blob: 8aebb7da18c401870d860b83b64511c51d25c387 [file] [log] [blame]
//! This crate is responsible for the part of name resolution that doesn't require type checker.
//!
//! Module structure of the crate is built here.
//! Paths in macros, imports, expressions, types, patterns are resolved here.
//! Label and lifetime names are resolved here as well.
//!
//! Type-relative name resolution (methods, fields, associated items) happens in `rustc_hir_analysis`.
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(assert_matches)]
#![feature(box_patterns)]
#![feature(drain_filter)]
#![feature(if_let_guard)]
#![feature(iter_intersperse)]
#![feature(let_chains)]
#![feature(never_type)]
#![recursion_limit = "256"]
#![allow(rustdoc::private_intra_doc_links)]
#![allow(rustc::potential_query_instability)]
#[macro_use]
extern crate tracing;
pub use rustc_hir::def::{Namespace, PerNS};
use rustc_arena::{DroplessArena, TypedArena};
use rustc_ast::node_id::NodeMap;
use rustc_ast::{self as ast, NodeId, CRATE_NODE_ID};
use rustc_ast::{AngleBracketedArg, Crate, Expr, ExprKind, GenericArg, GenericArgs, LitKind, Path};
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::intern::Interned;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, DiagnosticBuilder, ErrorGuaranteed};
use rustc_expand::base::{DeriveResolutions, SyntaxExtension, SyntaxExtensionKind};
use rustc_hir::def::Namespace::*;
use rustc_hir::def::{self, CtorOf, DefKind, LifetimeRes, PartialRes};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId};
use rustc_hir::def_id::{CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::definitions::{DefPathData, Definitions};
use rustc_hir::TraitCandidate;
use rustc_index::vec::IndexVec;
use rustc_metadata::creader::{CStore, CrateLoader};
use rustc_middle::metadata::ModChild;
use rustc_middle::middle::privacy::EffectiveVisibilities;
use rustc_middle::span_bug;
use rustc_middle::ty::{self, DefIdTree, MainDefinition, RegisteredTools};
use rustc_middle::ty::{ResolverGlobalCtxt, ResolverOutputs};
use rustc_query_system::ich::StableHashingContext;
use rustc_session::cstore::{CrateStore, MetadataLoaderDyn};
use rustc_session::lint::LintBuffer;
use rustc_session::Session;
use rustc_span::hygiene::{ExpnId, LocalExpnId, MacroKind, SyntaxContext, Transparency};
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::cell::{Cell, RefCell};
use std::collections::BTreeSet;
use std::{fmt, ptr};
use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion};
use imports::{Import, ImportKind, ImportResolver, NameResolution};
use late::{HasGenericParams, PathSource, PatternSource};
use macros::{MacroRulesBinding, MacroRulesScope, MacroRulesScopeRef};
use crate::effective_visibilities::EffectiveVisibilitiesVisitor;
type Res = def::Res<NodeId>;
mod build_reduced_graph;
mod check_unused;
mod def_collector;
mod diagnostics;
mod effective_visibilities;
mod ident;
mod imports;
mod late;
mod macros;
enum Weak {
Yes,
No,
}
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Determinacy {
Determined,
Undetermined,
}
impl Determinacy {
fn determined(determined: bool) -> Determinacy {
if determined { Determinacy::Determined } else { Determinacy::Undetermined }
}
}
/// A specific scope in which a name can be looked up.
/// This enum is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy)]
enum Scope<'a> {
DeriveHelpers(LocalExpnId),
DeriveHelpersCompat,
MacroRules(MacroRulesScopeRef<'a>),
CrateRoot,
// The node ID is for reporting the `PROC_MACRO_DERIVE_RESOLUTION_FALLBACK`
// lint if it should be reported.
Module(Module<'a>, Option<NodeId>),
MacroUsePrelude,
BuiltinAttrs,
ExternPrelude,
ToolPrelude,
StdLibPrelude,
BuiltinTypes,
}
/// Names from different contexts may want to visit different subsets of all specific scopes
/// with different restrictions when looking up the resolution.
/// This enum is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy)]
enum ScopeSet<'a> {
/// All scopes with the given namespace.
All(Namespace, /*is_import*/ bool),
/// Crate root, then extern prelude (used for mixed 2015-2018 mode in macros).
AbsolutePath(Namespace),
/// All scopes with macro namespace and the given macro kind restriction.
Macro(MacroKind),
/// All scopes with the given namespace, used for partially performing late resolution.
/// The node id enables lints and is used for reporting them.
Late(Namespace, Module<'a>, Option<NodeId>),
}
/// Everything you need to know about a name's location to resolve it.
/// Serves as a starting point for the scope visitor.
/// This struct is currently used only for early resolution (imports and macros),
/// but not for late resolution yet.
#[derive(Clone, Copy, Debug)]
pub struct ParentScope<'a> {
pub module: Module<'a>,
expansion: LocalExpnId,
pub macro_rules: MacroRulesScopeRef<'a>,
derives: &'a [ast::Path],
}
impl<'a> ParentScope<'a> {
/// Creates a parent scope with the passed argument used as the module scope component,
/// and other scope components set to default empty values.
pub fn module(module: Module<'a>, resolver: &Resolver<'a>) -> ParentScope<'a> {
ParentScope {
module,
expansion: LocalExpnId::ROOT,
macro_rules: resolver.arenas.alloc_macro_rules_scope(MacroRulesScope::Empty),
derives: &[],
}
}
}
#[derive(Copy, Debug, Clone)]
enum ImplTraitContext {
Existential,
Universal(LocalDefId),
}
struct BindingError {
name: Symbol,
origin: BTreeSet<Span>,
target: BTreeSet<Span>,
could_be_path: bool,
}
enum ResolutionError<'a> {
/// Error E0401: can't use type or const parameters from outer function.
GenericParamsFromOuterFunction(Res, HasGenericParams),
/// Error E0403: the name is already used for a type or const parameter in this generic
/// parameter list.
NameAlreadyUsedInParameterList(Symbol, Span),
/// Error E0407: method is not a member of trait.
MethodNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0437: type is not a member of trait.
TypeNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0438: const is not a member of trait.
ConstNotMemberOfTrait(Ident, String, Option<Symbol>),
/// Error E0408: variable `{}` is not bound in all patterns.
VariableNotBoundInPattern(BindingError, ParentScope<'a>),
/// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
VariableBoundWithDifferentMode(Symbol, Span),
/// Error E0415: identifier is bound more than once in this parameter list.
IdentifierBoundMoreThanOnceInParameterList(Symbol),
/// Error E0416: identifier is bound more than once in the same pattern.
IdentifierBoundMoreThanOnceInSamePattern(Symbol),
/// Error E0426: use of undeclared label.
UndeclaredLabel { name: Symbol, suggestion: Option<LabelSuggestion> },
/// Error E0429: `self` imports are only allowed within a `{ }` list.
SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span },
/// Error E0430: `self` import can only appear once in the list.
SelfImportCanOnlyAppearOnceInTheList,
/// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
SelfImportOnlyInImportListWithNonEmptyPrefix,
/// Error E0433: failed to resolve.
FailedToResolve { label: String, suggestion: Option<Suggestion> },
/// Error E0434: can't capture dynamic environment in a fn item.
CannotCaptureDynamicEnvironmentInFnItem,
/// Error E0435: attempt to use a non-constant value in a constant.
AttemptToUseNonConstantValueInConstant(
Ident,
/* suggestion */ &'static str,
/* current */ &'static str,
),
/// Error E0530: `X` bindings cannot shadow `Y`s.
BindingShadowsSomethingUnacceptable {
shadowing_binding: PatternSource,
name: Symbol,
participle: &'static str,
article: &'static str,
shadowed_binding: Res,
shadowed_binding_span: Span,
},
/// Error E0128: generic parameters with a default cannot use forward-declared identifiers.
ForwardDeclaredGenericParam,
/// ERROR E0770: the type of const parameters must not depend on other generic parameters.
ParamInTyOfConstParam(Symbol),
/// generic parameters must not be used inside const evaluations.
///
/// This error is only emitted when using `min_const_generics`.
ParamInNonTrivialAnonConst { name: Symbol, is_type: bool },
/// Error E0735: generic parameters with a default cannot use `Self`
SelfInGenericParamDefault,
/// Error E0767: use of unreachable label
UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option<LabelSuggestion> },
/// Error E0323, E0324, E0325: mismatch between trait item and impl item.
