blob: 0dc0dee862c7499b2d2b560da48adee126dfcc10 [file] [log] [blame]
use rustc_arena::TypedArena;
use rustc_ast::CRATE_NODE_ID;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::memmap::Mmap;
use rustc_data_structures::temp_dir::MaybeTempDir;
use rustc_errors::{ErrorGuaranteed, Handler};
use rustc_fs_util::fix_windows_verbatim_for_gcc;
use rustc_hir::def_id::CrateNum;
use rustc_metadata::find_native_static_library;
use rustc_metadata::fs::{emit_metadata, METADATA_FILENAME};
use rustc_middle::middle::dependency_format::Linkage;
use rustc_middle::middle::exported_symbols::SymbolExportKind;
use rustc_session::config::{self, CFGuard, CrateType, DebugInfo, LdImpl, Lto, Strip};
use rustc_session::config::{OutputFilenames, OutputType, PrintRequest, SplitDwarfKind};
use rustc_session::cstore::DllImport;
use rustc_session::output::{check_file_is_writeable, invalid_output_for_target, out_filename};
use rustc_session::search_paths::PathKind;
use rustc_session::utils::NativeLibKind;
/// For all the linkers we support, and information they might
/// need out of the shared crate context before we get rid of it.
use rustc_session::{filesearch, Session};
use rustc_span::symbol::Symbol;
use rustc_span::DebuggerVisualizerFile;
use rustc_target::spec::crt_objects::{CrtObjects, LinkSelfContainedDefault};
use rustc_target::spec::{Cc, LinkOutputKind, LinkerFlavor, LinkerFlavorCli, Lld, PanicStrategy};
use rustc_target::spec::{RelocModel, RelroLevel, SanitizerSet, SplitDebuginfo, Target};
use super::archive::{ArchiveBuilder, ArchiveBuilderBuilder};
use super::command::Command;
use super::linker::{self, Linker};
use super::metadata::{create_rmeta_file, MetadataPosition};
use super::rpath::{self, RPathConfig};
use crate::{
errors, looks_like_rust_object_file, CodegenResults, CompiledModule, CrateInfo, NativeLib,
};
use cc::windows_registry;
use regex::Regex;
use tempfile::Builder as TempFileBuilder;
use itertools::Itertools;
use std::borrow::Borrow;
use std::cell::OnceCell;
use std::collections::BTreeSet;
use std::ffi::OsString;
use std::fs::{File, OpenOptions};
use std::io::{BufWriter, Write};
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::process::{ExitStatus, Output, Stdio};
use std::{env, fmt, fs, io, mem, str};
pub fn ensure_removed(diag_handler: &Handler, path: &Path) {
if let Err(e) = fs::remove_file(path) {
if e.kind() != io::ErrorKind::NotFound {
diag_handler.err(&format!("failed to remove {}: {}", path.display(), e));
}
}
}
/// Performs the linkage portion of the compilation phase. This will generate all
/// of the requested outputs for this compilation session.
pub fn link_binary<'a>(
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
codegen_results: &CodegenResults,
outputs: &OutputFilenames,
) -> Result<(), ErrorGuaranteed> {
let _timer = sess.timer("link_binary");
let output_metadata = sess.opts.output_types.contains_key(&OutputType::Metadata);
for &crate_type in sess.crate_types().iter() {
// Ignore executable crates if we have -Z no-codegen, as they will error.
if (sess.opts.unstable_opts.no_codegen || !sess.opts.output_types.should_codegen())
&& !output_metadata
&& crate_type == CrateType::Executable
{
continue;
}
if invalid_output_for_target(sess, crate_type) {
bug!(
"invalid output type `{:?}` for target os `{}`",
crate_type,
sess.opts.target_triple
);
}
sess.time("link_binary_check_files_are_writeable", || {
for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
check_file_is_writeable(obj, sess);
}
});
if outputs.outputs.should_link() {
let tmpdir = TempFileBuilder::new()
.prefix("rustc")
.tempdir()
.unwrap_or_else(|error| sess.emit_fatal(errors::CreateTempDir { error }));
let path = MaybeTempDir::new(tmpdir, sess.opts.cg.save_temps);
let out_filename = out_filename(
sess,
crate_type,
outputs,
codegen_results.crate_info.local_crate_name.as_str(),
);
match crate_type {
CrateType::Rlib => {
let _timer = sess.timer("link_rlib");
info!("preparing rlib to {:?}", out_filename);
link_rlib(
sess,
archive_builder_builder,
codegen_results,
RlibFlavor::Normal,
&path,
)?
