blob: 4db9c56f98fee3440daa27e6aafa5e4002c283bf [file] [log] [blame]
use super::FnCtxt;
use crate::errors::{AddReturnTypeSuggestion, ExpectedReturnTypeLabel};
use rustc_ast::util::parser::{ExprPrecedence, PREC_POSTFIX};
use rustc_errors::{Applicability, Diagnostic, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind};
use rustc_hir::lang_items::LangItem;
use rustc_hir::{
Expr, ExprKind, GenericBound, Node, Path, QPath, Stmt, StmtKind, TyKind, WherePredicate,
};
use rustc_hir_analysis::astconv::AstConv;
use rustc_infer::infer::{self, TyCtxtInferExt};
use rustc_infer::traits::{self, StatementAsExpression};
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::{self, Binder, IsSuggestable, ToPredicate, Ty};
use rustc_session::errors::ExprParenthesesNeeded;
use rustc_span::symbol::sym;
use rustc_span::Span;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::error_reporting::DefIdOrName;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(in super::super) fn suggest_semicolon_at_end(&self, span: Span, err: &mut Diagnostic) {
err.span_suggestion_short(
span.shrink_to_hi(),
"consider using a semicolon here",
";",
Applicability::MachineApplicable,
);
}
/// On implicit return expressions with mismatched types, provides the following suggestions:
///
/// - Points out the method's return type as the reason for the expected type.
/// - Possible missing semicolon.
/// - Possible missing return type if the return type is the default, and not `fn main()`.
pub fn suggest_mismatched_types_on_tail(
&self,
err: &mut Diagnostic,
expr: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
blk_id: hir::HirId,
) -> bool {
let expr = expr.peel_drop_temps();
self.suggest_missing_semicolon(err, expr, expected, false);
let mut pointing_at_return_type = false;
if let Some((fn_decl, can_suggest)) = self.get_fn_decl(blk_id) {
let fn_id = self.tcx.hir().get_return_block(blk_id).unwrap();
pointing_at_return_type = self.suggest_missing_return_type(
err,
&fn_decl,
expected,
found,
can_suggest,
fn_id,
);
self.suggest_missing_break_or_return_expr(
err, expr, &fn_decl, expected, found, blk_id, fn_id,
);
}
pointing_at_return_type
}
/// When encountering an fn-like type, try accessing the output of the type
/// and suggesting calling it if it satisfies a predicate (i.e. if the
/// output has a method or a field):
/// ```compile_fail,E0308
/// fn foo(x: usize) -> usize { x }
/// let x: usize = foo; // suggest calling the `foo` function: `foo(42)`
/// ```
pub(crate) fn suggest_fn_call(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
found: Ty<'tcx>,
can_satisfy: impl FnOnce(Ty<'tcx>) -> bool,
) -> bool {
let Some((def_id_or_name, output, inputs)) = self.extract_callable_info(expr, found)
else { return false; };
if can_satisfy(output) {
let (sugg_call, mut applicability) = match inputs.len() {
0 => ("".to_string(), Applicability::MachineApplicable),
1..=4 => (
inputs
.iter()
.map(|ty| {
if ty.is_suggestable(self.tcx, false) {
format!("/* {ty} */")
} else {
"/* value */".to_string()
}
})
.collect::<Vec<_>>()
.join(", "),
Applicability::HasPlaceholders,
),
_ => ("/* ... */".to_string(), Applicability::HasPlaceholders),
};
let msg = match def_id_or_name {
DefIdOrName::DefId(def_id) => match self.tcx.def_kind(def_id) {
DefKind::Ctor(CtorOf::Struct, _) => "construct this tuple struct".to_string(),
DefKind::Ctor(CtorOf::Variant, _) => "construct this tuple variant".to_string(),
kind => format!("call this {}", kind.descr(def_id)),
},
DefIdOrName::Name(name) => format!("call this {name}"),
};
let sugg = match expr.kind {
hir::ExprKind::Call(..)
| hir::ExprKind::Path(..)
| hir::ExprKind::Index(..)
| hir::ExprKind::Lit(..) => {
vec![(expr.span.shrink_to_hi(), format!("({sugg_call})"))]
}
hir::ExprKind::Closure { .. } => {
// Might be `{ expr } || { bool }`
applicability = Applicability::MaybeIncorrect;
vec![
(expr.span.shrink_to_lo(), "(".to_string()),
(expr.span.shrink_to_hi(), format!(")({sugg_call})")),
]
}
_ => {
vec![
(expr.span.shrink_to_lo(), "(".to_string()),
(expr.span.shrink_to_hi(), format!(")({sugg_call})")),
]
}
};
err.multipart_suggestion_verbose(
format!("use parentheses to {msg}"),
sugg,
applicability,
);
return true;
}
false
}
/// Extracts information about a callable type for diagnostics. This is a
/// heuristic -- it doesn't necessarily mean that a type is always callable,
/// because the callable type must also be well-formed to be called.