TraitImplMismatch {
name: Symbol,
kind: &'static str,
trait_path: String,
trait_item_span: Span,
code: rustc_errors::DiagnosticId,
},
/// Error E0201: multiple impl items for the same trait item.
TraitImplDuplicate { name: Symbol, trait_item_span: Span, old_span: Span },
/// Inline asm `sym` operand must refer to a `fn` or `static`.
InvalidAsmSym,
}
enum VisResolutionError<'a> {
Relative2018(Span, &'a ast::Path),
AncestorOnly(Span),
FailedToResolve(Span, String, Option<Suggestion>),
ExpectedFound(Span, String, Res),
Indeterminate(Span),
ModuleOnly(Span),
}
/// A minimal representation of a path segment. We use this in resolve because we synthesize 'path
/// segments' which don't have the rest of an AST or HIR `PathSegment`.
#[derive(Clone, Copy, Debug)]
pub struct Segment {
ident: Ident,
id: Option<NodeId>,
/// Signals whether this `PathSegment` has generic arguments. Used to avoid providing
/// nonsensical suggestions.
has_generic_args: bool,
/// Signals whether this `PathSegment` has lifetime arguments.
has_lifetime_args: bool,
args_span: Span,
}
impl Segment {
fn from_path(path: &Path) -> Vec<Segment> {
path.segments.iter().map(|s| s.into()).collect()
}
fn from_ident(ident: Ident) -> Segment {
Segment {
ident,
id: None,
has_generic_args: false,
has_lifetime_args: false,
args_span: DUMMY_SP,
}
}
fn from_ident_and_id(ident: Ident, id: NodeId) -> Segment {
Segment {
ident,
id: Some(id),
has_generic_args: false,
has_lifetime_args: false,
args_span: DUMMY_SP,
}
}
fn names_to_string(segments: &[Segment]) -> String {
names_to_string(&segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
}
}
impl<'a> From<&'a ast::PathSegment> for Segment {
fn from(seg: &'a ast::PathSegment) -> Segment {
let has_generic_args = seg.args.is_some();
let (args_span, has_lifetime_args) = if let Some(args) = seg.args.as_deref() {
match args {
GenericArgs::AngleBracketed(args) => {
let found_lifetimes = args
.args
.iter()
.any(|arg| matches!(arg, AngleBracketedArg::Arg(GenericArg::Lifetime(_))));
(args.span, found_lifetimes)
}
GenericArgs::Parenthesized(args) => (args.span, true),
}
} else {
(DUMMY_SP, false)
};
Segment {
ident: seg.ident,
id: Some(seg.id),
has_generic_args,
has_lifetime_args,
args_span,
}
}
}
/// An intermediate resolution result.
///
/// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
/// items are visible in their whole block, while `Res`es only from the place they are defined
/// forward.
#[derive(Debug)]
enum LexicalScopeBinding<'a> {
Item(&'a NameBinding<'a>),
Res(Res),
}
impl<'a> LexicalScopeBinding<'a> {
fn res(self) -> Res {
match self {
LexicalScopeBinding::Item(binding) => binding.res(),
LexicalScopeBinding::Res(res) => res,
}
}
}
#[derive(Copy, Clone, Debug)]
enum ModuleOrUniformRoot<'a> {
/// Regular module.
Module(Module<'a>),
/// Virtual module that denotes resolution in crate root with fallback to extern prelude.
CrateRootAndExternPrelude,
/// Virtual module that denotes resolution in extern prelude.
/// Used for paths starting with `::` on 2018 edition.
ExternPrelude,
/// Virtual module that denotes resolution in current scope.
/// Used only for resolving single-segment imports. The reason it exists is that import paths
/// are always split into two parts, the first of which should be some kind of module.
CurrentScope,
}
impl ModuleOrUniformRoot<'_> {
fn same_def(lhs: Self, rhs: Self) -> bool {
match (lhs, rhs) {
(ModuleOrUniformRoot::Module(lhs), ModuleOrUniformRoot::Module(rhs)) => {
ptr::eq(lhs, rhs)
}
(
ModuleOrUniformRoot::CrateRootAndExternPrelude,
ModuleOrUniformRoot::CrateRootAndExternPrelude,
)
| (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude)
| (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true,
_ => false,
}
}
}
#[derive(Clone, Debug)]
enum PathResult<'a> {
Module(ModuleOrUniformRoot<'a>),
NonModule(PartialRes),
Indeterminate,
Failed {
span: Span,
label: String,
suggestion: Option<Suggestion>,
is_error_from_last_segment: bool,
},
}
impl<'a> PathResult<'a> {
fn failed(
span: Span,
is_error_from_last_segment: bool,
finalize: bool,
label_and_suggestion: impl FnOnce() -> (String, Option<Suggestion>),
) -> PathResult<'a> {
let (label, suggestion) =
if finalize { label_and_suggestion() } else { (String::new(), None) };
PathResult::Failed { span, label, suggestion, is_error_from_last_segment }
}
}
#[derive(Debug)]
enum ModuleKind {
/// An anonymous module; e.g., just a block.
///
/// ```
/// fn main() {
/// fn f() {} // (1)
/// { // This is an anonymous module
/// f(); // This resolves to (2) as we are inside the block.
/// fn f() {} // (2)
/// }
/// f(); // Resolves to (1)
/// }
/// ```
Block,
/// Any module with a name.
///
/// This could be:
///
/// * A normal module – either `mod from_file;` or `mod from_block { }` –
/// or the crate root (which is conceptually a top-level module).
/// Note that the crate root's [name][Self::name] will be [`kw::Empty`].
/// * A trait or an enum (it implicitly contains associated types, methods and variant
/// constructors).
Def(DefKind, DefId, Symbol),
}
impl ModuleKind {
/// Get name of the module.
pub fn name(&self) -> Option<Symbol> {
match self {
ModuleKind::Block => None,
ModuleKind::Def(.., name) => Some(*name),
}
}
}
/// A key that identifies a binding in a given `Module`.
///
/// Multiple bindings in the same module can have the same key (in a valid
/// program) if all but one of them come from glob imports.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
struct BindingKey {
/// The identifier for the binding, always the `normalize_to_macros_2_0` version of the
/// identifier.
ident: Ident,
ns: Namespace,
/// 0 if ident is not `_`, otherwise a value that's unique to the specific
/// `_` in the expanded AST that introduced this binding.
disambiguator: u32,
}
type Resolutions<'a> = RefCell<FxIndexMap<BindingKey, &'a RefCell<NameResolution<'a>>>>;
/// One node in the tree of modules.
///
/// Note that a "module" in resolve is broader than a `mod` that you declare in Rust code. It may be one of these:
///
/// * `mod`
/// * crate root (aka, top-level anonymous module)
/// * `enum`
/// * `trait`
/// * curly-braced block with statements
///
/// You can use [`ModuleData::kind`] to determine the kind of module this is.
pub struct ModuleData<'a> {
/// The direct parent module (it may not be a `mod`, however).
parent: Option<Module<'a>>,
/// What kind of module this is, because this may not be a `mod`.
kind: ModuleKind,
/// Mapping between names and their (possibly in-progress) resolutions in this module.
/// Resolutions in modules from other crates are not populated until accessed.
lazy_resolutions: Resolutions<'a>,
/// True if this is a module from other crate that needs to be populated on access.
populate_on_access: Cell<bool>,
/// Macro invocations that can expand into items in this module.
unexpanded_invocations: RefCell<FxHashSet<LocalExpnId>>,
/// Whether `#[no_implicit_prelude]` is active.
no_implicit_prelude: bool,
glob_importers: RefCell<Vec<&'a Import<'a>>>,
globs: RefCell<Vec<&'a Import<'a>>>,
/// Used to memoize the traits in this module for faster searches through all traits in scope.
traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>,
/// Span of the module itself. Used for error reporting.
span: Span,
expansion: ExpnId,
}
type Module<'a> = &'a ModuleData<'a>;
impl<'a> ModuleData<'a> {
fn new(
parent: Option<Module<'a>>,
kind: ModuleKind,
expansion: ExpnId,
span: Span,
no_implicit_prelude: bool,
) -> Self {
let is_foreign = match kind {
ModuleKind::Def(_, def_id, _) => !def_id.is_local(),
ModuleKind::Block => false,
};
ModuleData {
parent,
kind,
lazy_resolutions: Default::default(),
populate_on_access: Cell::new(is_foreign),
unexpanded_invocations: Default::default(),
no_implicit_prelude,
glob_importers: RefCell::new(Vec::new()),
globs: RefCell::new(Vec::new()),
traits: RefCell::new(None),
span,
expansion,
}
}
fn for_each_child<R, F>(&'a self, resolver: &mut R, mut f: F)
where
R: AsMut<Resolver<'a>>,
F: FnMut(&mut R, Ident, Namespace, &'a NameBinding<'a>),
{
for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() {
if let Some(binding) = name_resolution.borrow().binding {
f(resolver, key.ident, key.ns, binding);
}
}
}
/// This modifies `self` in place. The traits will be stored in `self.traits`.
