blob: ffb020398b858f90d1e3104a93a8a622619be9f0 [file] [log] [blame]
pub use self::freshen::TypeFreshener;
pub use self::lexical_region_resolve::RegionResolutionError;
pub use self::LateBoundRegionConversionTime::*;
pub use self::RegionVariableOrigin::*;
pub use self::SubregionOrigin::*;
pub use self::ValuePairs::*;
use self::opaque_types::OpaqueTypeStorage;
pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine, TraitEngineExt};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::undo_log::Rollback;
use rustc_data_structures::unify as ut;
use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::traits::select;
use rustc_middle::ty::abstract_const::{AbstractConst, FailureKind};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::BoundVarReplacerDelegate;
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
use rustc_middle::ty::visit::TypeVisitable;
pub use rustc_middle::ty::IntVarValue;
use rustc_middle::ty::{self, GenericParamDefKind, InferConst, Ty, TyCtxt};
use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};
use std::cell::{Cell, RefCell};
use std::fmt;
use self::combine::CombineFields;
use self::error_reporting::TypeErrCtxt;
use self::free_regions::RegionRelations;
use self::lexical_region_resolve::LexicalRegionResolutions;
use self::outlives::env::OutlivesEnvironment;
use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
use self::region_constraints::{
RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
};
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
pub mod at;
pub mod canonical;
mod combine;
mod equate;
pub mod error_reporting;
pub mod free_regions;
mod freshen;
mod fudge;
mod glb;
mod higher_ranked;
pub mod lattice;
mod lexical_region_resolve;
mod lub;
pub mod nll_relate;
pub mod opaque_types;
pub mod outlives;
mod projection;
pub mod region_constraints;
pub mod resolve;
mod sub;
pub mod type_variable;
mod undo_log;
#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
pub value: T,
pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
pub type Bound<T> = Option<T>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
>;
/// This type contains all the things within `InferCtxt` that sit within a
/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
/// operations are hot enough that we want only one call to `borrow_mut` per
/// call to `start_snapshot` and `rollback_to`.
#[derive(Clone)]
pub struct InferCtxtInner<'tcx> {
/// Cache for projections. This cache is snapshotted along with the infcx.
///
/// Public so that `traits::project` can use it.
pub projection_cache: traits::ProjectionCacheStorage<'tcx>,
/// We instantiate `UnificationTable` with `bounds<Ty>` because the types
/// that might instantiate a general type variable have an order,
/// represented by its upper and lower bounds.
type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
/// Map from const parameter variable to the kind of const it represents.
const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
/// Map from integral variable to the kind of integer it represents.
int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
/// Map from floating variable to the kind of float it represents.
float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
/// Tracks the set of region variables and the constraints between them.
/// This is initially `Some(_)` but when
/// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
/// -- further attempts to perform unification, etc., may fail if new
/// region constraints would've been added.
region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
/// A set of constraints that regionck must validate. Each
/// constraint has the form `T:'a`, meaning "some type `T` must
/// outlive the lifetime 'a". These constraints derive from
/// instantiated type parameters. So if you had a struct defined
/// like
/// ```ignore (illustrative)
/// struct Foo<T:'static> { ... }
/// ```
/// then in some expression `let x = Foo { ... }` it will
/// instantiate the type parameter `T` with a fresh type `$0`. At
/// the same time, it will record a region obligation of
/// `$0:'static`. This will get checked later by regionck. (We
/// can't generally check these things right away because we have
/// to wait until types are resolved.)
///
/// These are stored in a map keyed to the id of the innermost
/// enclosing fn body / static initializer expression. This is
/// because the location where the obligation was incurred can be
/// relevant with respect to which sublifetime assumptions are in
/// place. The reason that we store under the fn-id, and not
/// something more fine-grained, is so that it is easier for
/// regionck to be sure that it has found *all* the region
/// obligations (otherwise, it's easy to fail to walk to a
/// particular node-id).
///
/// Before running `resolve_regions_and_report_errors`, the creator
/// of the inference context is expected to invoke
/// [`InferCtxt::process_registered_region_obligations`]
/// for each body-id in this map, which will process the
/// obligations within. This is expected to be done 'late enough'
/// that all type inference variables have been bound and so forth.
region_obligations: Vec<RegionObligation<'tcx>>,
undo_log: InferCtxtUndoLogs<'tcx>,
/// Caches for opaque type inference.
pub opaque_type_storage: OpaqueTypeStorage<'tcx>,
}
impl<'tcx> InferCtxtInner<'tcx> {
fn new() -> InferCtxtInner<'tcx> {
InferCtxtInner {
projection_cache: Default::default(),
type_variable_storage: type_variable::TypeVariableStorage::new(),
undo_log: InferCtxtUndoLogs::default(),
const_unification_storage: ut::UnificationTableStorage::new(),
int_unification_storage: ut::UnificationTableStorage::new(),
float_unification_storage: ut::UnificationTableStorage::new(),
region_constraint_storage: Some(RegionConstraintStorage::new()),
region_obligations: vec![],
opaque_type_storage: Default::default(),
}
}
#[inline]
pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
&self.region_obligations
}
#[inline]
pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
self.projection_cache.with_log(&mut self.undo_log)
}
#[inline]
fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
self.type_variable_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
self.opaque_type_storage.with_log(&mut self.undo_log)
}
#[inline]
fn int_unification_table(
&mut self,
) -> ut::UnificationTable<
ut::InPlace<
ty::IntVid,
&mut ut::UnificationStorage<ty::IntVid>,
&mut InferCtxtUndoLogs<'tcx>,
>,
> {
self.int_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn float_unification_table(
&mut self,
) -> ut::UnificationTable<
ut::InPlace<
ty::FloatVid,
&mut ut::UnificationStorage<ty::FloatVid>,
&mut InferCtxtUndoLogs<'tcx>,
>,
> {
self.float_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
fn const_unification_table(
&mut self,
) -> ut::UnificationTable<
ut::InPlace<
ty::ConstVid<'tcx>,
&mut ut::UnificationStorage<ty::ConstVid<'tcx>>,
&mut InferCtxtUndoLogs<'tcx>,
>,
> {
self.const_unification_storage.with_log(&mut self.undo_log)
}
#[inline]
pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
self.region_constraint_storage
.as_mut()
.expect("region constraints already solved")
.with_log(&mut self.undo_log)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum DefiningAnchor {
/// `DefId` of the item.
Bind(LocalDefId),
/// When opaque types are not resolved, we `Bubble` up, meaning
/// return the opaque/hidden type pair from query, for caller of query to handle it.