pub(in super::super) fn extract_callable_info(
&self,
expr: &Expr<'_>,
found: Ty<'tcx>,
) -> Option<(DefIdOrName, Ty<'tcx>, Vec<Ty<'tcx>>)> {
// Autoderef is useful here because sometimes we box callables, etc.
let Some((def_id_or_name, output, inputs)) = self.autoderef(expr.span, found).silence_errors().find_map(|(found, _)| {
match *found.kind() {
ty::FnPtr(fn_sig) =>
Some((DefIdOrName::Name("function pointer"), fn_sig.output(), fn_sig.inputs())),
ty::FnDef(def_id, _) => {
let fn_sig = found.fn_sig(self.tcx);
Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs()))
}
ty::Closure(def_id, substs) => {
let fn_sig = substs.as_closure().sig();
Some((DefIdOrName::DefId(def_id), fn_sig.output(), fn_sig.inputs().map_bound(|inputs| &inputs[1..])))
}
ty::Opaque(def_id, substs) => {
self.tcx.bound_item_bounds(def_id).subst(self.tcx, substs).iter().find_map(|pred| {
if let ty::PredicateKind::Projection(proj) = pred.kind().skip_binder()
&& Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
DefIdOrName::DefId(def_id),
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Dynamic(data, _, ty::Dyn) => {
data.iter().find_map(|pred| {
if let ty::ExistentialPredicate::Projection(proj) = pred.skip_binder()
&& Some(proj.item_def_id) == self.tcx.lang_items().fn_once_output()
// for existential projection, substs are shifted over by 1
&& let ty::Tuple(args) = proj.substs.type_at(0).kind()
{
Some((
DefIdOrName::Name("trait object"),
pred.rebind(proj.term.ty().unwrap()),
pred.rebind(args.as_slice()),
))
} else {
None
}
})
}
ty::Param(param) => {
let def_id = self.tcx.generics_of(self.body_id.owner).type_param(&param, self.tcx).def_id;
self.tcx.predicates_of(self.body_id.owner).predicates.iter().find_map(|(pred, _)| {
if let ty::PredicateKind::Projection(proj) = pred.kind().skip_binder()
&& Some(proj.projection_ty.item_def_id) == self.tcx.lang_items().fn_once_output()
&& proj.projection_ty.self_ty() == found
// args tuple will always be substs[1]
&& let ty::Tuple(args) = proj.projection_ty.substs.type_at(1).kind()
{
Some((
DefIdOrName::DefId(def_id),
pred.kind().rebind(proj.term.ty().unwrap()),
pred.kind().rebind(args.as_slice()),
))
} else {
None
}
})
}
_ => None,
}
}) else { return None; };
let output = self.replace_bound_vars_with_fresh_vars(expr.span, infer::FnCall, output);
let inputs = inputs
.skip_binder()
.iter()
.map(|ty| {
self.replace_bound_vars_with_fresh_vars(
expr.span,
infer::FnCall,
inputs.rebind(*ty),
)
})
.collect();
// We don't want to register any extra obligations, which should be
// implied by wf, but also because that would possibly result in
// erroneous errors later on.
let infer::InferOk { value: output, obligations: _ } =
self.normalize_associated_types_in_as_infer_ok(expr.span, output);
if output.is_ty_var() { None } else { Some((def_id_or_name, output, inputs)) }
}
pub fn suggest_two_fn_call(
&self,
err: &mut Diagnostic,
lhs_expr: &'tcx hir::Expr<'tcx>,
lhs_ty: Ty<'tcx>,
rhs_expr: &'tcx hir::Expr<'tcx>,
rhs_ty: Ty<'tcx>,
can_satisfy: impl FnOnce(Ty<'tcx>, Ty<'tcx>) -> bool,
) -> bool {
let Some((_, lhs_output_ty, lhs_inputs)) = self.extract_callable_info(lhs_expr, lhs_ty)
else { return false; };
let Some((_, rhs_output_ty, rhs_inputs)) = self.extract_callable_info(rhs_expr, rhs_ty)
else { return false; };
if can_satisfy(lhs_output_ty, rhs_output_ty) {
let mut sugg = vec![];
let mut applicability = Applicability::MachineApplicable;
for (expr, inputs) in [(lhs_expr, lhs_inputs), (rhs_expr, rhs_inputs)] {
let (sugg_call, this_applicability) = match inputs.len() {
0 => ("".to_string(), Applicability::MachineApplicable),
1..=4 => (
inputs
.iter()
.map(|ty| {
if ty.is_suggestable(self.tcx, false) {
format!("/* {ty} */")
} else {
"/* value */".to_string()
}
})
.collect::<Vec<_>>()
.join(", "),
Applicability::HasPlaceholders,
),
_ => ("/* ... */".to_string(), Applicability::HasPlaceholders),
};
applicability = applicability.max(this_applicability);
match expr.kind {
hir::ExprKind::Call(..)
| hir::ExprKind::Path(..)
| hir::ExprKind::Index(..)