.build(&out_filename);
}
CrateType::Staticlib => {
link_staticlib(
sess,
archive_builder_builder,
codegen_results,
&out_filename,
&path,
)?;
}
_ => {
link_natively(
sess,
archive_builder_builder,
crate_type,
&out_filename,
codegen_results,
path.as_ref(),
)?;
}
}
if sess.opts.json_artifact_notifications {
sess.parse_sess.span_diagnostic.emit_artifact_notification(&out_filename, "link");
}
if sess.prof.enabled() {
if let Some(artifact_name) = out_filename.file_name() {
// Record size for self-profiling
let file_size = std::fs::metadata(&out_filename).map(|m| m.len()).unwrap_or(0);
sess.prof.artifact_size(
"linked_artifact",
artifact_name.to_string_lossy(),
file_size,
);
}
}
}
}
// Remove the temporary object file and metadata if we aren't saving temps.
sess.time("link_binary_remove_temps", || {
// If the user requests that temporaries are saved, don't delete any.
if sess.opts.cg.save_temps {
return;
}
let maybe_remove_temps_from_module =
|preserve_objects: bool, preserve_dwarf_objects: bool, module: &CompiledModule| {
if !preserve_objects {
if let Some(ref obj) = module.object {
ensure_removed(sess.diagnostic(), obj);
}
}
if !preserve_dwarf_objects {
if let Some(ref dwo_obj) = module.dwarf_object {
ensure_removed(sess.diagnostic(), dwo_obj);
}
}
};
let remove_temps_from_module =
|module: &CompiledModule| maybe_remove_temps_from_module(false, false, module);
// Otherwise, always remove the metadata and allocator module temporaries.
if let Some(ref metadata_module) = codegen_results.metadata_module {
remove_temps_from_module(metadata_module);
}
if let Some(ref allocator_module) = codegen_results.allocator_module {
remove_temps_from_module(allocator_module);
}
// If no requested outputs require linking, then the object temporaries should
// be kept.
if !sess.opts.output_types.should_link() {
return;
}
// Potentially keep objects for their debuginfo.
let (preserve_objects, preserve_dwarf_objects) = preserve_objects_for_their_debuginfo(sess);
debug!(?preserve_objects, ?preserve_dwarf_objects);
for module in &codegen_results.modules {
maybe_remove_temps_from_module(preserve_objects, preserve_dwarf_objects, module);
}
});
Ok(())
}
pub fn each_linked_rlib(
sess: &Session,
info: &CrateInfo,
f: &mut dyn FnMut(CrateNum, &Path),
) -> Result<(), errors::LinkRlibError> {
let crates = info.used_crates.iter();
let mut fmts = None;
let lto_active = matches!(sess.lto(), Lto::Fat | Lto::Thin);
if lto_active {
for combination in info.dependency_formats.iter().combinations(2) {
let (ty1, list1) = &combination[0];
let (ty2, list2) = &combination[1];
if list1 != list2 {
return Err(errors::LinkRlibError::IncompatibleDependencyFormats {
ty1: format!("{ty1:?}"),
ty2: format!("{ty2:?}"),
list1: format!("{list1:?}"),
list2: format!("{list2:?}"),
});
}
}
}
for (ty, list) in info.dependency_formats.iter() {
match ty {
CrateType::Executable
| CrateType::Staticlib
| CrateType::Cdylib
| CrateType::ProcMacro => {
fmts = Some(list);
break;
}
CrateType::Dylib if lto_active => {
fmts = Some(list);
break;
}
_ => {}
}
}
let Some(fmts) = fmts else {
return Err(errors::LinkRlibError::MissingFormat);
};
for &cnum in crates {
match fmts.get(cnum.as_usize() - 1) {
Some(&Linkage::NotLinked | &Linkage::IncludedFromDylib) => continue,
Some(_) => {}
None => return Err(errors::LinkRlibError::MissingFormat),
}
let crate_name = info.crate_name[&cnum];
let used_crate_source = &info.used_crate_source[&cnum];
if let Some((path, _)) = &used_crate_source.rlib {
f(cnum, &path);
} else {
if used_crate_source.rmeta.is_some() {
return Err(errors::LinkRlibError::OnlyRmetaFound { crate_name });
} else {
return Err(errors::LinkRlibError::NotFound { crate_name });
}
}
}
Ok(())
}
/// Create an 'rlib'.
///
/// An rlib in its current incarnation is essentially a renamed .a file. The rlib primarily contains
/// the object file of the crate, but it also contains all of the object files from native
/// libraries. This is done by unzipping native libraries and inserting all of the contents into
/// this archive.
fn link_rlib<'a>(
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
codegen_results: &CodegenResults,
flavor: RlibFlavor,
tmpdir: &MaybeTempDir,
) -> Result<Box<dyn ArchiveBuilder<'a> + 'a>, ErrorGuaranteed> {
let lib_search_paths = archive_search_paths(sess);
let mut ab = archive_builder_builder.new_archive_builder(sess);
let trailing_metadata = match flavor {
RlibFlavor::Normal => {
let (metadata, metadata_position) =
create_rmeta_file(sess, codegen_results.metadata.raw_data());
let metadata = emit_metadata(sess, &metadata, tmpdir);
match metadata_position {
MetadataPosition::First => {
// Most of the time metadata in rlib files is wrapped in a "dummy" object
// file for the target platform so the rlib can be processed entirely by
// normal linkers for the platform. Sometimes this is not possible however.