Bubble,
/// Used to catch type mismatch errors when handling opaque types.
Error,
}
pub struct InferCtxt<'tcx> {
pub tcx: TyCtxt<'tcx>,
/// The `DefId` of the item in whose context we are performing inference or typeck.
/// It is used to check whether an opaque type use is a defining use.
///
/// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
/// the obligation. This frequently happens for
/// short lived InferCtxt within queries. The opaque type obligations are forwarded
/// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
///
/// It is default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
/// might come up during inference or typeck.
pub defining_use_anchor: DefiningAnchor,
/// Whether this inference context should care about region obligations in
/// the root universe. Most notably, this is used during hir typeck as region
/// solving is left to borrowck instead.
pub considering_regions: bool,
pub inner: RefCell<InferCtxtInner<'tcx>>,
/// If set, this flag causes us to skip the 'leak check' during
/// higher-ranked subtyping operations. This flag is a temporary one used
/// to manage the removal of the leak-check: for the time being, we still run the
/// leak-check, but we issue warnings. This flag can only be set to true
/// when entering a snapshot.
skip_leak_check: Cell<bool>,
/// Once region inference is done, the values for each variable.
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: select::SelectionCache<'tcx>,
/// Caches the results of trait evaluation.
pub evaluation_cache: select::EvaluationCache<'tcx>,
/// the set of predicates on which errors have been reported, to
/// avoid reporting the same error twice.
pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
/// When an error occurs, we want to avoid reporting "derived"
/// errors that are due to this original failure. Normally, we
/// handle this with the `err_count_on_creation` count, which
/// basically just tracks how many errors were reported when we
/// started type-checking a fn and checks to see if any new errors
/// have been reported since then. Not great, but it works.
///
/// However, when errors originated in other passes -- notably
/// resolve -- this heuristic breaks down. Therefore, we have this
/// auxiliary flag that one can set whenever one creates a
/// type-error that is due to an error in a prior pass.
///
/// Don't read this flag directly, call `is_tainted_by_errors()`
/// and `set_tainted_by_errors()`.
tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
/// Track how many errors were reported when this infcx is created.
/// If the number of errors increases, that's also a sign (line
/// `tainted_by_errors`) to avoid reporting certain kinds of errors.
// FIXME(matthewjasper) Merge into `tainted_by_errors`
err_count_on_creation: usize,
/// This flag is true while there is an active snapshot.
in_snapshot: Cell<bool>,
/// What is the innermost universe we have created? Starts out as
/// `UniverseIndex::root()` but grows from there as we enter
/// universal quantifiers.
///
/// N.B., at present, we exclude the universal quantifiers on the
/// item we are type-checking, and just consider those names as
/// part of the root universe. So this would only get incremented
/// when we enter into a higher-ranked (`for<..>`) type or trait
/// bound.
universe: Cell<ty::UniverseIndex>,
normalize_fn_sig_for_diagnostic:
Option<Lrc<dyn Fn(&InferCtxt<'tcx>, ty::PolyFnSig<'tcx>) -> ty::PolyFnSig<'tcx>>>,
}
/// See the `error_reporting` module for more details.
#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
pub enum ValuePairs<'tcx> {
Regions(ExpectedFound<ty::Region<'tcx>>),
Terms(ExpectedFound<ty::Term<'tcx>>),
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
}
impl<'tcx> ValuePairs<'tcx> {
pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
&& let Some(expected) = expected.ty()
&& let Some(found) = found.ty()
{
Some((expected, found))
} else {
None
}
}
}
/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See the `error_reporting` module for more details.
#[derive(Clone, Debug)]
pub struct TypeTrace<'tcx> {
pub cause: ObligationCause<'tcx>,
pub values: ValuePairs<'tcx>,
}
/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
/// Arose from a subtyping relation
Subtype(Box<TypeTrace<'tcx>>),
/// When casting `&'a T` to an `&'b Trait` object,
/// relating `'a` to `'b`
RelateObjectBound(Span),
/// Some type parameter was instantiated with the given type,
/// and that type must outlive some region.
RelateParamBound(Span, Ty<'tcx>, Option<Span>),
/// The given region parameter was instantiated with a region
/// that must outlive some other region.
RelateRegionParamBound(Span),
/// Creating a pointer `b` to contents of another reference
Reborrow(Span),
/// Creating a pointer `b` to contents of an upvar
ReborrowUpvar(Span, ty::UpvarId),
/// Data with type `Ty<'tcx>` was borrowed
DataBorrowed(Ty<'tcx>, Span),
/// (&'a &'b T) where a >= b
ReferenceOutlivesReferent(Ty<'tcx>, Span),
/// Comparing the signature and requirements of an impl method against
/// the containing trait.
CompareImplItemObligation {
span: Span,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
/// Checking that the bounds of a trait's associated type hold for a given impl
CheckAssociatedTypeBounds {
parent: Box<SubregionOrigin<'tcx>>,
impl_item_def_id: LocalDefId,
trait_item_def_id: DefId,
},
AscribeUserTypeProvePredicate(Span),
}
// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
static_assert_size!(SubregionOrigin<'_>, 32);
impl<'tcx> SubregionOrigin<'tcx> {
pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
match self {
Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
_ => ConstraintCategory::BoringNoLocation,
}
}
}
/// Times when we replace late-bound regions with variables:
#[derive(Clone, Copy, Debug)]
pub enum LateBoundRegionConversionTime {
/// when a fn is called
FnCall,
/// when two higher-ranked types are compared
HigherRankedType,
/// when projecting an associated type
AssocTypeProjection(DefId),
}
/// Reasons to create a region inference variable
///
/// See `error_reporting` module for more details
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
/// Region variables created for ill-categorized reasons,
/// mostly indicates places in need of refactoring
MiscVariable(Span),
/// Regions created by a `&P` or `[...]` pattern
PatternRegion(Span),
/// Regions created by `&` operator
AddrOfRegion(Span),
/// Regions created as part of an autoref of a method receiver
Autoref(Span),
/// Regions created as part of an automatic coercion
Coercion(Span),
/// Region variables created as the values for early-bound regions
EarlyBoundRegion(Span, Symbol),
/// Region variables created for bound regions
/// in a function or method that is called
LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
UpvarRegion(ty::UpvarId, Span),
/// This origin is used for the inference variables that we create
/// during NLL region processing.
Nll(NllRegionVariableOrigin),
}
#[derive(Copy, Clone, Debug)]
pub enum NllRegionVariableOrigin {
/// During NLL region processing, we create variables for free
/// regions that we encounter in the function signature and
/// elsewhere. This origin indices we've got one of those.