| hir::ExprKind::Lit(..) => {
sugg.extend([(expr.span.shrink_to_hi(), format!("({sugg_call})"))]);
}
hir::ExprKind::Closure { .. } => {
// Might be `{ expr } || { bool }`
applicability = Applicability::MaybeIncorrect;
sugg.extend([
(expr.span.shrink_to_lo(), "(".to_string()),
(expr.span.shrink_to_hi(), format!(")({sugg_call})")),
]);
}
_ => {
sugg.extend([
(expr.span.shrink_to_lo(), "(".to_string()),
(expr.span.shrink_to_hi(), format!(")({sugg_call})")),
]);
}
}
}
err.multipart_suggestion_verbose(
format!("use parentheses to call these"),
sugg,
applicability,
);
true
} else {
false
}
}
pub fn suggest_deref_ref_or_into(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) -> bool {
let expr = expr.peel_blocks();
if let Some((sp, msg, suggestion, applicability, verbose, annotation)) =
self.check_ref(expr, found, expected)
{
if verbose {
err.span_suggestion_verbose(sp, &msg, suggestion, applicability);
} else {
err.span_suggestion(sp, &msg, suggestion, applicability);
}
if annotation {
let suggest_annotation = match expr.peel_drop_temps().kind {
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Not, _) => "&",
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Mut, _) => "&mut ",
_ => return true,
};
let mut tuple_indexes = Vec::new();
let mut expr_id = expr.hir_id;
for (parent_id, node) in self.tcx.hir().parent_iter(expr.hir_id) {
match node {
Node::Expr(&Expr { kind: ExprKind::Tup(subs), .. }) => {
tuple_indexes.push(
subs.iter()
.enumerate()
.find(|(_, sub_expr)| sub_expr.hir_id == expr_id)
.unwrap()
.0,
);
expr_id = parent_id;
}
Node::Local(local) => {
if let Some(mut ty) = local.ty {
while let Some(index) = tuple_indexes.pop() {
match ty.kind {
TyKind::Tup(tys) => ty = &tys[index],
_ => return true,
}
}
let annotation_span = ty.span;
err.span_suggestion(
annotation_span.with_hi(annotation_span.lo()),
format!("alternatively, consider changing the type annotation"),
suggest_annotation,
Applicability::MaybeIncorrect,
);
}
break;
}
_ => break,
}
}
}
return true;
} else if self.suggest_else_fn_with_closure(err, expr, found, expected) {
return true;
} else if self.suggest_fn_call(err, expr, found, |output| self.can_coerce(output, expected))
&& let ty::FnDef(def_id, ..) = &found.kind()
&& let Some(sp) = self.tcx.hir().span_if_local(*def_id)
{
err.span_label(sp, format!("{found} defined here"));
return true;
} else if self.check_for_cast(err, expr, found, expected, expected_ty_expr) {
return true;
} else {
let methods = self.get_conversion_methods(expr.span, expected, found, expr.hir_id);
if !methods.is_empty() {
let mut suggestions = methods.iter()
.filter_map(|conversion_method| {
let receiver_method_ident = expr.method_ident();
if let Some(method_ident) = receiver_method_ident
&& method_ident.name == conversion_method.name
{
return None // do not suggest code that is already there (#53348)
}
let method_call_list = [sym::to_vec, sym::to_string];
let mut sugg = if let ExprKind::MethodCall(receiver_method, ..) = expr.kind
&& receiver_method.ident.name == sym::clone
&& method_call_list.contains(&conversion_method.name)
// If receiver is `.clone()` and found type has one of those methods,
// we guess that the user wants to convert from a slice type (`&[]` or `&str`)
// to an owned type (`Vec` or `String`). These conversions clone internally,
// so we remove the user's `clone` call.
{
vec![(
receiver_method.ident.span,
conversion_method.name.to_string()
)]
} else if expr.precedence().order()
< ExprPrecedence::MethodCall.order()
{
vec![
(expr.span.shrink_to_lo(), "(".to_string()),
(expr.span.shrink_to_hi(), format!(").{}()", conversion_method.name)),
]
} else {
vec![(expr.span.shrink_to_hi(), format!(".{}()", conversion_method.name))]
};
let struct_pat_shorthand_field = self.maybe_get_struct_pattern_shorthand_field(expr);
if let Some(name) = struct_pat_shorthand_field {
sugg.insert(
0,
(expr.span.shrink_to_lo(), format!("{}: ", name)),
);
}
Some(sugg)
})
.peekable();
if suggestions.peek().is_some() {
err.multipart_suggestions(
"try using a conversion method",
suggestions,
Applicability::MaybeIncorrect,
);
return true;
}
} else if let ty::Adt(found_adt, found_substs) = found.kind()
&& self.tcx.is_diagnostic_item(sym::Option, found_adt.did())
&& let ty::Adt(expected_adt, expected_substs) = expected.kind()
&& self.tcx.is_diagnostic_item(sym::Option, expected_adt.did())
&& let ty::Ref(_, inner_ty, _) = expected_substs.type_at(0).kind()
&& inner_ty.is_str()
{
let ty = found_substs.type_at(0);
let mut peeled = ty;
let mut ref_cnt = 0;
while let ty::Ref(_, inner, _) = peeled.kind() {
peeled = *inner;
ref_cnt += 1;
}
if let ty::Adt(adt, _) = peeled.kind()
&& self.tcx.is_diagnostic_item(sym::String, adt.did())
{
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
"try converting the passed type into a `&str`",
format!(".map(|x| &*{}x)", "*".repeat(ref_cnt)),
Applicability::MaybeIncorrect,
);
return true;
}
}
}
false
}
/// When encountering the expected boxed value allocated in the stack, suggest allocating it
/// in the heap by calling `Box::new()`.