// If it is possible however, placing the metadata object first improves
// performance of getting metadata from rlibs.
ab.add_file(&metadata);
None
}
MetadataPosition::Last => Some(metadata),
}
}
RlibFlavor::StaticlibBase => None,
};
for m in &codegen_results.modules {
if let Some(obj) = m.object.as_ref() {
ab.add_file(obj);
}
if let Some(dwarf_obj) = m.dwarf_object.as_ref() {
ab.add_file(dwarf_obj);
}
}
match flavor {
RlibFlavor::Normal => {}
RlibFlavor::StaticlibBase => {
let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref());
if let Some(obj) = obj {
ab.add_file(obj);
}
}
}
// Used if packed_bundled_libs flag enabled.
let mut packed_bundled_libs = Vec::new();
// Note that in this loop we are ignoring the value of `lib.cfg`. That is,
// we may not be configured to actually include a static library if we're
// adding it here. That's because later when we consume this rlib we'll
// decide whether we actually needed the static library or not.
//
// To do this "correctly" we'd need to keep track of which libraries added
// which object files to the archive. We don't do that here, however. The
// #[link(cfg(..))] feature is unstable, though, and only intended to get
// liblibc working. In that sense the check below just indicates that if
// there are any libraries we want to omit object files for at link time we
// just exclude all custom object files.
//
// Eventually if we want to stabilize or flesh out the #[link(cfg(..))]
// feature then we'll need to figure out how to record what objects were
// loaded from the libraries found here and then encode that into the
// metadata of the rlib we're generating somehow.
for lib in codegen_results.crate_info.used_libraries.iter() {
match lib.kind {
NativeLibKind::Static { bundle: None | Some(true), whole_archive: Some(true) }
if flavor == RlibFlavor::Normal && sess.opts.unstable_opts.packed_bundled_libs => {}
NativeLibKind::Static { bundle: None | Some(true), whole_archive: Some(true) }
if flavor == RlibFlavor::Normal =>
{
// Don't allow mixing +bundle with +whole_archive since an rlib may contain
// multiple native libs, some of which are +whole-archive and some of which are
// -whole-archive and it isn't clear how we can currently handle such a
// situation correctly.
// See https://github.com/rust-lang/rust/issues/88085#issuecomment-901050897
sess.emit_err(errors::IncompatibleLinkingModifiers);
}
NativeLibKind::Static { bundle: None | Some(true), .. } => {}
NativeLibKind::Static { bundle: Some(false), .. }
| NativeLibKind::Dylib { .. }
| NativeLibKind::Framework { .. }
| NativeLibKind::RawDylib
| NativeLibKind::LinkArg
| NativeLibKind::Unspecified => continue,
}
if let Some(name) = lib.name {
let location =
find_native_static_library(name.as_str(), lib.verbatim, &lib_search_paths, sess);
if sess.opts.unstable_opts.packed_bundled_libs && flavor == RlibFlavor::Normal {
packed_bundled_libs.push(find_native_static_library(
lib.filename.unwrap().as_str(),
Some(true),
&lib_search_paths,
sess,
));
continue;
}
ab.add_archive(&location, Box::new(|_| false)).unwrap_or_else(|error| {
sess.emit_fatal(errors::AddNativeLibrary { library_path: location, error });
});
}
}
for (raw_dylib_name, raw_dylib_imports) in
collate_raw_dylibs(sess, codegen_results.crate_info.used_libraries.iter())?
{
let output_path = archive_builder_builder.create_dll_import_lib(
sess,
&raw_dylib_name,
&raw_dylib_imports,
tmpdir.as_ref(),
true,
);
ab.add_archive(&output_path, Box::new(|_| false)).unwrap_or_else(|error| {
sess.emit_fatal(errors::AddNativeLibrary { library_path: output_path, error });
});
}
if let Some(trailing_metadata) = trailing_metadata {
// Note that it is important that we add all of our non-object "magical
// files" *after* all of the object files in the archive. The reason for
// this is as follows:
//
// * When performing LTO, this archive will be modified to remove
// objects from above. The reason for this is described below.
//
// * When the system linker looks at an archive, it will attempt to
// determine the architecture of the archive in order to see whether its
// linkable.
//
// The algorithm for this detection is: iterate over the files in the
// archive. Skip magical SYMDEF names. Interpret the first file as an
// object file. Read architecture from the object file.
//
// * As one can probably see, if "metadata" and "foo.bc" were placed
// before all of the objects, then the architecture of this archive would
// not be correctly inferred once 'foo.o' is removed.
//
// * Most of the time metadata in rlib files is wrapped in a "dummy" object
// file for the target platform so the rlib can be processed entirely by
// normal linkers for the platform. Sometimes this is not possible however.
//
// Basically, all this means is that this code should not move above the
// code above.
ab.add_file(&trailing_metadata);
}
// Add all bundled static native library dependencies.
// Archives added to the end of .rlib archive, see comment above for the reason.
for lib in packed_bundled_libs {
ab.add_file(&lib)
}
return Ok(ab);
}
/// Extract all symbols defined in raw-dylib libraries, collated by library name.