FreeRegion,
/// "Universal" instantiation of a higher-ranked region (e.g.,
/// from a `for<'a> T` binder). Meant to represent "any region".
Placeholder(ty::PlaceholderRegion),
Existential {
/// If this is true, then this variable was created to represent a lifetime
/// bound in a `for` binder. For example, it might have been created to
/// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
/// Such variables are created when we are trying to figure out if there
/// is any valid instantiation of `'a` that could fit into some scenario.
///
/// This is used to inform error reporting: in the case that we are trying to
/// determine whether there is any valid instantiation of a `'a` variable that meets
/// some constraint C, we want to blame the "source" of that `for` type,
/// rather than blaming the source of the constraint C.
from_forall: bool,
},
}
// FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
#[derive(Copy, Clone, Debug)]
pub enum FixupError<'tcx> {
UnresolvedIntTy(IntVid),
UnresolvedFloatTy(FloatVid),
UnresolvedTy(TyVid),
UnresolvedConst(ConstVid<'tcx>),
}
/// See the `region_obligations` field for more information.
#[derive(Clone, Debug)]
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region<'tcx>,
pub sup_type: Ty<'tcx>,
pub origin: SubregionOrigin<'tcx>,
}
impl<'tcx> fmt::Display for FixupError<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::FixupError::*;
match *self {
UnresolvedIntTy(_) => write!(
f,
"cannot determine the type of this integer; \
add a suffix to specify the type explicitly"
),
UnresolvedFloatTy(_) => write!(
f,
"cannot determine the type of this number; \
add a suffix to specify the type explicitly"
),
UnresolvedTy(_) => write!(f, "unconstrained type"),
UnresolvedConst(_) => write!(f, "unconstrained const value"),
}
}
}
/// Used to configure inference contexts before their creation
pub struct InferCtxtBuilder<'tcx> {
tcx: TyCtxt<'tcx>,
defining_use_anchor: DefiningAnchor,
considering_regions: bool,
normalize_fn_sig_for_diagnostic:
Option<Lrc<dyn Fn(&InferCtxt<'tcx>, ty::PolyFnSig<'tcx>) -> ty::PolyFnSig<'tcx>>>,
}
pub trait TyCtxtInferExt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
}
impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
InferCtxtBuilder {
tcx: self,
defining_use_anchor: DefiningAnchor::Error,
considering_regions: true,
normalize_fn_sig_for_diagnostic: None,
}
}
}
impl<'tcx> InferCtxtBuilder<'tcx> {
/// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
/// you need to call this function. Otherwise the opaque type will be treated opaquely.
///
/// It is only meant to be called in two places, for typeck
/// (via `Inherited::build`) and for the inference context used
/// in mir borrowck.
pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
self.defining_use_anchor = defining_use_anchor;
self
}
pub fn ignoring_regions(mut self) -> Self {
self.considering_regions = false;
self
}
pub fn with_normalize_fn_sig_for_diagnostic(
mut self,
fun: Lrc<dyn Fn(&InferCtxt<'tcx>, ty::PolyFnSig<'tcx>) -> ty::PolyFnSig<'tcx>>,
) -> Self {
self.normalize_fn_sig_for_diagnostic = Some(fun);
self
}
/// Given a canonical value `C` as a starting point, create an
/// inference context that contains each of the bound values
/// within instantiated as a fresh variable. The `f` closure is
/// invoked with the new infcx, along with the instantiated value
/// `V` and a substitution `S`. This substitution `S` maps from
/// the bound values in `C` to their instantiated values in `V`
/// (in other words, `S(C) = V`).
pub fn build_with_canonical<T>(
&mut self,
span: Span,
canonical: &Canonical<'tcx, T>,
) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
where
T: TypeFoldable<'tcx>,
{
let infcx = self.build();
let (value, subst) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
(infcx, value, subst)
}
pub fn build(&mut self) -> InferCtxt<'tcx> {
let InferCtxtBuilder {
tcx,
defining_use_anchor,
considering_regions,
ref normalize_fn_sig_for_diagnostic,
} = *self;
InferCtxt {
tcx,
defining_use_anchor,
considering_regions,
inner: RefCell::new(InferCtxtInner::new()),
lexical_region_resolutions: RefCell::new(None),
selection_cache: Default::default(),
evaluation_cache: Default::default(),
reported_trait_errors: Default::default(),
reported_closure_mismatch: Default::default(),
tainted_by_errors: Cell::new(None),
err_count_on_creation: tcx.sess.err_count(),
in_snapshot: Cell::new(false),
skip_leak_check: Cell::new(false),
universe: Cell::new(ty::UniverseIndex::ROOT),
normalize_fn_sig_for_diagnostic: normalize_fn_sig_for_diagnostic
.as_ref()
.map(|f| f.clone()),
}
}
}
impl<'tcx, T> InferOk<'tcx, T> {
pub fn unit(self) -> InferOk<'tcx, ()> {
InferOk { value: (), obligations: self.obligations }
}
/// Extracts `value`, registering any obligations into `fulfill_cx`.
pub fn into_value_registering_obligations(
self,
infcx: &InferCtxt<'tcx>,
fulfill_cx: &mut dyn TraitEngine<'tcx>,
) -> T {
let InferOk { value, obligations } = self;
fulfill_cx.register_predicate_obligations(infcx, obligations);
value
}
}
impl<'tcx> InferOk<'tcx, ()> {
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
self.obligations
}
}
#[must_use = "once you start a snapshot, you should always consume it"]
pub struct CombinedSnapshot<'tcx> {
undo_snapshot: Snapshot<'tcx>,
region_constraints_snapshot: RegionSnapshot,
universe: ty::UniverseIndex,
was_in_snapshot: bool,
}
impl<'tcx> InferCtxt<'tcx> {
/// Creates a `TypeErrCtxt` for emitting various inference errors.
/// During typeck, use `FnCtxt::infer_err` instead.
pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
TypeErrCtxt { infcx: self, typeck_results: None }
}
/// calls `tcx.try_unify_abstract_consts` after
/// canonicalizing the consts.
#[instrument(skip(self), level = "debug")]
pub fn try_unify_abstract_consts(
&self,
a: ty::UnevaluatedConst<'tcx>,
b: ty::UnevaluatedConst<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
// Reject any attempt to unify two unevaluated constants that contain inference
// variables, since inference variables in queries lead to ICEs.
if a.substs.has_non_region_infer()
|| b.substs.has_non_region_infer()
|| param_env.has_non_region_infer()
{
debug!("a or b or param_env contain infer vars in its substs -> cannot unify");
return false;
}
let param_env_and = param_env.and((a, b));
let erased = self.tcx.erase_regions(param_env_and);
debug!("after erase_regions: {:?}", erased);
self.tcx.try_unify_abstract_consts(erased)
}
pub fn is_in_snapshot(&self) -> bool {
self.in_snapshot.get()
}
pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
t.fold_with(&mut self.freshener())
}
/// Returns the origin of the type variable identified by `vid`, or `None`
/// if this is not a type variable.