pub(in super::super) fn suggest_boxing_when_appropriate(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
) -> bool {
if self.tcx.hir().is_inside_const_context(expr.hir_id) {
// Do not suggest `Box::new` in const context.
return false;
}
if !expected.is_box() || found.is_box() {
return false;
}
let boxed_found = self.tcx.mk_box(found);
if self.can_coerce(boxed_found, expected) {
err.multipart_suggestion(
"store this in the heap by calling `Box::new`",
vec![
(expr.span.shrink_to_lo(), "Box::new(".to_string()),
(expr.span.shrink_to_hi(), ")".to_string()),
],
Applicability::MachineApplicable,
);
err.note(
"for more on the distinction between the stack and the heap, read \
https://doc.rust-lang.org/book/ch15-01-box.html, \
https://doc.rust-lang.org/rust-by-example/std/box.html, and \
https://doc.rust-lang.org/std/boxed/index.html",
);
true
} else {
false
}
}
/// When encountering a closure that captures variables, where a FnPtr is expected,
/// suggest a non-capturing closure
pub(in super::super) fn suggest_no_capture_closure(
&self,
err: &mut Diagnostic,
expected: Ty<'tcx>,
found: Ty<'tcx>,
) -> bool {
if let (ty::FnPtr(_), ty::Closure(def_id, _)) = (expected.kind(), found.kind()) {
if let Some(upvars) = self.tcx.upvars_mentioned(*def_id) {
// Report upto four upvars being captured to reduce the amount error messages
// reported back to the user.
let spans_and_labels = upvars
.iter()
.take(4)
.map(|(var_hir_id, upvar)| {
let var_name = self.tcx.hir().name(*var_hir_id).to_string();
let msg = format!("`{}` captured here", var_name);
(upvar.span, msg)
})
.collect::<Vec<_>>();
let mut multi_span: MultiSpan =
spans_and_labels.iter().map(|(sp, _)| *sp).collect::<Vec<_>>().into();
for (sp, label) in spans_and_labels {
multi_span.push_span_label(sp, label);
}
err.span_note(
multi_span,
"closures can only be coerced to `fn` types if they do not capture any variables"
);
return true;
}
}
false
}
/// When encountering an `impl Future` where `BoxFuture` is expected, suggest `Box::pin`.
#[instrument(skip(self, err))]
pub(in super::super) fn suggest_calling_boxed_future_when_appropriate(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
) -> bool {
// Handle #68197.
if self.tcx.hir().is_inside_const_context(expr.hir_id) {
// Do not suggest `Box::new` in const context.
return false;
}
let pin_did = self.tcx.lang_items().pin_type();
// This guards the `unwrap` and `mk_box` below.
if pin_did.is_none() || self.tcx.lang_items().owned_box().is_none() {
return false;
}
let box_found = self.tcx.mk_box(found);
let pin_box_found = self.tcx.mk_lang_item(box_found, LangItem::Pin).unwrap();
let pin_found = self.tcx.mk_lang_item(found, LangItem::Pin).unwrap();
match expected.kind() {
ty::Adt(def, _) if Some(def.did()) == pin_did => {
if self.can_coerce(pin_box_found, expected) {
debug!("can coerce {:?} to {:?}, suggesting Box::pin", pin_box_found, expected);
match found.kind() {
ty::Adt(def, _) if def.is_box() => {
err.help("use `Box::pin`");
}
_ => {
err.multipart_suggestion(
"you need to pin and box this expression",
vec![
(expr.span.shrink_to_lo(), "Box::pin(".to_string()),
(expr.span.shrink_to_hi(), ")".to_string()),
],
Applicability::MaybeIncorrect,
);
}
}
true
} else if self.can_coerce(pin_found, expected) {
match found.kind() {
ty::Adt(def, _) if def.is_box() => {
err.help("use `Box::pin`");
true
}
_ => false,
}
} else {
false
}
}
ty::Adt(def, _) if def.is_box() && self.can_coerce(box_found, expected) => {
// Check if the parent expression is a call to Pin::new. If it
// is and we were expecting a Box, ergo Pin<Box<expected>>, we
// can suggest Box::pin.
let parent = self.tcx.hir().get_parent_node(expr.hir_id);
let Some(Node::Expr(Expr { kind: ExprKind::Call(fn_name, _), .. })) = self.tcx.hir().find(parent) else {
return false;
};
match fn_name.kind {
ExprKind::Path(QPath::TypeRelative(
hir::Ty {
kind: TyKind::Path(QPath::Resolved(_, Path { res: recv_ty, .. })),
..