fn ensure_traits<R>(&'a self, resolver: &mut R)
where
R: AsMut<Resolver<'a>>,
{
let mut traits = self.traits.borrow_mut();
if traits.is_none() {
let mut collected_traits = Vec::new();
self.for_each_child(resolver, |_, name, ns, binding| {
if ns != TypeNS {
return;
}
if let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = binding.res() {
collected_traits.push((name, binding))
}
});
*traits = Some(collected_traits.into_boxed_slice());
}
}
fn res(&self) -> Option<Res> {
match self.kind {
ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
_ => None,
}
}
// Public for rustdoc.
pub fn def_id(&self) -> DefId {
self.opt_def_id().expect("`ModuleData::def_id` is called on a block module")
}
fn opt_def_id(&self) -> Option<DefId> {
match self.kind {
ModuleKind::Def(_, def_id, _) => Some(def_id),
_ => None,
}
}
// `self` resolves to the first module ancestor that `is_normal`.
fn is_normal(&self) -> bool {
matches!(self.kind, ModuleKind::Def(DefKind::Mod, _, _))
}
fn is_trait(&self) -> bool {
matches!(self.kind, ModuleKind::Def(DefKind::Trait, _, _))
}
fn nearest_item_scope(&'a self) -> Module<'a> {
match self.kind {
ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => {
self.parent.expect("enum or trait module without a parent")
}
_ => self,
}
}
/// The [`DefId`] of the nearest `mod` item ancestor (which may be this module).
/// This may be the crate root.
fn nearest_parent_mod(&self) -> DefId {
match self.kind {
ModuleKind::Def(DefKind::Mod, def_id, _) => def_id,
_ => self.parent.expect("non-root module without parent").nearest_parent_mod(),
}
}
fn is_ancestor_of(&self, mut other: &Self) -> bool {
while !ptr::eq(self, other) {
if let Some(parent) = other.parent {
other = parent;
} else {
return false;
}
}
true
}
}
impl<'a> fmt::Debug for ModuleData<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.res())
}
}
/// Records a possibly-private value, type, or module definition.
#[derive(Clone, Debug)]
pub struct NameBinding<'a> {
kind: NameBindingKind<'a>,
ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>,
expansion: LocalExpnId,
span: Span,
vis: ty::Visibility<DefId>,
}
pub trait ToNameBinding<'a> {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>;
}
impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> {
fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
self
}
}
#[derive(Clone, Debug)]
enum NameBindingKind<'a> {
Res(Res, /* is_macro_export */ bool),
Module(Module<'a>),
Import { binding: &'a NameBinding<'a>, import: &'a Import<'a>, used: Cell<bool> },
}
impl<'a> NameBindingKind<'a> {
/// Is this a name binding of an import?
fn is_import(&self) -> bool {
matches!(*self, NameBindingKind::Import { .. })
}
}
struct PrivacyError<'a> {
ident: Ident,
binding: &'a NameBinding<'a>,
dedup_span: Span,
}
struct UseError<'a> {
err: DiagnosticBuilder<'a, ErrorGuaranteed>,
/// Candidates which user could `use` to access the missing type.
candidates: Vec<ImportSuggestion>,
/// The `DefId` of the module to place the use-statements in.
def_id: DefId,
/// Whether the diagnostic should say "instead" (as in `consider importing ... instead`).
instead: bool,
/// Extra free-form suggestion.
suggestion: Option<(Span, &'static str, String, Applicability)>,
/// Path `Segment`s at the place of use that failed. Used for accurate suggestion after telling
/// the user to import the item directly.
path: Vec<Segment>,
/// Whether the expected source is a call
is_call: bool,
}
#[derive(Clone, Copy, PartialEq, Debug)]
enum AmbiguityKind {
Import,
BuiltinAttr,
DeriveHelper,
MacroRulesVsModularized,
GlobVsOuter,
GlobVsGlob,
GlobVsExpanded,
MoreExpandedVsOuter,
}
impl AmbiguityKind {
fn descr(self) -> &'static str {
match self {
AmbiguityKind::Import => "multiple potential import sources",
AmbiguityKind::BuiltinAttr => "a name conflict with a builtin attribute",
AmbiguityKind::DeriveHelper => "a name conflict with a derive helper attribute",
AmbiguityKind::MacroRulesVsModularized => {
"a conflict between a `macro_rules` name and a non-`macro_rules` name from another module"
}
AmbiguityKind::GlobVsOuter => {
"a conflict between a name from a glob import and an outer scope during import or macro resolution"
}
AmbiguityKind::GlobVsGlob => "multiple glob imports of a name in the same module",
AmbiguityKind::GlobVsExpanded => {
"a conflict between a name from a glob import and a macro-expanded name in the same module during import or macro resolution"
}
AmbiguityKind::MoreExpandedVsOuter => {
"a conflict between a macro-expanded name and a less macro-expanded name from outer scope during import or macro resolution"
}
}
}
}
/// Miscellaneous bits of metadata for better ambiguity error reporting.
#[derive(Clone, Copy, PartialEq)]
enum AmbiguityErrorMisc {
SuggestCrate,
SuggestSelf,
FromPrelude,
None,
}
struct AmbiguityError<'a> {
kind: AmbiguityKind,
ident: Ident,
b1: &'a NameBinding<'a>,
b2: &'a NameBinding<'a>,
misc1: AmbiguityErrorMisc,
misc2: AmbiguityErrorMisc,
}
impl<'a> NameBinding<'a> {
fn module(&self) -> Option<Module<'a>> {
match self.kind {
NameBindingKind::Module(module) => Some(module),
NameBindingKind::Import { binding, .. } => binding.module(),
_ => None,
}
}
fn res(&self) -> Res {
match self.kind {
NameBindingKind::Res(res, _) => res,
NameBindingKind::Module(module) => module.res().unwrap(),
NameBindingKind::Import { binding, .. } => binding.res(),
}
}
fn is_ambiguity(&self) -> bool {
self.ambiguity.is_some()
|| match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_ambiguity(),
_ => false,
}
}
fn is_possibly_imported_variant(&self) -> bool {
match self.kind {
NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(),
NameBindingKind::Res(
Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..), _),
_,
) => true,
NameBindingKind::Res(..) | NameBindingKind::Module(..) => false,
}
}
fn is_extern_crate(&self) -> bool {
match self.kind {
NameBindingKind::Import {
import: &Import { kind: ImportKind::ExternCrate { .. }, .. },
..
} => true,
NameBindingKind::Module(&ModuleData {
kind: ModuleKind::Def(DefKind::Mod, def_id, _),
..
}) => def_id.is_crate_root(),
_ => false,
}
}
fn is_import(&self) -> bool {
matches!(self.kind, NameBindingKind::Import { .. })
}
fn is_glob_import(&self) -> bool {
match self.kind {
NameBindingKind::Import { import, .. } => import.is_glob(),
_ => false,
}
}
fn is_importable(&self) -> bool {
!matches!(
self.res(),
Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _)
)
}
fn macro_kind(&self) -> Option<MacroKind> {
self.res().macro_kind()
}
// Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
// at some expansion round `max(invoc, binding)` when they both emerged from macros.
// Then this function returns `true` if `self` may emerge from a macro *after* that
// in some later round and screw up our previously found resolution.
// See more detailed explanation in
// https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
fn may_appear_after(
&self,
invoc_parent_expansion: LocalExpnId,
binding: &NameBinding<'_>,
) -> bool {
// self > max(invoc, binding) => !(self <= invoc || self <= binding)
// Expansions are partially ordered, so "may appear after" is an inversion of
// "certainly appears before or simultaneously" and includes unordered cases.
let self_parent_expansion = self.expansion;
let other_parent_expansion = binding.expansion;
let certainly_before_other_or_simultaneously =
other_parent_expansion.is_descendant_of(self_parent_expansion);
let certainly_before_invoc_or_simultaneously =
invoc_parent_expansion.is_descendant_of(self_parent_expansion);
!(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
}
}
#[derive(Default, Clone)]
pub struct ExternPreludeEntry<'a> {
extern_crate_item: Option<&'a NameBinding<'a>>,
pub introduced_by_item: bool,
}
/// Used for better errors for E0773
enum BuiltinMacroState {
NotYetSeen(SyntaxExtensionKind),
AlreadySeen(Span),
}
struct DeriveData {
resolutions: DeriveResolutions,
helper_attrs: Vec<(usize, Ident)>,
has_derive_copy: bool,
}
#[derive(Clone)]
struct MacroData {
ext: Lrc<SyntaxExtension>,
macro_rules: bool,
}
/// The main resolver class.