///
/// No attempt is made to resolve `ty`.
pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
match *ty.kind() {
ty::Infer(ty::TyVar(vid)) => {
Some(*self.inner.borrow_mut().type_variables().var_origin(vid))
}
_ => None,
}
}
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
freshen::TypeFreshener::new(self, false)
}
/// Like `freshener`, but does not replace `'static` regions.
pub fn freshener_keep_static<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
freshen::TypeFreshener::new(self, true)
}
pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
let mut inner = self.inner.borrow_mut();
let mut vars: Vec<Ty<'_>> = inner
.type_variables()
.unsolved_variables()
.into_iter()
.map(|t| self.tcx.mk_ty_var(t))
.collect();
vars.extend(
(0..inner.int_unification_table().len())
.map(|i| ty::IntVid { index: i as u32 })
.filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
.map(|v| self.tcx.mk_int_var(v)),
);
vars.extend(
(0..inner.float_unification_table().len())
.map(|i| ty::FloatVid { index: i as u32 })
.filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
.map(|v| self.tcx.mk_float_var(v)),
);
vars
}
fn combine_fields<'a>(
&'a self,
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
define_opaque_types: bool,
) -> CombineFields<'a, 'tcx> {
CombineFields {
infcx: self,
trace,
cause: None,
param_env,
obligations: PredicateObligations::new(),
define_opaque_types,
}
}
/// Clear the "currently in a snapshot" flag, invoke the closure,
/// then restore the flag to its original value. This flag is a
/// debugging measure designed to detect cases where we start a
/// snapshot, create type variables, and register obligations
/// which may involve those type variables in the fulfillment cx,
/// potentially leaving "dangling type variables" behind.
/// In such cases, an assertion will fail when attempting to
/// register obligations, within a snapshot. Very useful, much
/// better than grovelling through megabytes of `RUSTC_LOG` output.
///
/// HOWEVER, in some cases the flag is unhelpful. In particular, we
/// sometimes create a "mini-fulfilment-cx" in which we enroll
/// obligations. As long as this fulfillment cx is fully drained
/// before we return, this is not a problem, as there won't be any
/// escaping obligations in the main cx. In those cases, you can
/// use this function.
pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
where
F: FnOnce(&Self) -> R,
{
let flag = self.in_snapshot.replace(false);
let result = func(self);
self.in_snapshot.set(flag);
result
}
fn start_snapshot(&self) -> CombinedSnapshot<'tcx> {
debug!("start_snapshot()");
let in_snapshot = self.in_snapshot.replace(true);
let mut inner = self.inner.borrow_mut();
CombinedSnapshot {
undo_snapshot: inner.undo_log.start_snapshot(),
region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
universe: self.universe(),
was_in_snapshot: in_snapshot,
}
}
#[instrument(skip(self, snapshot), level = "debug")]
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>) {
let CombinedSnapshot {
undo_snapshot,
region_constraints_snapshot,
universe,
was_in_snapshot,
} = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.universe.set(universe);
let mut inner = self.inner.borrow_mut();
inner.rollback_to(undo_snapshot);
inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
}
#[instrument(skip(self, snapshot), level = "debug")]
fn commit_from(&self, snapshot: CombinedSnapshot<'tcx>) {
let CombinedSnapshot {
undo_snapshot,
region_constraints_snapshot: _,
universe: _,
was_in_snapshot,
} = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.inner.borrow_mut().commit(undo_snapshot);
}
/// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
#[instrument(skip(self, f), level = "debug")]
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
where
F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,
{
let snapshot = self.start_snapshot();
let r = f(&snapshot);
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
match r {
Ok(_) => {
self.commit_from(snapshot);
}
Err(_) => {
self.rollback_to("commit_if_ok -- error", snapshot);
}
}
r
}
/// Execute `f` then unroll any bindings it creates.
#[instrument(skip(self, f), level = "debug")]
pub fn probe<R, F>(&self, f: F) -> R
where
F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
{
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.rollback_to("probe", snapshot);
r
}
/// If `should_skip` is true, then execute `f` then unroll any bindings it creates.
#[instrument(skip(self, f), level = "debug")]
pub fn probe_maybe_skip_leak_check<R, F>(&self, should_skip: bool, f: F) -> R
where
F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
{
let snapshot = self.start_snapshot();
let was_skip_leak_check = self.skip_leak_check.get();
if should_skip {
self.skip_leak_check.set(true);
}
let r = f(&snapshot);
self.rollback_to("probe", snapshot);
self.skip_leak_check.set(was_skip_leak_check);
r
}
/// Scan the constraints produced since `snapshot` began and returns:
///
/// - `None` -- if none of them involve "region outlives" constraints
/// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
/// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
pub fn region_constraints_added_in_snapshot(
&self,
snapshot: &CombinedSnapshot<'tcx>,
) -> Option<bool> {
self.inner
.borrow_mut()
.unwrap_region_constraints()
.region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
}
pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
}
pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
self.inner.borrow_mut().unwrap_region_constraints().add_given(sub, sup);
}
pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
#[instrument(skip(self), level = "debug")]
pub fn sub_regions(
&self,
origin: SubregionOrigin<'tcx>,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) {
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
}
/// Require that the region `r` be equal to one of the regions in
/// the set `regions`.
#[instrument(skip(self), level = "debug")]
pub fn member_constraint(
&self,
key: ty::OpaqueTypeKey<'tcx>,
definition_span: Span,
hidden_ty: Ty<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
) {
self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
key,
definition_span,
hidden_ty,
region,
in_regions,
);
}
/// Processes a `Coerce` predicate from the fulfillment context.
/// This is NOT the preferred way to handle coercion, which is to
/// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
///
/// This method here is actually a fallback that winds up being
/// invoked when `FnCtxt::coerce` encounters unresolved type variables
/// and records a coercion predicate. Presently, this method is equivalent
/// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
/// actually requiring `a <: b`. This is of course a valid coercion,
/// but it's not as flexible as `FnCtxt::coerce` would be.