///
/// If we have multiple extern blocks that specify symbols defined in the same raw-dylib library,
/// then the CodegenResults value contains one NativeLib instance for each block. However, the
/// linker appears to expect only a single import library for each library used, so we need to
/// collate the symbols together by library name before generating the import libraries.
fn collate_raw_dylibs<'a, 'b>(
sess: &'a Session,
used_libraries: impl IntoIterator<Item = &'b NativeLib>,
) -> Result<Vec<(String, Vec<DllImport>)>, ErrorGuaranteed> {
// Use index maps to preserve original order of imports and libraries.
let mut dylib_table = FxIndexMap::<String, FxIndexMap<Symbol, &DllImport>>::default();
for lib in used_libraries {
if lib.kind == NativeLibKind::RawDylib {
let ext = if matches!(lib.verbatim, Some(true)) { "" } else { ".dll" };
let name = format!("{}{}", lib.name.expect("unnamed raw-dylib library"), ext);
let imports = dylib_table.entry(name.clone()).or_default();
for import in &lib.dll_imports {
if let Some(old_import) = imports.insert(import.name, import) {
// FIXME: when we add support for ordinals, figure out if we need to do anything
// if we have two DllImport values with the same name but different ordinals.
if import.calling_convention != old_import.calling_convention {
sess.emit_err(errors::MultipleExternalFuncDecl {
span: import.span,
function: import.name,
library_name: &name,
});
}
}
}
}
}
sess.compile_status()?;
Ok(dylib_table
.into_iter()
.map(|(name, imports)| {
(name, imports.into_iter().map(|(_, import)| import.clone()).collect())
})
.collect())
}
/// Create a static archive.
///
/// This is essentially the same thing as an rlib, but it also involves adding all of the upstream
/// crates' objects into the archive. This will slurp in all of the native libraries of upstream
/// dependencies as well.
///
/// Additionally, there's no way for us to link dynamic libraries, so we warn about all dynamic
/// library dependencies that they're not linked in.
///
/// There's no need to include metadata in a static archive, so ensure to not link in the metadata
/// object file (and also don't prepare the archive with a metadata file).
fn link_staticlib<'a>(
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
codegen_results: &CodegenResults,
out_filename: &Path,
tempdir: &MaybeTempDir,
) -> Result<(), ErrorGuaranteed> {
info!("preparing staticlib to {:?}", out_filename);
let mut ab = link_rlib(
sess,
archive_builder_builder,
codegen_results,
RlibFlavor::StaticlibBase,
tempdir,
)?;
let mut all_native_libs = vec![];
let res = each_linked_rlib(sess, &codegen_results.crate_info, &mut |cnum, path| {
let name = codegen_results.crate_info.crate_name[&cnum];
let native_libs = &codegen_results.crate_info.native_libraries[&cnum];
// Here when we include the rlib into our staticlib we need to make a
// decision whether to include the extra object files along the way.
// These extra object files come from statically included native
// libraries, but they may be cfg'd away with #[link(cfg(..))].
//
// This unstable feature, though, only needs liblibc to work. The only
// use case there is where musl is statically included in liblibc.rlib,
// so if we don't want the included version we just need to skip it. As
// a result the logic here is that if *any* linked library is cfg'd away
// we just skip all object files.
//
// Clearly this is not sufficient for a general purpose feature, and
// we'd want to read from the library's metadata to determine which
// object files come from where and selectively skip them.
let skip_object_files = native_libs.iter().any(|lib| {
matches!(lib.kind, NativeLibKind::Static { bundle: None | Some(true), .. })
&& !relevant_lib(sess, lib)
});
let lto = are_upstream_rust_objects_already_included(sess)
&& !ignored_for_lto(sess, &codegen_results.crate_info, cnum);
// Ignoring obj file starting with the crate name
// as simple comparison is not enough - there
// might be also an extra name suffix
let obj_start = name.as_str().to_owned();
ab.add_archive(
path,
Box::new(move |fname: &str| {
// Ignore metadata files, no matter the name.
if fname == METADATA_FILENAME {
return true;
}
// Don't include Rust objects if LTO is enabled
if lto && looks_like_rust_object_file(fname) {
return true;
}
// Otherwise if this is *not* a rust object and we're skipping
// objects then skip this file
if skip_object_files && (!fname.starts_with(&obj_start) || !fname.ends_with(".o")) {
return true;
}
// ok, don't skip this
false
}),
)
.unwrap();
all_native_libs.extend(codegen_results.crate_info.native_libraries[&cnum].iter().cloned());
});
if let Err(e) = res {
sess.emit_fatal(e);
}
ab.build(out_filename);
if !all_native_libs.is_empty() {
if sess.opts.prints.contains(&PrintRequest::NativeStaticLibs) {
print_native_static_libs(sess, &all_native_libs);
}
}
Ok(())
}
/// Use `thorin` (rust implementation of a dwarf packaging utility) to link DWARF objects into a
/// DWARF package.