},
method,
)) if recv_ty.opt_def_id() == pin_did && method.ident.name == sym::new => {
err.span_suggestion(
fn_name.span,
"use `Box::pin` to pin and box this expression",
"Box::pin",
Applicability::MachineApplicable,
);
true
}
_ => false,
}
}
_ => false,
}
}
/// A common error is to forget to add a semicolon at the end of a block, e.g.,
///
/// ```compile_fail,E0308
/// # fn bar_that_returns_u32() -> u32 { 4 }
/// fn foo() {
/// bar_that_returns_u32()
/// }
/// ```
///
/// This routine checks if the return expression in a block would make sense on its own as a
/// statement and the return type has been left as default or has been specified as `()`. If so,
/// it suggests adding a semicolon.
///
/// If the expression is the expression of a closure without block (`|| expr`), a
/// block is needed to be added too (`|| { expr; }`). This is denoted by `needs_block`.
pub fn suggest_missing_semicolon(
&self,
err: &mut Diagnostic,
expression: &'tcx hir::Expr<'tcx>,
expected: Ty<'tcx>,
needs_block: bool,
) {
if expected.is_unit() {
// `BlockTailExpression` only relevant if the tail expr would be
// useful on its own.
match expression.kind {
ExprKind::Call(..)
| ExprKind::MethodCall(..)
| ExprKind::Loop(..)
| ExprKind::If(..)
| ExprKind::Match(..)
| ExprKind::Block(..)
if expression.can_have_side_effects()
// If the expression is from an external macro, then do not suggest
// adding a semicolon, because there's nowhere to put it.
// See issue #81943.
&& !in_external_macro(self.tcx.sess, expression.span) =>
{
if needs_block {
err.multipart_suggestion(
"consider using a semicolon here",
vec![
(expression.span.shrink_to_lo(), "{ ".to_owned()),
(expression.span.shrink_to_hi(), "; }".to_owned()),
],
Applicability::MachineApplicable,
);
} else {
err.span_suggestion(
expression.span.shrink_to_hi(),
"consider using a semicolon here",
";",
Applicability::MachineApplicable,
);
}
}
_ => (),
}
}
}
/// A possible error is to forget to add a return type that is needed:
///
/// ```compile_fail,E0308
/// # fn bar_that_returns_u32() -> u32 { 4 }
/// fn foo() {
/// bar_that_returns_u32()
/// }
/// ```
///
/// This routine checks if the return type is left as default, the method is not part of an
/// `impl` block and that it isn't the `main` method. If so, it suggests setting the return
/// type.
pub(in super::super) fn suggest_missing_return_type(
&self,
err: &mut Diagnostic,
fn_decl: &hir::FnDecl<'_>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
can_suggest: bool,
fn_id: hir::HirId,
) -> bool {
let found =
self.resolve_numeric_literals_with_default(self.resolve_vars_if_possible(found));
// Only suggest changing the return type for methods that
// haven't set a return type at all (and aren't `fn main()` or an impl).
match &fn_decl.output {
&hir::FnRetTy::DefaultReturn(span) if expected.is_unit() && !can_suggest => {
// `fn main()` must return `()`, do not suggest changing return type
err.subdiagnostic(ExpectedReturnTypeLabel::Unit { span });
return true;
}
&hir::FnRetTy::DefaultReturn(span) if expected.is_unit() => {
if found.is_suggestable(self.tcx, false) {
err.subdiagnostic(AddReturnTypeSuggestion::Add { span, found: found.to_string() });
return true;
} else if let ty::Closure(_, substs) = found.kind()
// FIXME(compiler-errors): Get better at printing binders...
&& let closure = substs.as_closure()
&& closure.sig().is_suggestable(self.tcx, false)
{
err.subdiagnostic(AddReturnTypeSuggestion::Add { span, found: closure.print_as_impl_trait().to_string() });
return true;
} else {
// FIXME: if `found` could be `impl Iterator` we should suggest that.
err.subdiagnostic(AddReturnTypeSuggestion::MissingHere { span });
return true
}
}
&hir::FnRetTy::Return(ref ty) => {
// Only point to return type if the expected type is the return type, as if they
// are not, the expectation must have been caused by something else.