///
/// (We may refactor this in the future, but there are a number of
/// practical obstacles. Among other things, `FnCtxt::coerce` presently
/// records adjustments that are required on the HIR in order to perform
/// the coercion, and we don't currently have a way to manage that.)
pub fn coerce_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolyCoercePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
a: p.a,
b: p.b,
});
self.subtype_predicate(cause, param_env, subtype_predicate)
}
pub fn subtype_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: ty::PolySubtypePredicate<'tcx>,
) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
// Check for two unresolved inference variables, in which case we can
// make no progress. This is partly a micro-optimization, but it's
// also an opportunity to "sub-unify" the variables. This isn't
// *necessary* to prevent cycles, because they would eventually be sub-unified
// anyhow during generalization, but it helps with diagnostics (we can detect
// earlier that they are sub-unified).
//
// Note that we can just skip the binders here because
// type variables can't (at present, at
// least) capture any of the things bound by this binder.
//
// Note that this sub here is not just for diagnostics - it has semantic
// effects as well.
let r_a = self.shallow_resolve(predicate.skip_binder().a);
let r_b = self.shallow_resolve(predicate.skip_binder().b);
match (r_a.kind(), r_b.kind()) {
(&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
return Err((a_vid, b_vid));
}
_ => {}
}
Ok(self.commit_if_ok(|_snapshot| {
let ty::SubtypePredicate { a_is_expected, a, b } =
self.replace_bound_vars_with_placeholders(predicate);
let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
Ok(ok.unit())
}))
}
pub fn region_outlives_predicate(
&self,
cause: &traits::ObligationCause<'tcx>,
predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
) {
let ty::OutlivesPredicate(r_a, r_b) = self.replace_bound_vars_with_placeholders(predicate);
let origin =
SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
}
/// Number of type variables created so far.
pub fn num_ty_vars(&self) -> usize {
self.inner.borrow_mut().type_variables().num_vars()
}
pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
}
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
self.tcx.mk_ty_var(self.next_ty_var_id(origin))
}
pub fn next_ty_var_id_in_universe(
&self,
origin: TypeVariableOrigin,
universe: ty::UniverseIndex,
) -> TyVid {
self.inner.borrow_mut().type_variables().new_var(universe, origin)
}
pub fn next_ty_var_in_universe(
&self,
origin: TypeVariableOrigin,
universe: ty::UniverseIndex,
) -> Ty<'tcx> {
let vid = self.next_ty_var_id_in_universe(origin, universe);
self.tcx.mk_ty_var(vid)
}
pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
}
pub fn next_const_var_in_universe(
&self,
ty: Ty<'tcx>,
origin: ConstVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Const<'tcx> {
let vid = self
.inner
.borrow_mut()
.const_unification_table()
.new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
self.tcx.mk_const_var(vid, ty)
}
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
origin,
val: ConstVariableValue::Unknown { universe: self.universe() },
})
}
fn next_int_var_id(&self) -> IntVid {
self.inner.borrow_mut().int_unification_table().new_key(None)
}
pub fn next_int_var(&self) -> Ty<'tcx> {
self.tcx.mk_int_var(self.next_int_var_id())
}
fn next_float_var_id(&self) -> FloatVid {
self.inner.borrow_mut().float_unification_table().new_key(None)
}
pub fn next_float_var(&self) -> Ty<'tcx> {
self.tcx.mk_float_var(self.next_float_var_id())
}
/// Creates a fresh region variable with the next available index.
/// The variable will be created in the maximum universe created
/// thus far, allowing it to name any region created thus far.
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var_in_universe(origin, self.universe())
}
/// Creates a fresh region variable with the next available index
/// in the given universe; typically, you can use
/// `next_region_var` and just use the maximal universe.
pub fn next_region_var_in_universe(
&self,
origin: RegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
let region_var =
self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
self.tcx.mk_region(ty::ReVar(region_var))
}
/// Return the universe that the region `r` was created in. For
/// most regions (e.g., `'static`, named regions from the user,
/// etc) this is the root universe U0. For inference variables or
/// placeholders, however, it will return the universe which they
/// are associated.
pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
self.inner.borrow_mut().unwrap_region_constraints().universe(r)
}
/// Number of region variables created so far.
pub fn num_region_vars(&self) -> usize {
self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var(RegionVariableOrigin::Nll(origin))
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
pub fn next_nll_region_var_in_universe(
&self,
origin: NllRegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
}
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
match param.kind {
GenericParamDefKind::Lifetime => {
// Create a region inference variable for the given
// region parameter definition.
self.next_region_var(EarlyBoundRegion(span, param.name)).into()
}
GenericParamDefKind::Type { .. } => {
// Create a type inference variable for the given
// type parameter definition. The substitutions are
// for actual parameters that may be referred to by
// the default of this type parameter, if it exists.
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
// used in a path such as `Foo::<T, U>::new()` will
// use an inference variable for `C` with `[T, U]`
// as the substitutions for the default, `(T, U)`.
let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
self.universe(),
TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeParameterDefinition(
param.name,
Some(param.def_id),
),
span,
},
);
self.tcx.mk_ty_var(ty_var_id).into()
}
GenericParamDefKind::Const { .. } => {
let origin = ConstVariableOrigin {
kind: ConstVariableOriginKind::ConstParameterDefinition(
param.name,
param.def_id,
),
span,
};
let const_var_id =
self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
origin,
val: ConstVariableValue::Unknown { universe: self.universe() },
});
self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
}
}
}
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
/// type/region parameter to a fresh inference variable.
pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
}
/// Returns `true` if errors have been reported since this infcx was
/// created. This is sometimes used as a heuristic to skip
/// reporting errors that often occur as a result of earlier
/// errors, but where it's hard to be 100% sure (e.g., unresolved
/// inference variables, regionck errors).
pub fn is_tainted_by_errors(&self) -> bool {
debug!(
"is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
tainted_by_errors={})",
self.tcx.sess.err_count(),
self.err_count_on_creation,
self.tainted_by_errors.get().is_some()
);
if self.tcx.sess.err_count() > self.err_count_on_creation {
return true; // errors reported since this infcx was made
}
self.tainted_by_errors.get().is_some()
}
/// Set the "tainted by errors" flag to true. We call this when we
/// observe an error from a prior pass.
pub fn set_tainted_by_errors(&self) {
debug!("set_tainted_by_errors()");
self.tainted_by_errors.set(Some(
self.tcx.sess.delay_span_bug(DUMMY_SP, "`InferCtxt` incorrectly tainted by errors"),
));
}
pub fn skip_region_resolution(&self) {
let (var_infos, _) = {
let mut inner = self.inner.borrow_mut();
let inner = &mut *inner;
// Note: `inner.region_obligations` may not be empty, because we
// didn't necessarily call `process_registered_region_obligations`.