fn link_dwarf_object<'a>(
sess: &'a Session,
cg_results: &CodegenResults,
executable_out_filename: &Path,
) {
let dwp_out_filename = executable_out_filename.with_extension("dwp");
debug!(?dwp_out_filename, ?executable_out_filename);
#[derive(Default)]
struct ThorinSession<Relocations> {
arena_data: TypedArena<Vec<u8>>,
arena_mmap: TypedArena<Mmap>,
arena_relocations: TypedArena<Relocations>,
}
impl<Relocations> ThorinSession<Relocations> {
fn alloc_mmap<'arena>(&'arena self, data: Mmap) -> &'arena Mmap {
(*self.arena_mmap.alloc(data)).borrow()
}
}
impl<Relocations> thorin::Session<Relocations> for ThorinSession<Relocations> {
fn alloc_data<'arena>(&'arena self, data: Vec<u8>) -> &'arena [u8] {
(*self.arena_data.alloc(data)).borrow()
}
fn alloc_relocation<'arena>(&'arena self, data: Relocations) -> &'arena Relocations {
(*self.arena_relocations.alloc(data)).borrow()
}
fn read_input<'arena>(&'arena self, path: &Path) -> std::io::Result<&'arena [u8]> {
let file = File::open(&path)?;
let mmap = (unsafe { Mmap::map(file) })?;
Ok(self.alloc_mmap(mmap))
}
}
match sess.time("run_thorin", || -> Result<(), thorin::Error> {
let thorin_sess = ThorinSession::default();
let mut package = thorin::DwarfPackage::new(&thorin_sess);
// Input objs contain .o/.dwo files from the current crate.
match sess.opts.unstable_opts.split_dwarf_kind {
SplitDwarfKind::Single => {
for input_obj in cg_results.modules.iter().filter_map(|m| m.object.as_ref()) {
package.add_input_object(input_obj)?;
}
}
SplitDwarfKind::Split => {
for input_obj in cg_results.modules.iter().filter_map(|m| m.dwarf_object.as_ref()) {
package.add_input_object(input_obj)?;
}
}
}
// Input rlibs contain .o/.dwo files from dependencies.
let input_rlibs = cg_results
.crate_info
.used_crate_source
.values()
.filter_map(|csource| csource.rlib.as_ref())
.map(|(path, _)| path);
for input_rlib in input_rlibs {
debug!(?input_rlib);
package.add_input_object(input_rlib)?;
}
// Failing to read the referenced objects is expected for dependencies where the path in the
// executable will have been cleaned by Cargo, but the referenced objects will be contained
// within rlibs provided as inputs.
//
// If paths have been remapped, then .o/.dwo files from the current crate also won't be
// found, but are provided explicitly above.
//
// Adding an executable is primarily done to make `thorin` check that all the referenced
// dwarf objects are found in the end.
package.add_executable(
&executable_out_filename,
thorin::MissingReferencedObjectBehaviour::Skip,
)?;
let output = package.finish()?.write()?;
let mut output_stream = BufWriter::new(
OpenOptions::new()
.read(true)
.write(true)
.create(true)
.truncate(true)
.open(dwp_out_filename)?,
);
output_stream.write_all(&output)?;
output_stream.flush()?;
Ok(())
}) {
Ok(()) => {}
Err(e) => {
sess.emit_err(errors::ThorinErrorWrapper(e));
sess.abort_if_errors();
}
}
}
/// Create a dynamic library or executable.
///
/// This will invoke the system linker/cc to create the resulting file. This links to all upstream
/// files as well.
fn link_natively<'a>(
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
crate_type: CrateType,
out_filename: &Path,
codegen_results: &CodegenResults,
tmpdir: &Path,
) -> Result<(), ErrorGuaranteed> {
info!("preparing {:?} to {:?}", crate_type, out_filename);
let (linker_path, flavor) = linker_and_flavor(sess);
let mut cmd = linker_with_args(
&linker_path,
flavor,
sess,
archive_builder_builder,
crate_type,
tmpdir,
out_filename,
codegen_results,
)?;
linker::disable_localization(&mut cmd);
for &(ref k, ref v) in sess.target.link_env.as_ref() {
cmd.env(k.as_ref(), v.as_ref());
}
for k in sess.target.link_env_remove.as_ref() {
cmd.env_remove(k.as_ref());
}
if sess.opts.prints.contains(&PrintRequest::LinkArgs) {
println!("{:?}", &cmd);
}
// May have not found libraries in the right formats.
sess.abort_if_errors();
// Invoke the system linker
info!("{:?}", &cmd);
let retry_on_segfault = env::var("RUSTC_RETRY_LINKER_ON_SEGFAULT").is_ok();
let unknown_arg_regex =
Regex::new(r"(unknown|unrecognized) (command line )?(option|argument)").unwrap();
let mut prog;
let mut i = 0;
loop {
i += 1;
prog = sess.time("run_linker", || exec_linker(sess, &cmd, out_filename, tmpdir));
let Ok(ref output) = prog else {
break;
};
if output.status.success() {
break;
}
let mut out = output.stderr.clone();
out.extend(&output.stdout);
let out = String::from_utf8_lossy(&out);
// Check to see if the link failed with an error message that indicates it
// doesn't recognize the -no-pie option. If so, re-perform the link step
// without it. This is safe because if the linker doesn't support -no-pie
// then it should not default to linking executables as pie. Different
// versions of gcc seem to use different quotes in the error message so
// don't check for them.
if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
&& unknown_arg_regex.is_match(&out)
&& out.contains("-no-pie")
&& cmd.get_args().iter().any(|e| e.to_string_lossy() == "-no-pie")
{
info!("linker output: {:?}", out);
warn!("Linker does not support -no-pie command line option. Retrying without.");
for arg in cmd.take_args() {
if arg.to_string_lossy() != "-no-pie" {
cmd.arg(arg);
}
}
info!("{:?}", &cmd);
continue;
}
// Detect '-static-pie' used with an older version of gcc or clang not supporting it.