///
/// This is the visitor that walks the whole crate.
pub struct Resolver<'a> {
session: &'a Session,
definitions: Definitions,
/// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
expn_that_defined: FxHashMap<LocalDefId, ExpnId>,
/// Reference span for definitions.
source_span: IndexVec<LocalDefId, Span>,
graph_root: Module<'a>,
prelude: Option<Module<'a>>,
extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'a>>,
/// N.B., this is used only for better diagnostics, not name resolution itself.
has_self: FxHashSet<DefId>,
/// Names of fields of an item `DefId` accessible with dot syntax.
/// Used for hints during error reporting.
field_names: FxHashMap<DefId, Vec<Spanned<Symbol>>>,
/// All imports known to succeed or fail.
determined_imports: Vec<&'a Import<'a>>,
/// All non-determined imports.
indeterminate_imports: Vec<&'a Import<'a>>,
// Spans for local variables found during pattern resolution.
// Used for suggestions during error reporting.
pat_span_map: NodeMap<Span>,
/// Resolutions for nodes that have a single resolution.
partial_res_map: NodeMap<PartialRes>,
/// Resolutions for import nodes, which have multiple resolutions in different namespaces.
import_res_map: NodeMap<PerNS<Option<Res>>>,
/// Resolutions for labels (node IDs of their corresponding blocks or loops).
label_res_map: NodeMap<NodeId>,
/// Resolutions for lifetimes.
lifetimes_res_map: NodeMap<LifetimeRes>,
/// Lifetime parameters that lowering will have to introduce.
extra_lifetime_params_map: NodeMap<Vec<(Ident, NodeId, LifetimeRes)>>,
/// `CrateNum` resolutions of `extern crate` items.
extern_crate_map: FxHashMap<LocalDefId, CrateNum>,
reexport_map: FxHashMap<LocalDefId, Vec<ModChild>>,
trait_map: NodeMap<Vec<TraitCandidate>>,
/// A map from nodes to anonymous modules.
/// Anonymous modules are pseudo-modules that are implicitly created around items
/// contained within blocks.
///
/// For example, if we have this:
///
/// fn f() {
/// fn g() {
/// ...
/// }
/// }
///
/// There will be an anonymous module created around `g` with the ID of the
/// entry block for `f`.
block_map: NodeMap<Module<'a>>,
/// A fake module that contains no definition and no prelude. Used so that
/// some AST passes can generate identifiers that only resolve to local or
/// language items.
empty_module: Module<'a>,
module_map: FxHashMap<DefId, Module<'a>>,
binding_parent_modules: FxHashMap<Interned<'a, NameBinding<'a>>, Module<'a>>,
underscore_disambiguator: u32,
/// Maps glob imports to the names of items actually imported.
glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>,
/// Visibilities in "lowered" form, for all entities that have them.
visibilities: FxHashMap<LocalDefId, ty::Visibility>,
has_pub_restricted: bool,
used_imports: FxHashSet<NodeId>,
maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
maybe_unused_extern_crates: Vec<(LocalDefId, Span)>,
/// Privacy errors are delayed until the end in order to deduplicate them.
privacy_errors: Vec<PrivacyError<'a>>,
/// Ambiguity errors are delayed for deduplication.
ambiguity_errors: Vec<AmbiguityError<'a>>,
/// `use` injections are delayed for better placement and deduplication.
use_injections: Vec<UseError<'a>>,
/// Crate-local macro expanded `macro_export` referred to by a module-relative path.
macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
arenas: &'a ResolverArenas<'a>,
dummy_binding: &'a NameBinding<'a>,
crate_loader: CrateLoader<'a>,
macro_names: FxHashSet<Ident>,
builtin_macros: FxHashMap<Symbol, BuiltinMacroState>,
/// A small map keeping true kinds of built-in macros that appear to be fn-like on
/// the surface (`macro` items in libcore), but are actually attributes or derives.
builtin_macro_kinds: FxHashMap<LocalDefId, MacroKind>,
registered_tools: RegisteredTools,
macro_use_prelude: FxHashMap<Symbol, &'a NameBinding<'a>>,
macro_map: FxHashMap<DefId, MacroData>,
dummy_ext_bang: Lrc<SyntaxExtension>,
dummy_ext_derive: Lrc<SyntaxExtension>,
non_macro_attr: Lrc<SyntaxExtension>,
local_macro_def_scopes: FxHashMap<LocalDefId, Module<'a>>,
ast_transform_scopes: FxHashMap<LocalExpnId, Module<'a>>,
unused_macros: FxHashMap<LocalDefId, (NodeId, Ident)>,
unused_macro_rules: FxHashMap<(LocalDefId, usize), (Ident, Span)>,
proc_macro_stubs: FxHashSet<LocalDefId>,
/// Traces collected during macro resolution and validated when it's complete.
single_segment_macro_resolutions:
Vec<(Ident, MacroKind, ParentScope<'a>, Option<&'a NameBinding<'a>>)>,
multi_segment_macro_resolutions:
Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'a>, Option<Res>)>,
builtin_attrs: Vec<(Ident, ParentScope<'a>)>,
/// `derive(Copy)` marks items they are applied to so they are treated specially later.
/// Derive macros cannot modify the item themselves and have to store the markers in the global
/// context, so they attach the markers to derive container IDs using this resolver table.
containers_deriving_copy: FxHashSet<LocalExpnId>,
/// Parent scopes in which the macros were invoked.
/// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere.
invocation_parent_scopes: FxHashMap<LocalExpnId, ParentScope<'a>>,
/// `macro_rules` scopes *produced* by expanding the macro invocations,
/// include all the `macro_rules` items and other invocations generated by them.
output_macro_rules_scopes: FxHashMap<LocalExpnId, MacroRulesScopeRef<'a>>,
/// `macro_rules` scopes produced by `macro_rules` item definitions.
macro_rules_scopes: FxHashMap<LocalDefId, MacroRulesScopeRef<'a>>,
/// Helper attributes that are in scope for the given expansion.
helper_attrs: FxHashMap<LocalExpnId, Vec<Ident>>,
/// Ready or in-progress results of resolving paths inside the `#[derive(...)]` attribute
/// with the given `ExpnId`.
derive_data: FxHashMap<LocalExpnId, DeriveData>,
/// Avoid duplicated errors for "name already defined".
name_already_seen: FxHashMap<Symbol, Span>,
potentially_unused_imports: Vec<&'a Import<'a>>,
/// Table for mapping struct IDs into struct constructor IDs,
/// it's not used during normal resolution, only for better error reporting.
/// Also includes of list of each fields visibility
struct_constructors: DefIdMap<(Res, ty::Visibility<DefId>, Vec<ty::Visibility<DefId>>)>,
/// Features enabled for this crate.
active_features: FxHashSet<Symbol>,
lint_buffer: LintBuffer,
next_node_id: NodeId,
node_id_to_def_id: FxHashMap<ast::NodeId, LocalDefId>,
def_id_to_node_id: IndexVec<LocalDefId, ast::NodeId>,
/// Indices of unnamed struct or variant fields with unresolved attributes.
placeholder_field_indices: FxHashMap<NodeId, usize>,
/// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
/// we know what parent node that fragment should be attached to thanks to this table,
/// and how the `impl Trait` fragments were introduced.
invocation_parents: FxHashMap<LocalExpnId, (LocalDefId, ImplTraitContext)>,
/// Some way to know that we are in a *trait* impl in `visit_assoc_item`.
/// FIXME: Replace with a more general AST map (together with some other fields).
trait_impl_items: FxHashSet<LocalDefId>,
legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
/// Amount of lifetime parameters for each item in the crate.
item_generics_num_lifetimes: FxHashMap<LocalDefId, usize>,
main_def: Option<MainDefinition>,
trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
/// A list of proc macro LocalDefIds, written out in the order in which
/// they are declared in the static array generated by proc_macro_harness.
proc_macros: Vec<NodeId>,
confused_type_with_std_module: FxHashMap<Span, Span>,
effective_visibilities: EffectiveVisibilities,
}
/// Nothing really interesting here; it just provides memory for the rest of the crate.
