set_iter.next(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<'_, T> {
Iter { iter: self.map.keys() }
}
/// Returns the number of elements in the set.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert_eq!(v.len(), 0);
/// v.insert(1);
/// assert_eq!(v.len(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns `true` if the set contains no elements.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let mut v = BTreeSet::new();
/// assert!(v.is_empty());
/// v.insert(1);
/// assert!(!v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> FromIterator<T> for BTreeSet<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BTreeSet<T> {
let mut set = BTreeSet::new();
set.extend(iter);
set
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for BTreeSet<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Gets an iterator for moving out the `BTreeSet`'s contents.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let set: BTreeSet<usize> = [1, 2, 3, 4].iter().cloned().collect();
///
/// let v: Vec<_> = set.into_iter().collect();
/// assert_eq!(v, [1, 2, 3, 4]);
/// ```
fn into_iter(self) -> IntoIter<T> {
IntoIter { iter: self.map.into_iter() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a BTreeSet<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
/// An iterator produced by calling `drain_filter` on BTreeSet.
#[unstable(feature = "btree_drain_filter", issue = "70530")]
pub struct DrainFilter<'a, T, F>
where
T: 'a,
F: 'a + FnMut(&T) -> bool,
{
pred: F,
inner: super::map::DrainFilterInner<'a, T, ()>,
}
#[unstable(feature = "btree_drain_filter", issue = "70530")]
impl<T, F> Drop for DrainFilter<'_, T, F>
where
F: FnMut(&T) -> bool,
{
fn drop(&mut self) {
self.for_each(drop);
}
}
#[unstable(feature = "btree_drain_filter", issue = "70530")]
impl<T, F> fmt::Debug for DrainFilter<'_, T, F>
where
T: fmt::Debug,
F: FnMut(&T) -> bool,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("DrainFilter").field(&self.inner.peek().map(|(k, _)| k)).finish()
}
}
#[unstable(feature = "btree_drain_filter", issue = "70530")]
impl<'a, T, F> Iterator for DrainFilter<'_, T, F>
where
F: 'a + FnMut(&T) -> bool,
{
type Item = T;
fn next(&mut self) -> Option<T> {
let pred = &mut self.pred;
let mut mapped_pred = |k: &T, _v: &mut ()| pred(k);
self.inner.next(&mut mapped_pred).map(|(k, _)| k)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[unstable(feature = "btree_drain_filter", issue = "70530")]
impl<T, F> FusedIterator for DrainFilter<'_, T, F> where F: FnMut(&T) -> bool {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Extend<T> for BTreeSet<T> {
#[inline]
fn extend<Iter: IntoIterator<Item = T>>(&mut self, iter: Iter) {
iter.into_iter().for_each(move |elem| {
self.insert(elem);
});
}
#[inline]
fn extend_one(&mut self, elem: T) {
self.insert(elem);
}
}
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BTreeSet<T> {
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
#[inline]
fn extend_one(&mut self, &elem: &'a T) {
self.insert(elem);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Default for BTreeSet<T> {
/// Makes an empty `BTreeSet<T>` with a reasonable choice of B.
fn default() -> BTreeSet<T> {
BTreeSet::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord + Clone> Sub<&BTreeSet<T>> for &BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect();
///
/// let result = &a - &b;
/// let result_vec: Vec<_> = result.into_iter().collect();
/// assert_eq!(result_vec, [1, 2]);
/// ```
fn sub(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.difference(rhs).cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord + Clone> BitXor<&BTreeSet<T>> for &BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the symmetric difference of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect();
///
/// let result = &a ^ &b;
/// let result_vec: Vec<_> = result.into_iter().collect();
/// assert_eq!(result_vec, [1, 4]);
/// ```
fn bitxor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.symmetric_difference(rhs).cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord + Clone> BitAnd<&BTreeSet<T>> for &BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the intersection of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<_> = vec![2, 3, 4].into_iter().collect();
///
/// let result = &a & &b;
/// let result_vec: Vec<_> = result.into_iter().collect();
/// assert_eq!(result_vec, [2, 3]);
/// ```
fn bitand(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.intersection(rhs).cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord + Clone> BitOr<&BTreeSet<T>> for &BTreeSet<T> {
type Output = BTreeSet<T>;
/// Returns the union of `self` and `rhs` as a new `BTreeSet<T>`.