// Fallback from '-static-pie' to '-static' in that case.
if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
&& unknown_arg_regex.is_match(&out)
&& (out.contains("-static-pie") || out.contains("--no-dynamic-linker"))
&& cmd.get_args().iter().any(|e| e.to_string_lossy() == "-static-pie")
{
info!("linker output: {:?}", out);
warn!(
"Linker does not support -static-pie command line option. Retrying with -static instead."
);
// Mirror `add_(pre,post)_link_objects` to replace CRT objects.
let self_contained = self_contained(sess, crate_type);
let opts = &sess.target;
let pre_objects = if self_contained {
&opts.pre_link_objects_self_contained
} else {
&opts.pre_link_objects
};
let post_objects = if self_contained {
&opts.post_link_objects_self_contained
} else {
&opts.post_link_objects
};
let get_objects = |objects: &CrtObjects, kind| {
objects
.get(&kind)
.iter()
.copied()
.flatten()
.map(|obj| get_object_file_path(sess, obj, self_contained).into_os_string())
.collect::<Vec<_>>()
};
let pre_objects_static_pie = get_objects(pre_objects, LinkOutputKind::StaticPicExe);
let post_objects_static_pie = get_objects(post_objects, LinkOutputKind::StaticPicExe);
let mut pre_objects_static = get_objects(pre_objects, LinkOutputKind::StaticNoPicExe);
let mut post_objects_static = get_objects(post_objects, LinkOutputKind::StaticNoPicExe);
// Assume that we know insertion positions for the replacement arguments from replaced
// arguments, which is true for all supported targets.
assert!(pre_objects_static.is_empty() || !pre_objects_static_pie.is_empty());
assert!(post_objects_static.is_empty() || !post_objects_static_pie.is_empty());
for arg in cmd.take_args() {
if arg.to_string_lossy() == "-static-pie" {
// Replace the output kind.
cmd.arg("-static");
} else if pre_objects_static_pie.contains(&arg) {
// Replace the pre-link objects (replace the first and remove the rest).
cmd.args(mem::take(&mut pre_objects_static));
} else if post_objects_static_pie.contains(&arg) {
// Replace the post-link objects (replace the first and remove the rest).
cmd.args(mem::take(&mut post_objects_static));
} else {
cmd.arg(arg);
}
}
info!("{:?}", &cmd);
continue;
}
// Here's a terribly awful hack that really shouldn't be present in any
// compiler. Here an environment variable is supported to automatically
// retry the linker invocation if the linker looks like it segfaulted.
//
// Gee that seems odd, normally segfaults are things we want to know
// about! Unfortunately though in rust-lang/rust#38878 we're
// experiencing the linker segfaulting on Travis quite a bit which is
// causing quite a bit of pain to land PRs when they spuriously fail
// due to a segfault.
//
// The issue #38878 has some more debugging information on it as well,
// but this unfortunately looks like it's just a race condition in
// macOS's linker with some thread pool working in the background. It
// seems that no one currently knows a fix for this so in the meantime
// we're left with this...
if !retry_on_segfault || i > 3 {
break;
}
let msg_segv = "clang: error: unable to execute command: Segmentation fault: 11";
let msg_bus = "clang: error: unable to execute command: Bus error: 10";
if out.contains(msg_segv) || out.contains(msg_bus) {
warn!(
?cmd, %out,
"looks like the linker segfaulted when we tried to call it, \
automatically retrying again",
);
continue;
}
if is_illegal_instruction(&output.status) {
warn!(
?cmd, %out, status = %output.status,
"looks like the linker hit an illegal instruction when we \
tried to call it, automatically retrying again.",
);
continue;
}
#[cfg(unix)]
fn is_illegal_instruction(status: &ExitStatus) -> bool {
use std::os::unix::prelude::*;
status.signal() == Some(libc::SIGILL)
}
#[cfg(not(unix))]
fn is_illegal_instruction(_status: &ExitStatus) -> bool {
false
}
}
match prog {
Ok(prog) => {
if !prog.status.success() {
let mut output = prog.stderr.clone();
output.extend_from_slice(&prog.stdout);
let escaped_output = escape_string(&output);
// FIXME: Add UI tests for this error.
let err = errors::LinkingFailed {
linker_path: &linker_path,
exit_status: prog.status,
command: &cmd,
escaped_output: &escaped_output,
};
sess.diagnostic().emit_err(err);
// If MSVC's `link.exe` was expected but the return code
// is not a Microsoft LNK error then suggest a way to fix or
// install the Visual Studio build tools.