#[derive(Default)]
pub struct ResolverArenas<'a> {
modules: TypedArena<ModuleData<'a>>,
local_modules: RefCell<Vec<Module<'a>>>,
imports: TypedArena<Import<'a>>,
name_resolutions: TypedArena<RefCell<NameResolution<'a>>>,
ast_paths: TypedArena<ast::Path>,
dropless: DroplessArena,
}
impl<'a> ResolverArenas<'a> {
fn new_module(
&'a self,
parent: Option<Module<'a>>,
kind: ModuleKind,
expn_id: ExpnId,
span: Span,
no_implicit_prelude: bool,
module_map: &mut FxHashMap<DefId, Module<'a>>,
) -> Module<'a> {
let module =
self.modules.alloc(ModuleData::new(parent, kind, expn_id, span, no_implicit_prelude));
let def_id = module.opt_def_id();
if def_id.map_or(true, |def_id| def_id.is_local()) {
self.local_modules.borrow_mut().push(module);
}
if let Some(def_id) = def_id {
module_map.insert(def_id, module);
}
module
}
fn local_modules(&'a self) -> std::cell::Ref<'a, Vec<Module<'a>>> {
self.local_modules.borrow()
}
fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> {
self.dropless.alloc(name_binding)
}
fn alloc_import(&'a self, import: Import<'a>) -> &'a Import<'_> {
self.imports.alloc(import)
}
fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> {
self.name_resolutions.alloc(Default::default())
}
fn alloc_macro_rules_scope(&'a self, scope: MacroRulesScope<'a>) -> MacroRulesScopeRef<'a> {
Interned::new_unchecked(self.dropless.alloc(Cell::new(scope)))
}
fn alloc_macro_rules_binding(
&'a self,
binding: MacroRulesBinding<'a>,
) -> &'a MacroRulesBinding<'a> {
self.dropless.alloc(binding)
}
fn alloc_ast_paths(&'a self, paths: &[ast::Path]) -> &'a [ast::Path] {
self.ast_paths.alloc_from_iter(paths.iter().cloned())
}
fn alloc_pattern_spans(&'a self, spans: impl Iterator<Item = Span>) -> &'a [Span] {
self.dropless.alloc_from_iter(spans)
}
}
impl<'a> AsMut<Resolver<'a>> for Resolver<'a> {
fn as_mut(&mut self) -> &mut Resolver<'a> {
self
}
}
impl<'a, 'b> DefIdTree for &'a Resolver<'b> {
#[inline]
fn opt_parent(self, id: DefId) -> Option<DefId> {
match id.as_local() {
Some(id) => self.definitions.def_key(id).parent,
None => self.cstore().def_key(id).parent,
}
.map(|index| DefId { index, ..id })
}
}
impl Resolver<'_> {
fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
self.node_id_to_def_id.get(&node).copied()
}
pub fn local_def_id(&self, node: NodeId) -> LocalDefId {
self.opt_local_def_id(node).unwrap_or_else(|| panic!("no entry for node id: `{:?}`", node))
}
/// Adds a definition with a parent definition.
fn create_def(
&mut self,
parent: LocalDefId,
node_id: ast::NodeId,
data: DefPathData,
expn_id: ExpnId,
span: Span,
) -> LocalDefId {
assert!(
!self.node_id_to_def_id.contains_key(&node_id),
"adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}",
node_id,
data,
self.definitions.def_key(self.node_id_to_def_id[&node_id]),
);
let def_id = self.definitions.create_def(parent, data);
// Create the definition.
if expn_id != ExpnId::root() {
self.expn_that_defined.insert(def_id, expn_id);
}
// A relative span's parent must be an absolute span.
debug_assert_eq!(span.data_untracked().parent, None);
let _id = self.source_span.push(span);
debug_assert_eq!(_id, def_id);
// Some things for which we allocate `LocalDefId`s don't correspond to
// anything in the AST, so they don't have a `NodeId`. For these cases
// we don't need a mapping from `NodeId` to `LocalDefId`.
if node_id != ast::DUMMY_NODE_ID {
debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
self.node_id_to_def_id.insert(node_id, def_id);
}
assert_eq!(self.def_id_to_node_id.push(node_id), def_id);
def_id
}
fn item_generics_num_lifetimes(&self, def_id: DefId) -> usize {
if let Some(def_id) = def_id.as_local() {
self.item_generics_num_lifetimes[&def_id]
} else {
self.cstore().item_generics_num_lifetimes(def_id, self.session)
}
}
}
impl<'a> Resolver<'a> {
pub fn new(
session: &'a Session,
krate: &Crate,
crate_name: &str,
metadata_loader: Box<MetadataLoaderDyn>,
arenas: &'a ResolverArenas<'a>,
) -> Resolver<'a> {
let root_def_id = CRATE_DEF_ID.to_def_id();
let mut module_map = FxHashMap::default();
let graph_root = arenas.new_module(
None,
ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty),
ExpnId::root(),
krate.spans.inner_span,
session.contains_name(&krate.attrs, sym::no_implicit_prelude),
&mut module_map,
);
let empty_module = arenas.new_module(
None,
ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty),
ExpnId::root(),
DUMMY_SP,
true,
&mut FxHashMap::default(),
);
let definitions = Definitions::new(session.local_stable_crate_id());
let mut visibilities = FxHashMap::default();
visibilities.insert(CRATE_DEF_ID, ty::Visibility::Public);
let mut def_id_to_node_id = IndexVec::default();
assert_eq!(def_id_to_node_id.push(CRATE_NODE_ID), CRATE_DEF_ID);
let mut node_id_to_def_id = FxHashMap::default();
node_id_to_def_id.insert(CRATE_NODE_ID, CRATE_DEF_ID);
let mut invocation_parents = FxHashMap::default();
invocation_parents.insert(LocalExpnId::ROOT, (CRATE_DEF_ID, ImplTraitContext::Existential));
let mut source_span = IndexVec::default();
let _id = source_span.push(krate.spans.inner_span);
debug_assert_eq!(_id, CRATE_DEF_ID);
let mut extern_prelude: FxHashMap<Ident, ExternPreludeEntry<'_>> = session
.opts
.externs
.iter()
.filter(|(_, entry)| entry.add_prelude)
.map(|(name, _)| (Ident::from_str(name), Default::default()))
.collect();
if !session.contains_name(&krate.attrs, sym::no_core) {
extern_prelude.insert(Ident::with_dummy_span(sym::core), Default::default());
if !session.contains_name(&krate.attrs, sym::no_std) {
extern_prelude.insert(Ident::with_dummy_span(sym::std), Default::default());
}
}
let registered_tools = macros::registered_tools(session, &krate.attrs);
let features = session.features_untracked();
let mut resolver = Resolver {
session,
definitions,
expn_that_defined: Default::default(),
source_span,
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root,
prelude: None,
extern_prelude,
has_self: FxHashSet::default(),
field_names: FxHashMap::default(),
determined_imports: Vec::new(),
indeterminate_imports: Vec::new(),
pat_span_map: Default::default(),
partial_res_map: Default::default(),
import_res_map: Default::default(),
label_res_map: Default::default(),
lifetimes_res_map: Default::default(),
extra_lifetime_params_map: Default::default(),
extern_crate_map: Default::default(),
reexport_map: FxHashMap::default(),
trait_map: NodeMap::default(),
underscore_disambiguator: 0,
empty_module,
module_map,
block_map: Default::default(),
binding_parent_modules: FxHashMap::default(),
ast_transform_scopes: FxHashMap::default(),
glob_map: Default::default(),
visibilities,
has_pub_restricted: false,
used_imports: FxHashSet::default(),
maybe_unused_trait_imports: Default::default(),
maybe_unused_extern_crates: Vec::new(),
privacy_errors: Vec::new(),
ambiguity_errors: Vec::new(),
use_injections: Vec::new(),
macro_expanded_macro_export_errors: BTreeSet::new(),
arenas,
dummy_binding: arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Res(Res::Err, false),
ambiguity: None,
expansion: LocalExpnId::ROOT,
span: DUMMY_SP,
vis: ty::Visibility::Public,
}),
crate_loader: CrateLoader::new(session, metadata_loader, crate_name),
macro_names: FxHashSet::default(),
builtin_macros: Default::default(),
builtin_macro_kinds: Default::default(),
registered_tools,