debug!("suggest_missing_return_type: return type {:?} node {:?}", ty, ty.kind);
let span = ty.span;
let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
debug!("suggest_missing_return_type: return type {:?}", ty);
debug!("suggest_missing_return_type: expected type {:?}", ty);
let bound_vars = self.tcx.late_bound_vars(fn_id);
let ty = Binder::bind_with_vars(ty, bound_vars);
let ty = self.normalize_associated_types_in(span, ty);
let ty = self.tcx.erase_late_bound_regions(ty);
if self.can_coerce(expected, ty) {
err.subdiagnostic(ExpectedReturnTypeLabel::Other { span, expected });
self.try_suggest_return_impl_trait(err, expected, ty, fn_id);
return true;
}
}
_ => {}
}
false
}
/// check whether the return type is a generic type with a trait bound
/// only suggest this if the generic param is not present in the arguments
/// if this is true, hint them towards changing the return type to `impl Trait`
/// ```compile_fail,E0308
/// fn cant_name_it<T: Fn() -> u32>() -> T {
/// || 3
/// }
/// ```
fn try_suggest_return_impl_trait(
&self,
err: &mut Diagnostic,
expected: Ty<'tcx>,
found: Ty<'tcx>,
fn_id: hir::HirId,
) {
// Only apply the suggestion if:
// - the return type is a generic parameter
// - the generic param is not used as a fn param
// - the generic param has at least one bound
// - the generic param doesn't appear in any other bounds where it's not the Self type
// Suggest:
// - Changing the return type to be `impl <all bounds>`
debug!("try_suggest_return_impl_trait, expected = {:?}, found = {:?}", expected, found);
let ty::Param(expected_ty_as_param) = expected.kind() else { return };
let fn_node = self.tcx.hir().find(fn_id);
let Some(hir::Node::Item(hir::Item {
kind:
hir::ItemKind::Fn(
hir::FnSig { decl: hir::FnDecl { inputs: fn_parameters, output: fn_return, .. }, .. },
hir::Generics { params, predicates, .. },
_body_id,
),
..
})) = fn_node else { return };
if params.get(expected_ty_as_param.index as usize).is_none() {
return;
};
// get all where BoundPredicates here, because they are used in to cases below
let where_predicates = predicates
.iter()
.filter_map(|p| match p {
WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
bounds,
bounded_ty,
..
}) => {
// FIXME: Maybe these calls to `ast_ty_to_ty` can be removed (and the ones below)
let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, bounded_ty);
Some((ty, bounds))
}
_ => None,
})
.map(|(ty, bounds)| match ty.kind() {
ty::Param(param_ty) if param_ty == expected_ty_as_param => Ok(Some(bounds)),
// check whether there is any predicate that contains our `T`, like `Option<T>: Send`
_ => match ty.contains(expected) {
true => Err(()),
false => Ok(None),
},
})
.collect::<Result<Vec<_>, _>>();
let Ok(where_predicates) = where_predicates else { return };
// now get all predicates in the same types as the where bounds, so we can chain them
let predicates_from_where =
where_predicates.iter().flatten().flat_map(|bounds| bounds.iter());
// extract all bounds from the source code using their spans
let all_matching_bounds_strs = predicates_from_where
.filter_map(|bound| match bound {
GenericBound::Trait(_, _) => {
self.tcx.sess.source_map().span_to_snippet(bound.span()).ok()
}
_ => None,
})
.collect::<Vec<String>>();
if all_matching_bounds_strs.len() == 0 {
return;
}
let all_bounds_str = all_matching_bounds_strs.join(" + ");
let ty_param_used_in_fn_params = fn_parameters.iter().any(|param| {
let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, param);
matches!(ty.kind(), ty::Param(fn_param_ty_param) if expected_ty_as_param == fn_param_ty_param)
});
if ty_param_used_in_fn_params {
return;
}
err.span_suggestion(
fn_return.span(),
"consider using an impl return type",
format!("impl {}", all_bounds_str),
Applicability::MaybeIncorrect,
);
}
pub(in super::super) fn suggest_missing_break_or_return_expr(
&self,
err: &mut Diagnostic,
expr: &'tcx hir::Expr<'tcx>,
fn_decl: &hir::FnDecl<'_>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
id: hir::HirId,
fn_id: hir::HirId,
) {
if !expected.is_unit() {
return;
}
let found = self.resolve_vars_with_obligations(found);
let in_loop = self.is_loop(id)
|| self.tcx.hir().parent_iter(id).any(|(parent_id, _)| self.is_loop(parent_id));
let in_local_statement = self.is_local_statement(id)
|| self
.tcx
.hir()
.parent_iter(id)
.any(|(parent_id, _)| self.is_local_statement(parent_id));
if in_loop && in_local_statement {
err.multipart_suggestion(
"you might have meant to break the loop with this value",
vec![
(expr.span.shrink_to_lo(), "break ".to_string()),
(expr.span.shrink_to_hi(), ";".to_string()),
],
Applicability::MaybeIncorrect,
);
return;
}
if let hir::FnRetTy::Return(ty) = fn_decl.output {
let ty = <dyn AstConv<'_>>::ast_ty_to_ty(self, ty);
let bound_vars = self.tcx.late_bound_vars(fn_id);
let ty = self.tcx.erase_late_bound_regions(Binder::bind_with_vars(ty, bound_vars));
let ty = self.normalize_associated_types_in(expr.span, ty);
let ty = match self.tcx.asyncness(fn_id.owner) {
hir::IsAsync::Async => {
let infcx = self.tcx.infer_ctxt().build();
infcx
.get_impl_future_output_ty(ty)
.unwrap_or_else(|| {
span_bug!(
fn_decl.output.span(),
"failed to get output type of async function"
)
})
.skip_binder()
}
hir::IsAsync::NotAsync => ty,
};
if self.can_coerce(found, ty) {
err.multipart_suggestion(
"you might have meant to return this value",
vec![
(expr.span.shrink_to_lo(), "return ".to_string()),
(expr.span.shrink_to_hi(), ";".to_string()),
],
Applicability::MaybeIncorrect,
);
}
}
}
pub(in super::super) fn suggest_missing_parentheses(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
) -> bool {
let sp = self.tcx.sess.source_map().start_point(expr.span);
if let Some(sp) = self.tcx.sess.parse_sess.ambiguous_block_expr_parse.borrow().get(&sp) {
// `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
true
} else {
false
}
}
/// Given an expression type mismatch, peel any `&` expressions until we get to
/// a block expression, and then suggest replacing the braces with square braces
/// if it was possibly mistaken array syntax.