if let Some(code) = prog.status.code() {
if sess.target.is_like_msvc
&& flavor == LinkerFlavor::Msvc(Lld::No)
// Respect the command line override
&& sess.opts.cg.linker.is_none()
// Match exactly "link.exe"
&& linker_path.to_str() == Some("link.exe")
// All Microsoft `link.exe` linking error codes are
// four digit numbers in the range 1000 to 9999 inclusive
&& (code < 1000 || code > 9999)
{
let is_vs_installed = windows_registry::find_vs_version().is_ok();
let has_linker = windows_registry::find_tool(
&sess.opts.target_triple.triple(),
"link.exe",
)
.is_some();
sess.note_without_error("`link.exe` returned an unexpected error");
if is_vs_installed && has_linker {
// the linker is broken
sess.note_without_error(
"the Visual Studio build tools may need to be repaired \
using the Visual Studio installer",
);
sess.note_without_error(
"or a necessary component may be missing from the \
\"C++ build tools\" workload",
);
} else if is_vs_installed {
// the linker is not installed
sess.note_without_error(
"in the Visual Studio installer, ensure the \
\"C++ build tools\" workload is selected",
);
} else {
// visual studio is not installed
sess.note_without_error(
"you may need to install Visual Studio build tools with the \
\"C++ build tools\" workload",
);
}
}
}
sess.abort_if_errors();
}
info!("linker stderr:\n{}", escape_string(&prog.stderr));
info!("linker stdout:\n{}", escape_string(&prog.stdout));
}
Err(e) => {
let linker_not_found = e.kind() == io::ErrorKind::NotFound;
let mut linker_error = {
if linker_not_found {
sess.struct_err(&format!("linker `{}` not found", linker_path.display()))
} else {
sess.struct_err(&format!(
"could not exec the linker `{}`",
linker_path.display()
))
}
};
linker_error.note(&e.to_string());
if !linker_not_found {
linker_error.note(&format!("{:?}", &cmd));
}
linker_error.emit();
if sess.target.is_like_msvc && linker_not_found {
sess.note_without_error(
"the msvc targets depend on the msvc linker \
but `link.exe` was not found",
);
sess.note_without_error(
"please ensure that Visual Studio 2017 or later, or Build Tools \
for Visual Studio were installed with the Visual C++ option.",
);
sess.note_without_error("VS Code is a different product, and is not sufficient.");
}
sess.abort_if_errors();
}
}
match sess.split_debuginfo() {
// If split debug information is disabled or located in individual files
// there's nothing to do here.
SplitDebuginfo::Off | SplitDebuginfo::Unpacked => {}
// If packed split-debuginfo is requested, but the final compilation
// doesn't actually have any debug information, then we skip this step.
SplitDebuginfo::Packed if sess.opts.debuginfo == DebugInfo::None => {}
// On macOS the external `dsymutil` tool is used to create the packed
// debug information. Note that this will read debug information from
// the objects on the filesystem which we'll clean up later.
SplitDebuginfo::Packed if sess.target.is_like_osx => {
let prog = Command::new("dsymutil").arg(out_filename).output();
match prog {
Ok(prog) => {
if !prog.status.success() {
let mut output = prog.stderr.clone();
output.extend_from_slice(&prog.stdout);
sess.struct_warn(&format!(
"processing debug info with `dsymutil` failed: {}",
prog.status
))
.note(&escape_string(&output))
.emit();
}
}
Err(e) => sess.fatal(&format!("unable to run `dsymutil`: {}", e)),
}
}
// On MSVC packed debug information is produced by the linker itself so
// there's no need to do anything else here.
SplitDebuginfo::Packed if sess.target.is_like_windows => {}
// ... and otherwise we're processing a `*.dwp` packed dwarf file.
//
// We cannot rely on the .o paths in the executable because they may have been
// remapped by --remap-path-prefix and therefore invalid, so we need to provide
// the .o/.dwo paths explicitly.
SplitDebuginfo::Packed => link_dwarf_object(sess, codegen_results, out_filename),
}
let strip = strip_value(sess);
if sess.target.is_like_osx {
match (strip, crate_type) {
(Strip::Debuginfo, _) => {
strip_symbols_with_external_utility(sess, "strip", &out_filename, Some("-S"))
}
// Per the manpage, `-x` is the maximum safe strip level for dynamic libraries. (#93988)
(Strip::Symbols, CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro) => {
strip_symbols_with_external_utility(sess, "strip", &out_filename, Some("-x"))
}
(Strip::Symbols, _) => {
strip_symbols_with_external_utility(sess, "strip", &out_filename, None)
}
(Strip::None, _) => {}
}
}
if sess.target.os == "illumos" {
// Many illumos systems will have both the native 'strip' utility and
// the GNU one. Use the native version explicitly and do not rely on
// what's in the path.
let stripcmd = "/usr/bin/strip";
match strip {
// Always preserve the symbol table (-x).
Strip::Debuginfo => {
strip_symbols_with_external_utility(sess, stripcmd, &out_filename, Some("-x"))
}
// Strip::Symbols is handled via the --strip-all linker option.