macro_use_prelude: FxHashMap::default(),
macro_map: FxHashMap::default(),
dummy_ext_bang: Lrc::new(SyntaxExtension::dummy_bang(session.edition())),
dummy_ext_derive: Lrc::new(SyntaxExtension::dummy_derive(session.edition())),
non_macro_attr: Lrc::new(SyntaxExtension::non_macro_attr(session.edition())),
invocation_parent_scopes: Default::default(),
output_macro_rules_scopes: Default::default(),
macro_rules_scopes: Default::default(),
helper_attrs: Default::default(),
derive_data: Default::default(),
local_macro_def_scopes: FxHashMap::default(),
name_already_seen: FxHashMap::default(),
potentially_unused_imports: Vec::new(),
struct_constructors: Default::default(),
unused_macros: Default::default(),
unused_macro_rules: Default::default(),
proc_macro_stubs: Default::default(),
single_segment_macro_resolutions: Default::default(),
multi_segment_macro_resolutions: Default::default(),
builtin_attrs: Default::default(),
containers_deriving_copy: Default::default(),
active_features: features
.declared_lib_features
.iter()
.map(|(feat, ..)| *feat)
.chain(features.declared_lang_features.iter().map(|(feat, ..)| *feat))
.collect(),
lint_buffer: LintBuffer::default(),
next_node_id: CRATE_NODE_ID,
node_id_to_def_id,
def_id_to_node_id,
placeholder_field_indices: Default::default(),
invocation_parents,
trait_impl_items: Default::default(),
legacy_const_generic_args: Default::default(),
item_generics_num_lifetimes: Default::default(),
main_def: Default::default(),
trait_impls: Default::default(),
proc_macros: Default::default(),
confused_type_with_std_module: Default::default(),
effective_visibilities: Default::default(),
};
let root_parent_scope = ParentScope::module(graph_root, &resolver);
resolver.invocation_parent_scopes.insert(LocalExpnId::ROOT, root_parent_scope);
resolver
}
fn new_module(
&mut self,
parent: Option<Module<'a>>,
kind: ModuleKind,
expn_id: ExpnId,
span: Span,
no_implicit_prelude: bool,
) -> Module<'a> {
let module_map = &mut self.module_map;
self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude, module_map)
}
pub fn next_node_id(&mut self) -> NodeId {
let start = self.next_node_id;
let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
self.next_node_id = ast::NodeId::from_u32(next);
start
}
pub fn next_node_ids(&mut self, count: usize) -> std::ops::Range<NodeId> {
let start = self.next_node_id;
let end = start.as_usize().checked_add(count).expect("input too large; ran out of NodeIds");
self.next_node_id = ast::NodeId::from_usize(end);
start..self.next_node_id
}
pub fn lint_buffer(&mut self) -> &mut LintBuffer {
&mut self.lint_buffer
}
pub fn arenas() -> ResolverArenas<'a> {
Default::default()
}
pub fn into_outputs(self) -> ResolverOutputs {
let proc_macros = self.proc_macros.iter().map(|id| self.local_def_id(*id)).collect();
let definitions = self.definitions;
let cstore = Box::new(self.crate_loader.into_cstore());
let source_span = self.source_span;
let expn_that_defined = self.expn_that_defined;
let visibilities = self.visibilities;
let has_pub_restricted = self.has_pub_restricted;
let extern_crate_map = self.extern_crate_map;
let reexport_map = self.reexport_map;
let maybe_unused_trait_imports = self.maybe_unused_trait_imports;
let maybe_unused_extern_crates = self.maybe_unused_extern_crates;
let glob_map = self.glob_map;
let main_def = self.main_def;
let confused_type_with_std_module = self.confused_type_with_std_module;
let effective_visibilities = self.effective_visibilities;
let global_ctxt = ResolverGlobalCtxt {
cstore,
source_span,
expn_that_defined,
visibilities,
has_pub_restricted,
effective_visibilities,
extern_crate_map,
reexport_map,
glob_map,
maybe_unused_trait_imports,
maybe_unused_extern_crates,
extern_prelude: self
.extern_prelude
.iter()
.map(|(ident, entry)| (ident.name, entry.introduced_by_item))
.collect(),
main_def,
trait_impls: self.trait_impls,
proc_macros,
confused_type_with_std_module,
registered_tools: self.registered_tools,
};
let ast_lowering = ty::ResolverAstLowering {
legacy_const_generic_args: self.legacy_const_generic_args,
partial_res_map: self.partial_res_map,
import_res_map: self.import_res_map,
label_res_map: self.label_res_map,
lifetimes_res_map: self.lifetimes_res_map,
extra_lifetime_params_map: self.extra_lifetime_params_map,
next_node_id: self.next_node_id,
node_id_to_def_id: self.node_id_to_def_id,
def_id_to_node_id: self.def_id_to_node_id,
trait_map: self.trait_map,
builtin_macro_kinds: self.builtin_macro_kinds,
};
ResolverOutputs { definitions, global_ctxt, ast_lowering }
}
pub fn clone_outputs(&self) -> ResolverOutputs {
let proc_macros = self.proc_macros.iter().map(|id| self.local_def_id(*id)).collect();
let definitions = self.definitions.clone();
let cstore = Box::new(self.cstore().clone());
let global_ctxt = ResolverGlobalCtxt {
cstore,
source_span: self.source_span.clone(),
expn_that_defined: self.expn_that_defined.clone(),
visibilities: self.visibilities.clone(),
has_pub_restricted: self.has_pub_restricted,
extern_crate_map: self.extern_crate_map.clone(),
reexport_map: self.reexport_map.clone(),
glob_map: self.glob_map.clone(),
maybe_unused_trait_imports: self.maybe_unused_trait_imports.clone(),
maybe_unused_extern_crates: self.maybe_unused_extern_crates.clone(),
extern_prelude: self
.extern_prelude
.iter()
.map(|(ident, entry)| (ident.name, entry.introduced_by_item))
.collect(),
main_def: self.main_def,
trait_impls: self.trait_impls.clone(),
proc_macros,
confused_type_with_std_module: self.confused_type_with_std_module.clone(),
registered_tools: self.registered_tools.clone(),
effective_visibilities: self.effective_visibilities.clone(),
};
let ast_lowering = ty::ResolverAstLowering {
legacy_const_generic_args: self.legacy_const_generic_args.clone(),
partial_res_map: self.partial_res_map.clone(),
import_res_map: self.import_res_map.clone(),
label_res_map: self.label_res_map.clone(),
lifetimes_res_map: self.lifetimes_res_map.clone(),
extra_lifetime_params_map: self.extra_lifetime_params_map.clone(),
next_node_id: self.next_node_id.clone(),
node_id_to_def_id: self.node_id_to_def_id.clone(),
def_id_to_node_id: self.def_id_to_node_id.clone(),
trait_map: self.trait_map.clone(),
builtin_macro_kinds: self.builtin_macro_kinds.clone(),
};
ResolverOutputs { definitions, global_ctxt, ast_lowering }
}
fn create_stable_hashing_context(&self) -> StableHashingContext<'_> {
StableHashingContext::new(
self.session,
&self.definitions,
self.crate_loader.cstore(),
&self.source_span,
)
}
pub fn cstore(&self) -> &CStore {
self.crate_loader.cstore()
}
fn dummy_ext(&self, macro_kind: MacroKind) -> Lrc<SyntaxExtension> {
match macro_kind {
MacroKind::Bang => self.dummy_ext_bang.clone(),
MacroKind::Derive => self.dummy_ext_derive.clone(),
MacroKind::Attr => self.non_macro_attr.clone(),
}
}
/// Runs the function on each namespace.
fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
f(self, TypeNS);
f(self, ValueNS);
f(self, MacroNS);
}
fn is_builtin_macro(&mut self, res: Res) -> bool {
self.get_macro(res).map_or(false, |macro_data| macro_data.ext.builtin_name.is_some())
}
fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
loop {
match ctxt.outer_expn_data().macro_def_id {
Some(def_id) => return def_id,
None => ctxt.remove_mark(),
};
}
}
/// Entry point to crate resolution.