pub(crate) fn suggest_block_to_brackets_peeling_refs(
&self,
diag: &mut Diagnostic,
mut expr: &hir::Expr<'_>,
mut expr_ty: Ty<'tcx>,
mut expected_ty: Ty<'tcx>,
) -> bool {
loop {
match (&expr.kind, expr_ty.kind(), expected_ty.kind()) {
(
hir::ExprKind::AddrOf(_, _, inner_expr),
ty::Ref(_, inner_expr_ty, _),
ty::Ref(_, inner_expected_ty, _),
) => {
expr = *inner_expr;
expr_ty = *inner_expr_ty;
expected_ty = *inner_expected_ty;
}
(hir::ExprKind::Block(blk, _), _, _) => {
self.suggest_block_to_brackets(diag, *blk, expr_ty, expected_ty);
break true;
}
_ => break false,
}
}
}
pub(crate) fn suggest_copied_or_cloned(
&self,
diag: &mut Diagnostic,
expr: &hir::Expr<'_>,
expr_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
) -> bool {
let ty::Adt(adt_def, substs) = expr_ty.kind() else { return false; };
let ty::Adt(expected_adt_def, expected_substs) = expected_ty.kind() else { return false; };
if adt_def != expected_adt_def {
return false;
}
let mut suggest_copied_or_cloned = || {
let expr_inner_ty = substs.type_at(0);
let expected_inner_ty = expected_substs.type_at(0);
if let ty::Ref(_, ty, hir::Mutability::Not) = expr_inner_ty.kind()
&& self.can_eq(self.param_env, *ty, expected_inner_ty).is_ok()
{
let def_path = self.tcx.def_path_str(adt_def.did());
if self.type_is_copy_modulo_regions(self.param_env, *ty, expr.span) {
diag.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use `{def_path}::copied` to copy the value inside the `{def_path}`"
),
".copied()",
Applicability::MachineApplicable,
);
return true;
} else if let Some(clone_did) = self.tcx.lang_items().clone_trait()
&& rustc_trait_selection::traits::type_known_to_meet_bound_modulo_regions(
self,
self.param_env,
*ty,
clone_did,
expr.span
)
{
diag.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use `{def_path}::cloned` to clone the value inside the `{def_path}`"
),
".cloned()",
Applicability::MachineApplicable,
);
return true;
}
}
false
};
if let Some(result_did) = self.tcx.get_diagnostic_item(sym::Result)
&& adt_def.did() == result_did
// Check that the error types are equal
&& self.can_eq(self.param_env, substs.type_at(1), expected_substs.type_at(1)).is_ok()
{
return suggest_copied_or_cloned();
} else if let Some(option_did) = self.tcx.get_diagnostic_item(sym::Option)
&& adt_def.did() == option_did
{
return suggest_copied_or_cloned();
}
false
}
pub(crate) fn suggest_into(
&self,
diag: &mut Diagnostic,
expr: &hir::Expr<'_>,
expr_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
) -> bool {
let expr = expr.peel_blocks();
// We have better suggestions for scalar interconversions...
if expr_ty.is_scalar() && expected_ty.is_scalar() {
return false;
}
// Don't suggest turning a block into another type (e.g. `{}.into()`)
if matches!(expr.kind, hir::ExprKind::Block(..)) {
return false;
}
// We'll later suggest `.as_ref` when noting the type error,
// so skip if we will suggest that instead.
if self.err_ctxt().should_suggest_as_ref(expected_ty, expr_ty).is_some() {
return false;
}
if let Some(into_def_id) = self.tcx.get_diagnostic_item(sym::Into)
&& self.predicate_must_hold_modulo_regions(&traits::Obligation::new(
self.misc(expr.span),
self.param_env,
ty::Binder::dummy(ty::TraitRef {
def_id: into_def_id,
substs: self.tcx.mk_substs_trait(expr_ty, &[expected_ty.into()]),
})
.to_poly_trait_predicate()
.to_predicate(self.tcx),
))
{
let sugg = if expr.precedence().order() >= PREC_POSTFIX {
vec![(expr.span.shrink_to_hi(), ".into()".to_owned())]
} else {
vec![(expr.span.shrink_to_lo(), "(".to_owned()), (expr.span.shrink_to_hi(), ").into()".to_owned())]
};
diag.multipart_suggestion(
format!("call `Into::into` on this expression to convert `{expr_ty}` into `{expected_ty}`"),
sugg,
Applicability::MaybeIncorrect
);
return true;
}
false
}
/// Suggest wrapping the block in square brackets instead of curly braces
/// in case the block was mistaken array syntax, e.g. `{ 1 }` -> `[ 1 ]`.