///
/// # Examples
///
/// ```
/// use std::collections::BTreeSet;
///
/// let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
/// let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect();
///
/// let result = &a | &b;
/// let result_vec: Vec<_> = result.into_iter().collect();
/// assert_eq!(result_vec, [1, 2, 3, 4, 5]);
/// ```
fn bitor(self, rhs: &BTreeSet<T>) -> BTreeSet<T> {
self.union(rhs).cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Debug> Debug for BTreeSet<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_set().entries(self.iter()).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Iter<'_, T> {
fn clone(&self) -> Self {
Iter { iter: self.iter.clone() }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn last(mut self) -> Option<&'a T> {
self.next_back()
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
fn max(mut self) -> Option<&'a T> {
self.next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
fn next_back(&mut self) -> Option<&'a T> {
self.iter.next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for Iter<'_, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.iter.next().map(|(k, _)| k)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> {
self.iter.next_back().map(|(k, _)| k)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.iter.len()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for IntoIter<T> {}
#[stable(feature = "btree_range", since = "1.17.0")]
impl<T> Clone for Range<'_, T> {
fn clone(&self) -> Self {
Range { iter: self.iter.clone() }
}
}
#[stable(feature = "btree_range", since = "1.17.0")]
impl<'a, T> Iterator for Range<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
self.iter.next().map(|(k, _)| k)
}
fn last(mut self) -> Option<&'a T> {
self.next_back()
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
fn max(mut self) -> Option<&'a T> {
self.next_back()
}
}
#[stable(feature = "btree_range", since = "1.17.0")]
impl<'a, T> DoubleEndedIterator for Range<'a, T> {
fn next_back(&mut self) -> Option<&'a T> {
self.iter.next_back().map(|(k, _)| k)
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for Range<'_, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Difference<'_, T> {
fn clone(&self) -> Self {
Difference {
inner: match &self.inner {
DifferenceInner::Stitch { self_iter, other_iter } => DifferenceInner::Stitch {
self_iter: self_iter.clone(),
other_iter: other_iter.clone(),
},
DifferenceInner::Search { self_iter, other_set } => {
DifferenceInner::Search { self_iter: self_iter.clone(), other_set }
}
DifferenceInner::Iterate(iter) => DifferenceInner::Iterate(iter.clone()),
},
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Ord> Iterator for Difference<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
match &mut self.inner {
DifferenceInner::Stitch { self_iter, other_iter } => {
let mut self_next = self_iter.next()?;
loop {
match other_iter.peek().map_or(Less, |other_next| self_next.cmp(other_next)) {
Less => return Some(self_next),
Equal => {
self_next = self_iter.next()?;
other_iter.next();
}
Greater => {
other_iter.next();
}
}
}
}
DifferenceInner::Search { self_iter, other_set } => loop {
let self_next = self_iter.next()?;
if !other_set.contains(&self_next) {
return Some(self_next);
}
},
DifferenceInner::Iterate(iter) => iter.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (self_len, other_len) = match &self.inner {
DifferenceInner::Stitch { self_iter, other_iter } => {
(self_iter.len(), other_iter.len())
}
DifferenceInner::Search { self_iter, other_set } => (self_iter.len(), other_set.len()),
DifferenceInner::Iterate(iter) => (iter.len(), 0),
};
(self_len.saturating_sub(other_len), Some(self_len))
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T: Ord> FusedIterator for Difference<'_, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for SymmetricDifference<'_, T> {
fn clone(&self) -> Self {
SymmetricDifference(self.0.clone())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Ord> Iterator for SymmetricDifference<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
loop {
let (a_next, b_next) = self.0.nexts();
if a_next.and(b_next).is_none() {
return a_next.or(b_next);
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (a_len, b_len) = self.0.lens();
// No checked_add, because even if a and b refer to the same set,
// and T is an empty type, the storage overhead of sets limits
// the number of elements to less than half the range of usize.
(0, Some(a_len + b_len))
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T: Ord> FusedIterator for SymmetricDifference<'_, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Intersection<'_, T> {
fn clone(&self) -> Self {
Intersection {
inner: match &self.inner {
IntersectionInner::Stitch { a, b } => {
IntersectionInner::Stitch { a: a.clone(), b: b.clone() }
}
IntersectionInner::Search { small_iter, large_set } => {
IntersectionInner::Search { small_iter: small_iter.clone(), large_set }
}
IntersectionInner::Answer(answer) => IntersectionInner::Answer(*answer),
},
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Ord> Iterator for Intersection<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
match &mut self.inner {
IntersectionInner::Stitch { a, b } => {
let mut a_next = a.next()?;
let mut b_next = b.next()?;
loop {
match a_next.cmp(b_next) {
Less => a_next = a.next()?,
Greater => b_next = b.next()?,
Equal => return Some(a_next),
}
}
}
IntersectionInner::Search { small_iter, large_set } => loop {
let small_next = small_iter.next()?;
if large_set.contains(&small_next) {
return Some(small_next);
}
},
IntersectionInner::Answer(answer) => answer.take(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.inner {
IntersectionInner::Stitch { a, b } => (0, Some(min(a.len(), b.len()))),
IntersectionInner::Search { small_iter, .. } => (0, Some(small_iter.len())),
IntersectionInner::Answer(None) => (0, Some(0)),
IntersectionInner::Answer(Some(_)) => (1, Some(1)),
}
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T: Ord> FusedIterator for Intersection<'_, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Union<'_, T> {
fn clone(&self) -> Self {
Union(self.0.clone())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Ord> Iterator for Union<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
let (a_next, b_next) = self.0.nexts();
a_next.or(b_next)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (a_len, b_len) = self.0.lens();
// No checked_add - see SymmetricDifference::size_hint.
(max(a_len, b_len), Some(a_len + b_len))
}
fn min(mut self) -> Option<&'a T> {
self.next()
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T: Ord> FusedIterator for Union<'_, T> {}