pub fn resolve_crate(&mut self, krate: &Crate) {
self.session.time("resolve_crate", || {
self.session.time("finalize_imports", || ImportResolver { r: self }.finalize_imports());
self.session.time("compute_effective_visibilities", || {
EffectiveVisibilitiesVisitor::compute_effective_visibilities(self, krate)
});
self.session.time("finalize_macro_resolutions", || self.finalize_macro_resolutions());
self.session.time("late_resolve_crate", || self.late_resolve_crate(krate));
self.session.time("resolve_main", || self.resolve_main());
self.session.time("resolve_check_unused", || self.check_unused(krate));
self.session.time("resolve_report_errors", || self.report_errors(krate));
self.session.time("resolve_postprocess", || self.crate_loader.postprocess(krate));
});
}
pub fn traits_in_scope(
&mut self,
current_trait: Option<Module<'a>>,
parent_scope: &ParentScope<'a>,
ctxt: SyntaxContext,
assoc_item: Option<(Symbol, Namespace)>,
) -> Vec<TraitCandidate> {
let mut found_traits = Vec::new();
if let Some(module) = current_trait {
if self.trait_may_have_item(Some(module), assoc_item) {
let def_id = module.def_id();
found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] });
}
}
self.visit_scopes(ScopeSet::All(TypeNS, false), parent_scope, ctxt, |this, scope, _, _| {
match scope {
Scope::Module(module, _) => {
this.traits_in_module(module, assoc_item, &mut found_traits);
}
Scope::StdLibPrelude => {
if let Some(module) = this.prelude {
this.traits_in_module(module, assoc_item, &mut found_traits);
}
}
Scope::ExternPrelude | Scope::ToolPrelude | Scope::BuiltinTypes => {}
_ => unreachable!(),
}
None::<()>
});
found_traits
}
fn traits_in_module(
&mut self,
module: Module<'a>,
assoc_item: Option<(Symbol, Namespace)>,
found_traits: &mut Vec<TraitCandidate>,
) {
module.ensure_traits(self);
let traits = module.traits.borrow();
for (trait_name, trait_binding) in traits.as_ref().unwrap().iter() {
if self.trait_may_have_item(trait_binding.module(), assoc_item) {
let def_id = trait_binding.res().def_id();
let import_ids = self.find_transitive_imports(&trait_binding.kind, *trait_name);
found_traits.push(TraitCandidate { def_id, import_ids });
}
}
}
// List of traits in scope is pruned on best effort basis. We reject traits not having an
// associated item with the given name and namespace (if specified). This is a conservative
// optimization, proper hygienic type-based resolution of associated items is done in typeck.
// We don't reject trait aliases (`trait_module == None`) because we don't have access to their
// associated items.
fn trait_may_have_item(
&mut self,
trait_module: Option<Module<'a>>,
assoc_item: Option<(Symbol, Namespace)>,
) -> bool {
match (trait_module, assoc_item) {
(Some(trait_module), Some((name, ns))) => {
self.resolutions(trait_module).borrow().iter().any(|resolution| {
let (&BindingKey { ident: assoc_ident, ns: assoc_ns, .. }, _) = resolution;
assoc_ns == ns && assoc_ident.name == name
})
}
_ => true,
}
}
fn find_transitive_imports(
&mut self,
mut kind: &NameBindingKind<'_>,
trait_name: Ident,
) -> SmallVec<[LocalDefId; 1]> {
let mut import_ids = smallvec![];
while let NameBindingKind::Import { import, binding, .. } = kind {
let id = self.local_def_id(import.id);
self.maybe_unused_trait_imports.insert(id);
self.add_to_glob_map(&import, trait_name);
import_ids.push(id);
kind = &binding.kind;
}
import_ids
}
fn new_key(&mut self, ident: Ident, ns: Namespace) -> BindingKey {
let ident = ident.normalize_to_macros_2_0();
let disambiguator = if ident.name == kw::Underscore {
self.underscore_disambiguator += 1;
self.underscore_disambiguator
} else {
0
};
BindingKey { ident, ns, disambiguator }
}
fn resolutions(&mut self, module: Module<'a>) -> &'a Resolutions<'a> {
if module.populate_on_access.get() {
module.populate_on_access.set(false);
self.build_reduced_graph_external(module);
}
&module.lazy_resolutions
}
fn resolution(
&mut self,
module: Module<'a>,
key: BindingKey,
) -> &'a RefCell<NameResolution<'a>> {
*self
.resolutions(module)
.borrow_mut()
.entry(key)
.or_insert_with(|| self.arenas.alloc_name_resolution())
}
fn record_use(
&mut self,
ident: Ident,
used_binding: &'a NameBinding<'a>,
is_lexical_scope: bool,
) {
if let Some((b2, kind)) = used_binding.ambiguity {
self.ambiguity_errors.push(AmbiguityError {
kind,
ident,
b1: used_binding,
b2,
misc1: AmbiguityErrorMisc::None,
misc2: AmbiguityErrorMisc::None,
});
}
if let NameBindingKind::Import { import, binding, ref used } = used_binding.kind {
// Avoid marking `extern crate` items that refer to a name from extern prelude,
// but not introduce it, as used if they are accessed from lexical scope.
if is_lexical_scope {
if let Some(entry) = self.extern_prelude.get(&ident.normalize_to_macros_2_0()) {
if let Some(crate_item) = entry.extern_crate_item {
if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item {
return;
}
}
}
}
used.set(true);
import.used.set(true);
self.used_imports.insert(import.id);
self.add_to_glob_map(&import, ident);
self.record_use(ident, binding, false);
}
}
#[inline]
fn add_to_glob_map(&mut self, import: &Import<'_>, ident: Ident) {
if import.is_glob() {
let def_id = self.local_def_id(import.id);
self.glob_map.entry(def_id).or_default().insert(ident.name);
}
}
fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> {
debug!("resolve_crate_root({:?})", ident);
let mut ctxt = ident.span.ctxt();
let mark = if ident.name == kw::DollarCrate {
// When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
// we don't want to pretend that the `macro_rules!` definition is in the `macro`
// as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks.
// FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
// definitions actually produced by `macro` and `macro` definitions produced by
// `macro_rules!`, but at least such configurations are not stable yet.
ctxt = ctxt.normalize_to_macro_rules();
debug!(
"resolve_crate_root: marks={:?}",
ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::<Vec<_>>()
);
let mut iter = ctxt.marks().into_iter().rev().peekable();
let mut result = None;
// Find the last opaque mark from the end if it exists.
while let Some(&(mark, transparency)) = iter.peek() {
if transparency == Transparency::Opaque {
result = Some(mark);
iter.next();
} else {
break;
}
}
debug!(
"resolve_crate_root: found opaque mark {:?} {:?}",
result,
result.map(|r| r.expn_data())
);
// Then find the last semi-transparent mark from the end if it exists.
for (mark, transparency) in iter {
if transparency == Transparency::SemiTransparent {
result = Some(mark);
} else {
break;
}
}
debug!(
"resolve_crate_root: found semi-transparent mark {:?} {:?}",
result,
result.map(|r| r.expn_data())
);
result
} else {
debug!("resolve_crate_root: not DollarCrate");
ctxt = ctxt.normalize_to_macros_2_0();
ctxt.adjust(ExpnId::root())
};
let module = match mark {
Some(def) => self.expn_def_scope(def),
None => {
debug!(
"resolve_crate_root({:?}): found no mark (ident.span = {:?})",
ident, ident.span
);
return self.graph_root;
}
};
let module = self.expect_module(
module.opt_def_id().map_or(LOCAL_CRATE, |def_id| def_id.krate).as_def_id(),
);
debug!(
"resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})",
ident,
module,
module.kind.name(),
ident.span
);
module
}
fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> {
let mut module = self.expect_module(module.nearest_parent_mod());
while module.span.ctxt().normalize_to_macros_2_0() != *ctxt {
let parent = module.parent.unwrap_or_else(|| self.expn_def_scope(ctxt.remove_mark()));
module = self.expect_module(parent.nearest_parent_mod());
}
module
}
fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
debug!("(recording res) recording {:?} for {}", resolution, node_id);
if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution);
}
}
fn record_pat_span(&mut self, node: NodeId, span: Span) {
debug!("(recording pat) recording {:?} for {:?}", node, span);
self.pat_span_map.insert(node, span);
}
fn is_accessible_from(
&self,
vis: ty::Visibility<impl Into<DefId>>,
module: Module<'a>,
) -> bool {
vis.is_accessible_from(module.nearest_parent_mod(), self)
}
fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) {
if let Some(old_module) =
self.binding_parent_modules.insert(Interned::new_unchecked(binding), module)
{
if !ptr::eq(module, old_module) {
span_bug!(binding.span, "parent module is reset for binding");
}
}
}
fn disambiguate_macro_rules_vs_modularized(
&self,
macro_rules: &'a NameBinding<'a>,
modularized: &'a NameBinding<'a>,
) -> bool {
// Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules"
// is disambiguated to mitigate regressions from macro modularization.
// Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
match (
self.binding_parent_modules.get(&Interned::new_unchecked(macro_rules)),
self.binding_parent_modules.get(&Interned::new_unchecked(modularized)),
) {
(Some(macro_rules), Some(modularized)) => {
macro_rules.nearest_parent_mod() == modularized.nearest_parent_mod()
&& modularized.is_ancestor_of(macro_rules)
}
_ => false,
}
}
fn extern_prelude_get(&mut self, ident: Ident, finalize: bool) -> Option<&'a NameBinding<'a>> {
if ident.is_path_segment_keyword() {
// Make sure `self`, `super` etc produce an error when passed to here.
return None;
}
self.extern_prelude.get(&ident.normalize_to_macros_2_0()).cloned().and_then(|entry| {
if let Some(binding) = entry.extern_crate_item {
if finalize && entry.introduced_by_item {
self.record_use(ident, binding, false);
}
Some(binding)
} else {
let crate_id = if finalize {
let Some(crate_id) =
self.crate_loader.process_path_extern(ident.name, ident.span) else { return Some(self.dummy_binding); };
crate_id
} else {
self.crate_loader.maybe_process_path_extern(ident.name)?
};
let crate_root = self.expect_module(crate_id.as_def_id());
let vis = ty::Visibility::<LocalDefId>::Public;
Some((crate_root, vis, DUMMY_SP, LocalExpnId::ROOT).to_name_binding(self.arenas))
}
})
}
/// Rustdoc uses this to resolve doc link paths in a recoverable way. `PathResult<'a>`
/// isn't something that can be returned because it can't be made to live that long,
/// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
/// just that an error occurred.
pub fn resolve_rustdoc_path(
&mut self,
path_str: &str,
ns: Namespace,
mut parent_scope: ParentScope<'a>,
) -> Option<Res> {
let mut segments =
Vec::from_iter(path_str.split("::").map(Ident::from_str).map(Segment::from_ident));
if let Some(segment) = segments.first_mut() {
if segment.ident.name == kw::Crate {
// FIXME: `resolve_path` always resolves `crate` to the current crate root, but
// rustdoc wants it to resolve to the `parent_scope`'s crate root. This trick of
// replacing `crate` with `self` and changing the current module should achieve
// the same effect.
segment.ident.name = kw::SelfLower;
parent_scope.module =
self.expect_module(parent_scope.module.def_id().krate.as_def_id());
} else if segment.ident.name == kw::Empty {
segment.ident.name = kw::PathRoot;
}
}
match self.maybe_resolve_path(&segments, Some(ns), &parent_scope) {
PathResult::Module(ModuleOrUniformRoot::Module(module)) => Some(module.res().unwrap()),
PathResult::NonModule(path_res) => path_res.full_res(),
PathResult::Module(ModuleOrUniformRoot::ExternPrelude) | PathResult::Failed { .. } => {
None
}
PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
}
}
/// For rustdoc.
/// For local modules returns only reexports, for external modules returns all children.
pub fn module_children_or_reexports(&self, def_id: DefId) -> Vec<ModChild> {
if let Some(def_id) = def_id.as_local() {
self.reexport_map.get(&def_id).cloned().unwrap_or_default()
} else {
self.cstore().module_children_untracked(def_id, self.session)
}
}
/// For rustdoc.
pub fn macro_rules_scope(&self, def_id: LocalDefId) -> (MacroRulesScopeRef<'a>, Res) {
let scope = *self.macro_rules_scopes.get(&def_id).expect("not a `macro_rules` item");
match scope.get() {
MacroRulesScope::Binding(mb) => (scope, mb.binding.res()),
_ => unreachable!(),
}
}
/// For rustdoc.
pub fn get_partial_res(&self, node_id: NodeId) -> Option<PartialRes> {
self.partial_res_map.get(&node_id).copied()
}
/// Retrieves the span of the given `DefId` if `DefId` is in the local crate.
#[inline]
pub fn opt_span(&self, def_id: DefId) -> Option<Span> {
def_id.as_local().map(|def_id| self.source_span[def_id])
}
/// Retrieves the name of the given `DefId`.
#[inline]
pub fn opt_name(&self, def_id: DefId) -> Option<Symbol> {
let def_key = match def_id.as_local() {
Some(def_id) => self.definitions.def_key(def_id),
None => self.cstore().def_key(def_id),
};
def_key.get_opt_name()
}
/// Checks if an expression refers to a function marked with
/// `#[rustc_legacy_const_generics]` and returns the argument index list
/// from the attribute.
pub fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option<Vec<usize>> {
if let ExprKind::Path(None, path) = &expr.kind {
// Don't perform legacy const generics rewriting if the path already
// has generic arguments.
if path.segments.last().unwrap().args.is_some() {
return None;
}
let res = self.partial_res_map.get(&expr.id)?.full_res()?;
if let Res::Def(def::DefKind::Fn, def_id) = res {
// We only support cross-crate argument rewriting. Uses
// within the same crate should be updated to use the new
// const generics style.
if def_id.is_local() {
return None;
}
if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
return v.clone();
}
let attr = self
.cstore()
.item_attrs_untracked(def_id, self.session)
.find(|a| a.has_name(sym::rustc_legacy_const_generics))?;
let mut ret = Vec::new();
for meta in attr.meta_item_list()? {
match meta.literal()?.kind {
LitKind::Int(a, _) => ret.push(a as usize),
_ => panic!("invalid arg index"),
}
}
// Cache the lookup to avoid parsing attributes for an item multiple times.
self.legacy_const_generic_args.insert(def_id, Some(ret.clone()));
return Some(ret);
}
}
None
}
fn resolve_main(&mut self) {
let module = self.graph_root;
let ident = Ident::with_dummy_span(sym::main);
let parent_scope = &ParentScope::module(module, self);
let Ok(name_binding) = self.maybe_resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
ValueNS,
parent_scope,
) else {
return;
};
let res = name_binding.res();
let is_import = name_binding.is_import();
let span = name_binding.span;
if let Res::Def(DefKind::Fn, _) = res {
self.record_use(ident, name_binding, false);
}
self.main_def = Some(MainDefinition { res, is_import, span });
}
// Items that go to reexport table encoded to metadata and visible through it to other crates.
fn is_reexport(&self, binding: &NameBinding<'a>) -> Option<def::Res<!>> {
// FIXME: Consider changing the binding inserted by `#[macro_export] macro_rules`
// into the crate root to actual `NameBindingKind::Import`.
if binding.is_import()
|| matches!(binding.kind, NameBindingKind::Res(_, _is_macro_export @ true))
{
let res = binding.res().expect_non_local();
// Ambiguous imports are treated as errors at this point and are
// not exposed to other crates (see #36837 for more details).
if res != def::Res::Err && !binding.is_ambiguity() {
return Some(res);
}
}
return None;
}
}
fn names_to_string(names: &[Symbol]) -> String {
let mut result = String::new();
for (i, name) in names.iter().filter(|name| **name != kw::PathRoot).enumerate() {
if i > 0 {
result.push_str("::");
}
if Ident::with_dummy_span(*name).is_raw_guess() {
result.push_str("r#");
}
result.push_str(name.as_str());
}
result
}
fn path_names_to_string(path: &Path) -> String {
names_to_string(&path.segments.iter().map(|seg| seg.ident.name).collect::<Vec<_>>())
}
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string(module: Module<'_>) -> Option<String> {
let mut names = Vec::new();
fn collect_mod(names: &mut Vec<Symbol>, module: Module<'_>) {
if let ModuleKind::Def(.., name) = module.kind {
if let Some(parent) = module.parent {
names.push(name);
collect_mod(names, parent);
}
} else {
names.push(Symbol::intern("<opaque>"));
collect_mod(names, module.parent.unwrap());
}
}
collect_mod(&mut names, module);
if names.is_empty() {
return None;
}
names.reverse();
Some(names_to_string(&names))
}
#[derive(Copy, Clone, Debug)]
struct Finalize {
/// Node ID for linting.
node_id: NodeId,
/// Span of the whole path or some its characteristic fragment.
/// E.g. span of `b` in `foo::{a, b, c}`, or full span for regular paths.
path_span: Span,
/// Span of the path start, suitable for prepending something to it.
/// E.g. span of `foo` in `foo::{a, b, c}`, or full span for regular paths.
root_span: Span,
/// Whether to report privacy errors or silently return "no resolution" for them,
/// similarly to speculative resolution.
report_private: bool,
}
impl Finalize {
fn new(node_id: NodeId, path_span: Span) -> Finalize {
Finalize::with_root_span(node_id, path_span, path_span)
}
fn with_root_span(node_id: NodeId, path_span: Span, root_span: Span) -> Finalize {
Finalize { node_id, path_span, root_span, report_private: true }
}
}