// This is okay, because that doesn't introduce new vars.
inner
.region_constraint_storage
.take()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.into_infos_and_data()
};
let lexical_region_resolutions = LexicalRegionResolutions {
values: rustc_index::vec::IndexVec::from_elem_n(
crate::infer::lexical_region_resolve::VarValue::Value(self.tcx.lifetimes.re_erased),
var_infos.len(),
),
};
let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
assert!(old_value.is_none());
}
/// Process the region constraints and return any errors that
/// result. After this, no more unification operations should be
/// done -- or the compiler will panic -- but it is legal to use
/// `resolve_vars_if_possible` as well as `fully_resolve`.
pub fn resolve_regions(
&self,
outlives_env: &OutlivesEnvironment<'tcx>,
) -> Vec<RegionResolutionError<'tcx>> {
let (var_infos, data) = {
let mut inner = self.inner.borrow_mut();
let inner = &mut *inner;
assert!(
self.is_tainted_by_errors() || inner.region_obligations.is_empty(),
"region_obligations not empty: {:#?}",
inner.region_obligations
);
inner
.region_constraint_storage
.take()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.into_infos_and_data()
};
let region_rels = &RegionRelations::new(self.tcx, outlives_env.free_region_map());
let (lexical_region_resolutions, errors) =
lexical_region_resolve::resolve(outlives_env.param_env, region_rels, var_infos, data);
let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
assert!(old_value.is_none());
errors
}
/// Obtains (and clears) the current set of region
/// constraints. The inference context is still usable: further
/// unifications will simply add new constraints.
///
/// This method is not meant to be used with normal lexical region
/// resolution. Rather, it is used in the NLL mode as a kind of
/// interim hack: basically we run normal type-check and generate
/// region constraints as normal, but then we take them and
/// translate them into the form that the NLL solver
/// understands. See the NLL module for mode details.
pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
assert!(
self.inner.borrow().region_obligations.is_empty(),
"region_obligations not empty: {:#?}",
self.inner.borrow().region_obligations
);
self.inner.borrow_mut().unwrap_region_constraints().take_and_reset_data()
}
/// Gives temporary access to the region constraint data.
pub fn with_region_constraints<R>(
&self,
op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
) -> R {
let mut inner = self.inner.borrow_mut();
op(inner.unwrap_region_constraints().data())
}
pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
let mut inner = self.inner.borrow_mut();
let inner = &mut *inner;
inner
.region_constraint_storage
.as_mut()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.var_origin(vid)
}
/// Takes ownership of the list of variable regions. This implies
/// that all the region constraints have already been taken, and
/// hence that `resolve_regions_and_report_errors` can never be
/// called. This is used only during NLL processing to "hand off" ownership
/// of the set of region variables into the NLL region context.
pub fn take_region_var_origins(&self) -> VarInfos {
let mut inner = self.inner.borrow_mut();
let (var_infos, data) = inner
.region_constraint_storage
.take()
.expect("regions already resolved")
.with_log(&mut inner.undo_log)
.into_infos_and_data();
assert!(data.is_empty());
var_infos
}
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
self.resolve_vars_if_possible(t).to_string()
}
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
/// universe index of `TyVar(vid)`.
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
use self::type_variable::TypeVariableValue;
match self.inner.borrow_mut().type_variables().probe(vid) {
TypeVariableValue::Known { value } => Ok(value),
TypeVariableValue::Unknown { universe } => Err(universe),
}
}
/// Resolve any type variables found in `value` -- but only one
/// level. So, if the variable `?X` is bound to some type
/// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
/// itself be bound to a type).
///
/// Useful when you only need to inspect the outermost level of
/// the type and don't care about nested types (or perhaps you
/// will be resolving them as well, e.g. in a loop).
pub fn shallow_resolve<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
value.fold_with(&mut ShallowResolver { infcx: self })
}
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
self.inner.borrow_mut().type_variables().root_var(var)
}
/// Where possible, replaces type/const variables in
/// `value` with their final value. Note that region variables
/// are unaffected. If a type/const variable has not been unified, it
/// is left as is. This is an idempotent operation that does
/// not affect inference state in any way and so you can do it
/// at will.
pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
if !value.needs_infer() {
return value; // Avoid duplicated subst-folding.
}
let mut r = resolve::OpportunisticVarResolver::new(self);
value.fold_with(&mut r)
}
pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
if !value.needs_infer() {
return value; // Avoid duplicated subst-folding.
}
let mut r = InferenceLiteralEraser { tcx: self.tcx };
value.fold_with(&mut r)
}
/// Returns the first unresolved variable contained in `T`. In the
/// process of visiting `T`, this will resolve (where possible)
/// type variables in `T`, but it never constructs the final,
/// resolved type, so it's more efficient than
/// `resolve_vars_if_possible()`.
pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
where
T: TypeVisitable<'tcx>,
{
value.visit_with(&mut resolve::UnresolvedTypeFinder::new(self)).break_value()
}
pub fn probe_const_var(
&self,
vid: ty::ConstVid<'tcx>,
) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
ConstVariableValue::Known { value } => Ok(value),
ConstVariableValue::Unknown { universe } => Err(universe),
}
}
pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: T) -> FixupResult<'tcx, T> {
/*!
* Attempts to resolve all type/region/const variables in
* `value`. Region inference must have been run already (e.g.,
* by calling `resolve_regions_and_report_errors`). If some
* variable was never unified, an `Err` results.
*
* This method is idempotent, but it not typically not invoked
* except during the writeback phase.
*/
let value = resolve::fully_resolve(self, value);
assert!(
value.as_ref().map_or(true, |value| !value.needs_infer()),
"`{value:?}` is not fully resolved"
);
value
}
pub fn replace_bound_vars_with_fresh_vars<T>(
&self,
span: Span,
lbrct: LateBoundRegionConversionTime,
value: ty::Binder<'tcx, T>,
) -> T
where
T: TypeFoldable<'tcx> + Copy,
{
if let Some(inner) = value.no_bound_vars() {
return inner;
}
struct ToFreshVars<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
span: Span,
lbrct: LateBoundRegionConversionTime,
map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
}
impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
self.map
.entry(br.var)
.or_insert_with(|| {
self.infcx
.next_region_var(LateBoundRegion(self.span, br.kind, self.lbrct))
.into()
})
.expect_region()
}
fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
self.map
.entry(bt.var)
.or_insert_with(|| {
self.infcx
.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: self.span,
})
.into()
})
.expect_ty()
}
fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
self.map
.entry(bv)
.or_insert_with(|| {
self.infcx
.next_const_var(
ty,
ConstVariableOrigin {
kind: ConstVariableOriginKind::MiscVariable,
span: self.span,
},
)
.into()
})
.expect_const()
}
}
let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
self.tcx.replace_bound_vars_uncached(value, delegate)
}
/// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
pub fn verify_generic_bound(
&self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
a: ty::Region<'tcx>,
bound: VerifyBound<'tcx>,
) {
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
self.inner
.borrow_mut()
.unwrap_region_constraints()
.verify_generic_bound(origin, kind, a, bound);
}
/// Obtains the latest type of the given closure; this may be a
/// closure in the current function, in which case its
/// `ClosureKind` may not yet be known.
pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
let closure_kind_ty = closure_substs.as_closure().kind_ty();
let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
/// Clears the selection, evaluation, and projection caches. This is useful when
/// repeatedly attempting to select an `Obligation` while changing only
/// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
pub fn clear_caches(&self) {
self.selection_cache.clear();
self.evaluation_cache.clear();
self.inner.borrow_mut().projection_cache().clear();
}
pub fn universe(&self) -> ty::UniverseIndex {
self.universe.get()
}
/// Creates and return a fresh universe that extends all previous
/// universes. Updates `self.universe` to that new universe.
pub fn create_next_universe(&self) -> ty::UniverseIndex {
let u = self.universe.get().next_universe();
self.universe.set(u);
u
}
pub fn try_const_eval_resolve(
&self,
param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
ty: Ty<'tcx>,
span: Option<Span>,
) -> Result<ty::Const<'tcx>, ErrorHandled> {
match self.const_eval_resolve(param_env, unevaluated, span) {
Ok(Some(val)) => Ok(ty::Const::from_value(self.tcx, val, ty)),
Ok(None) => {
let tcx = self.tcx;
let def_id = unevaluated.def.did;
span_bug!(
tcx.def_span(def_id),
"unable to construct a constant value for the unevaluated constant {:?}",
unevaluated
);
}
Err(err) => Err(err),
}
}
/// Resolves and evaluates a constant.
///
/// The constant can be located on a trait like `<A as B>::C`, in which case the given
/// substitutions and environment are used to resolve the constant. Alternatively if the
/// constant has generic parameters in scope the substitutions are used to evaluate the value of
/// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
/// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
/// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
/// returned.
///
/// This handles inferences variables within both `param_env` and `substs` by
/// performing the operation on their respective canonical forms.
#[instrument(skip(self), level = "debug")]
pub fn const_eval_resolve(
&self,
mut param_env: ty::ParamEnv<'tcx>,
unevaluated: ty::UnevaluatedConst<'tcx>,
span: Option<Span>,
) -> EvalToValTreeResult<'tcx> {
let mut substs = self.resolve_vars_if_possible(unevaluated.substs);
debug!(?substs);
// Postpone the evaluation of constants whose substs depend on inference
// variables
if substs.has_non_region_infer() {
let ac = AbstractConst::new(self.tcx, unevaluated);
match ac {
Ok(None) => {
substs = InternalSubsts::identity_for_item(self.tcx, unevaluated.def.did);
param_env = self.tcx.param_env(unevaluated.def.did);
}
Ok(Some(ct)) => {
if ct.unify_failure_kind(self.tcx) == FailureKind::Concrete {
substs = replace_param_and_infer_substs_with_placeholder(self.tcx, substs);
} else {
return Err(ErrorHandled::TooGeneric);
}
}
Err(guar) => return Err(ErrorHandled::Reported(guar)),
}
}
let param_env_erased = self.tcx.erase_regions(param_env);
let substs_erased = self.tcx.erase_regions(substs);
debug!(?param_env_erased);
debug!(?substs_erased);
let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, substs: substs_erased };
// The return value is the evaluated value which doesn't contain any reference to inference
// variables, thus we don't need to substitute back the original values.
self.tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
}
/// `ty_or_const_infer_var_changed` is equivalent to one of these two:
/// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
/// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
///
/// However, `ty_or_const_infer_var_changed` is more efficient. It's always
/// inlined, despite being large, because it has only two call sites that
/// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
/// inference variables), and it handles both `Ty` and `ty::Const` without
/// having to resort to storing full `GenericArg`s in `stalled_on`.
#[inline(always)]
pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
match infer_var {
TyOrConstInferVar::Ty(v) => {
use self::type_variable::TypeVariableValue;
// If `inlined_probe` returns a `Known` value, it never equals
// `ty::Infer(ty::TyVar(v))`.
match self.inner.borrow_mut().type_variables().inlined_probe(v) {
TypeVariableValue::Unknown { .. } => false,
TypeVariableValue::Known { .. } => true,
}
}
TyOrConstInferVar::TyInt(v) => {
// If `inlined_probe_value` returns a value it's always a
// `ty::Int(_)` or `ty::UInt(_)`, which never matches a
// `ty::Infer(_)`.
self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
}
TyOrConstInferVar::TyFloat(v) => {
// If `probe_value` returns a value it's always a
// `ty::Float(_)`, which never matches a `ty::Infer(_)`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
}
TyOrConstInferVar::Const(v) => {
// If `probe_value` returns a `Known` value, it never equals
// `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
//
// Not `inlined_probe_value(v)` because this call site is colder.
match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
ConstVariableValue::Unknown { .. } => false,
ConstVariableValue::Known { .. } => true,
}
}
}
}
}
impl<'tcx> TypeErrCtxt<'_, 'tcx> {
/// Process the region constraints and report any errors that
/// result. After this, no more unification operations should be
/// done -- or the compiler will panic -- but it is legal to use
/// `resolve_vars_if_possible` as well as `fully_resolve`.
///
/// Make sure to call [`InferCtxt::process_registered_region_obligations`]
/// first, or preferably use [`InferCtxt::check_region_obligations_and_report_errors`]
/// to do both of these operations together.
pub fn resolve_regions_and_report_errors(
&self,
generic_param_scope: LocalDefId,
outlives_env: &OutlivesEnvironment<'tcx>,
) {
let errors = self.resolve_regions(outlives_env);
if !self.is_tainted_by_errors() {
// As a heuristic, just skip reporting region errors
// altogether if other errors have been reported while
// this infcx was in use. This is totally hokey but
// otherwise we have a hard time separating legit region
// errors from silly ones.
self.report_region_errors(generic_param_scope, &errors);
}
}
// [Note-Type-error-reporting]
// An invariant is that anytime the expected or actual type is Error (the special
// error type, meaning that an error occurred when typechecking this expression),
// this is a derived error. The error cascaded from another error (that was already
// reported), so it's not useful to display it to the user.