pub(crate) fn suggest_block_to_brackets(
&self,
diag: &mut Diagnostic,
blk: &hir::Block<'_>,
blk_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
) {
if let ty::Slice(elem_ty) | ty::Array(elem_ty, _) = expected_ty.kind() {
if self.can_coerce(blk_ty, *elem_ty)
&& blk.stmts.is_empty()
&& blk.rules == hir::BlockCheckMode::DefaultBlock
{
let source_map = self.tcx.sess.source_map();
if let Ok(snippet) = source_map.span_to_snippet(blk.span) {
if snippet.starts_with('{') && snippet.ends_with('}') {
diag.multipart_suggestion_verbose(
"to create an array, use square brackets instead of curly braces",
vec![
(
blk.span
.shrink_to_lo()
.with_hi(rustc_span::BytePos(blk.span.lo().0 + 1)),
"[".to_string(),
),
(
blk.span
.shrink_to_hi()
.with_lo(rustc_span::BytePos(blk.span.hi().0 - 1)),
"]".to_string(),
),
],
Applicability::MachineApplicable,
);
}
}
}
}
}
fn is_loop(&self, id: hir::HirId) -> bool {
let node = self.tcx.hir().get(id);
matches!(node, Node::Expr(Expr { kind: ExprKind::Loop(..), .. }))
}
fn is_local_statement(&self, id: hir::HirId) -> bool {
let node = self.tcx.hir().get(id);
matches!(node, Node::Stmt(Stmt { kind: StmtKind::Local(..), .. }))
}
/// Suggest that `&T` was cloned instead of `T` because `T` does not implement `Clone`,
/// which is a side-effect of autoref.
pub(crate) fn note_type_is_not_clone(
&self,
diag: &mut Diagnostic,
expected_ty: Ty<'tcx>,
found_ty: Ty<'tcx>,
expr: &hir::Expr<'_>,
) {
let hir::ExprKind::MethodCall(segment, callee_expr, &[], _) = expr.kind else { return; };
let Some(clone_trait_did) = self.tcx.lang_items().clone_trait() else { return; };
let ty::Ref(_, pointee_ty, _) = found_ty.kind() else { return };
let results = self.typeck_results.borrow();
// First, look for a `Clone::clone` call
if segment.ident.name == sym::clone
&& results.type_dependent_def_id(expr.hir_id).map_or(
false,
|did| {
let assoc_item = self.tcx.associated_item(did);
assoc_item.container == ty::AssocItemContainer::TraitContainer
&& assoc_item.container_id(self.tcx) == clone_trait_did
},
)
// If that clone call hasn't already dereferenced the self type (i.e. don't give this
// diagnostic in cases where we have `(&&T).clone()` and we expect `T`).
&& !results.expr_adjustments(callee_expr).iter().any(|adj| matches!(adj.kind, ty::adjustment::Adjust::Deref(..)))
// Check that we're in fact trying to clone into the expected type
&& self.can_coerce(*pointee_ty, expected_ty)
// And the expected type doesn't implement `Clone`
&& !self.predicate_must_hold_considering_regions(&traits::Obligation {
cause: traits::ObligationCause::dummy(),
param_env: self.param_env,
recursion_depth: 0,
predicate: ty::Binder::dummy(ty::TraitRef {
def_id: clone_trait_did,
substs: self.tcx.mk_substs([expected_ty.into()].iter()),
})
.without_const()
.to_predicate(self.tcx),
})
{
diag.span_note(
callee_expr.span,
&format!(
"`{expected_ty}` does not implement `Clone`, so `{found_ty}` was cloned instead"
),
);
}
}
/// A common error is to add an extra semicolon:
///
/// ```compile_fail,E0308
/// fn foo() -> usize {
/// 22;
/// }
/// ```
///
/// This routine checks if the final statement in a block is an
/// expression with an explicit semicolon whose type is compatible
/// with `expected_ty`. If so, it suggests removing the semicolon.
pub(crate) fn consider_removing_semicolon(
&self,
blk: &'tcx hir::Block<'tcx>,
expected_ty: Ty<'tcx>,
err: &mut Diagnostic,
) -> bool {
if let Some((span_semi, boxed)) = self.err_ctxt().could_remove_semicolon(blk, expected_ty) {
if let StatementAsExpression::NeedsBoxing = boxed {
err.span_suggestion_verbose(
span_semi,
"consider removing this semicolon and boxing the expression",
"",
Applicability::HasPlaceholders,
);
} else {
err.span_suggestion_short(
span_semi,
"remove this semicolon to return this value",
"",
Applicability::MachineApplicable,
);
}
true
} else {
false
}
}
}