// The following methods implement this logic.
// They check if either the actual or expected type is Error, and don't print the error
// in this case. The typechecker should only ever report type errors involving mismatched
// types using one of these methods, and should not call span_err directly for such
// errors.
pub fn type_error_struct_with_diag<M>(
&self,
sp: Span,
mk_diag: M,
actual_ty: Ty<'tcx>,
) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>
where
M: FnOnce(String) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
{
let actual_ty = self.resolve_vars_if_possible(actual_ty);
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
let mut err = mk_diag(self.ty_to_string(actual_ty));
// Don't report an error if actual type is `Error`.
if actual_ty.references_error() {
err.downgrade_to_delayed_bug();
}
err
}
pub fn report_mismatched_types(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
err: TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
}
pub fn report_mismatched_consts(
&self,
cause: &ObligationCause<'tcx>,
expected: ty::Const<'tcx>,
actual: ty::Const<'tcx>,
err: TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
}
}
/// Helper for `ty_or_const_infer_var_changed` (see comment on that), currently
/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
#[derive(Copy, Clone, Debug)]
pub enum TyOrConstInferVar<'tcx> {
/// Equivalent to `ty::Infer(ty::TyVar(_))`.
Ty(TyVid),
/// Equivalent to `ty::Infer(ty::IntVar(_))`.
TyInt(IntVid),
/// Equivalent to `ty::Infer(ty::FloatVar(_))`.
TyFloat(FloatVid),
/// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
Const(ConstVid<'tcx>),
}
impl<'tcx> TyOrConstInferVar<'tcx> {
/// Tries to extract an inference variable from a type or a constant, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
match arg.unpack() {
GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
GenericArgKind::Lifetime(_) => None,
}
}
/// Tries to extract an inference variable from a type, returns `None`
/// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
match *ty.kind() {
ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
_ => None,
}
}
/// Tries to extract an inference variable from a constant, returns `None`
/// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
match ct.kind() {
ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
_ => None,
}
}
}
/// Replace `{integer}` with `i32` and `{float}` with `f64`.
/// Used only for diagnostics.
struct InferenceLiteralEraser<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> TypeFolder<'tcx> for InferenceLiteralEraser<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
_ => ty.super_fold_with(self),
}
}
}
struct ShallowResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
}
impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
/// If `ty` is a type variable of some kind, resolve it one level
/// (but do not resolve types found in the result). If `typ` is
/// not a type variable, just return it unmodified.
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Infer(ty::TyVar(v)) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifying to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
//
// Note: if these two lines are combined into one we get
// dynamic borrow errors on `self.inner`.
let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
known.map_or(ty, |t| self.fold_ty(t))
}
ty::Infer(ty::IntVar(v)) => self
.infcx
.inner
.borrow_mut()
.int_unification_table()
.probe_value(v)
.map_or(ty, |v| v.to_type(self.infcx.tcx)),
ty::Infer(ty::FloatVar(v)) => self
.infcx
.inner
.borrow_mut()
.float_unification_table()
.probe_value(v)
.map_or(ty, |v| v.to_type(self.infcx.tcx)),
_ => ty,
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
if let ty::ConstKind::Infer(InferConst::Var(vid)) = ct.kind() {
self.infcx
.inner
.borrow_mut()
.const_unification_table()
.probe_value(vid)
.val
.known()
.unwrap_or(ct)
} else {
ct
}
}
}
impl<'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span
}
pub fn types(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
pub fn poly_trait_refs(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::PolyTraitRef<'tcx>,
b: ty::PolyTraitRef<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
pub fn consts(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
}
impl<'tcx> SubregionOrigin<'tcx> {
pub fn span(&self) -> Span {
match *self {
Subtype(ref a) => a.span(),
RelateObjectBound(a) => a,
RelateParamBound(a, ..) => a,
RelateRegionParamBound(a) => a,
Reborrow(a) => a,
ReborrowUpvar(a, _) => a,
DataBorrowed(_, a) => a,
ReferenceOutlivesReferent(_, a) => a,
CompareImplItemObligation { span, .. } => span,
AscribeUserTypeProvePredicate(span) => span,
CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
}
}
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
where
F: FnOnce() -> Self,
{
match *cause.code() {
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
}
traits::ObligationCauseCode::CompareImplItemObligation {
impl_item_def_id,
trait_item_def_id,
kind: _,
} => SubregionOrigin::CompareImplItemObligation {
span: cause.span,
impl_item_def_id,
trait_item_def_id,
},
traits::ObligationCauseCode::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
} => SubregionOrigin::CheckAssociatedTypeBounds {
impl_item_def_id,
trait_item_def_id,
parent: Box::new(default()),
},
traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
SubregionOrigin::AscribeUserTypeProvePredicate(span)
}
_ => default(),
}
}
}
impl RegionVariableOrigin {
pub fn span(&self) -> Span {
match *self {
MiscVariable(a)
| PatternRegion(a)
| AddrOfRegion(a)
| Autoref(a)
| Coercion(a)
| EarlyBoundRegion(a, ..)
| LateBoundRegion(a, ..)
| UpvarRegion(_, a) => a,
Nll(..) => bug!("NLL variable used with `span`"),
}
}
}
/// Replaces substs that reference param or infer variables with suitable
/// placeholders. This function is meant to remove these param and infer
/// substs when they're not actually needed to evaluate a constant.
fn replace_param_and_infer_substs_with_placeholder<'tcx>(
tcx: TyCtxt<'tcx>,
substs: SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
tcx.mk_substs(substs.iter().enumerate().map(|(idx, arg)| {
match arg.unpack() {
GenericArgKind::Type(_) if arg.has_non_region_param() || arg.has_non_region_infer() => {
tcx.mk_ty(ty::Placeholder(ty::PlaceholderType {
universe: ty::UniverseIndex::ROOT,
name: ty::BoundVar::from_usize(idx),
}))
.into()
}
GenericArgKind::Const(ct) if ct.has_non_region_infer() || ct.has_non_region_param() => {
let ty = ct.ty();
// If the type references param or infer, replace that too...
if ty.has_non_region_param() || ty.has_non_region_infer() {
bug!("const `{ct}`'s type should not reference params or types");
}
tcx.mk_const(ty::ConstS {
ty,
kind: ty::ConstKind::Placeholder(ty::PlaceholderConst {
universe: ty::UniverseIndex::ROOT,
name: ty::BoundVar::from_usize(idx),
}),
})
.into()
}
_ => arg,
}
}))
}