Strip::Symbols => {}
Strip::None => {}
}
}
Ok(())
}
// Temporarily support both -Z strip and -C strip
fn strip_value(sess: &Session) -> Strip {
match (sess.opts.unstable_opts.strip, sess.opts.cg.strip) {
(s, Strip::None) => s,
(_, s) => s,
}
}
fn strip_symbols_with_external_utility<'a>(
sess: &'a Session,
util: &str,
out_filename: &Path,
option: Option<&str>,
) {
let mut cmd = Command::new(util);
if let Some(option) = option {
cmd.arg(option);
}
let prog = cmd.arg(out_filename).output();
match prog {
Ok(prog) => {
if !prog.status.success() {
let mut output = prog.stderr.clone();
output.extend_from_slice(&prog.stdout);
sess.struct_warn(&format!(
"stripping debug info with `{}` failed: {}",
util, prog.status
))
.note(&escape_string(&output))
.emit();
}
}
Err(e) => sess.fatal(&format!("unable to run `{}`: {}", util, e)),
}
}
fn escape_string(s: &[u8]) -> String {
match str::from_utf8(s) {
Ok(s) => s.to_owned(),
Err(_) => format!("Non-UTF-8 output: {}", s.escape_ascii()),
}
}
fn add_sanitizer_libraries(sess: &Session, crate_type: CrateType, linker: &mut dyn Linker) {
// On macOS the runtimes are distributed as dylibs which should be linked to
// both executables and dynamic shared objects. Everywhere else the runtimes
// are currently distributed as static libraries which should be linked to
// executables only.
let needs_runtime = !sess.target.is_like_android
&& match crate_type {
CrateType::Executable => true,
CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro => sess.target.is_like_osx,
CrateType::Rlib | CrateType::Staticlib => false,
};
if !needs_runtime {
return;
}
let sanitizer = sess.opts.unstable_opts.sanitizer;
if sanitizer.contains(SanitizerSet::ADDRESS) {
link_sanitizer_runtime(sess, linker, "asan");
}
if sanitizer.contains(SanitizerSet::LEAK) {
link_sanitizer_runtime(sess, linker, "lsan");
}
if sanitizer.contains(SanitizerSet::MEMORY) {
link_sanitizer_runtime(sess, linker, "msan");
}
if sanitizer.contains(SanitizerSet::THREAD) {
link_sanitizer_runtime(sess, linker, "tsan");
}
if sanitizer.contains(SanitizerSet::HWADDRESS) {
link_sanitizer_runtime(sess, linker, "hwasan");
}
}
fn link_sanitizer_runtime(sess: &Session, linker: &mut dyn Linker, name: &str) {
fn find_sanitizer_runtime(sess: &Session, filename: &str) -> PathBuf {
let session_tlib =
filesearch::make_target_lib_path(&sess.sysroot, sess.opts.target_triple.triple());
let path = session_tlib.join(filename);
if path.exists() {
return session_tlib;
} else {
let default_sysroot = filesearch::get_or_default_sysroot();
let default_tlib = filesearch::make_target_lib_path(
&default_sysroot,
sess.opts.target_triple.triple(),
);
return default_tlib;
}
}
let channel = option_env!("CFG_RELEASE_CHANNEL")
.map(|channel| format!("-{}", channel))
.unwrap_or_default();
if sess.target.is_like_osx {
// On Apple platforms, the sanitizer is always built as a dylib, and
// LLVM will link to `@rpath/*.dylib`, so we need to specify an
// rpath to the library as well (the rpath should be absolute, see
// PR #41352 for details).
let filename = format!("rustc{}_rt.{}", channel, name);
let path = find_sanitizer_runtime(&sess, &filename);
let rpath = path.to_str().expect("non-utf8 component in path");
linker.args(&["-Wl,-rpath", "-Xlinker", rpath]);
linker.link_dylib(&filename, false, true);
} else {
let filename = format!("librustc{}_rt.{}.a", channel, name);
let path = find_sanitizer_runtime(&sess, &filename).join(&filename);
linker.link_whole_rlib(&path);
}
}
/// Returns a boolean indicating whether the specified crate should be ignored
/// during LTO.
///
/// Crates ignored during LTO are not lumped together in the "massive object
/// file" that we create and are linked in their normal rlib states. See
/// comments below for what crates do not participate in LTO.
///
/// It's unusual for a crate to not participate in LTO. Typically only
/// compiler-specific and unstable crates have a reason to not participate in
/// LTO.
pub fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool {
// If our target enables builtin function lowering in LLVM then the
// crates providing these functions don't participate in LTO (e.g.
// no_builtins or compiler builtins crates).
!sess.target.no_builtins
&& (info.compiler_builtins == Some(cnum) || info.is_no_builtins.contains(&cnum))
}
// This functions tries to determine the appropriate linker (and corresponding LinkerFlavor) to use
pub fn linker_and_flavor(sess: &Session) -> (PathBuf, LinkerFlavor) {
fn infer_from(
sess: &Session,
linker: Option<PathBuf>,
flavor: Option<LinkerFlavor>,
) -> Option<(PathBuf, LinkerFlavor)> {
match (linker, flavor) {
(Some(linker), Some(flavor)) => Some((linker, flavor)),
// only the linker flavor is known; use the default linker for the selected flavor
(None, Some(flavor)) => Some((
PathBuf::from(match flavor {
LinkerFlavor::Gnu(Cc::Yes, _)
| LinkerFlavor::Darwin(Cc::Yes, _)
| LinkerFlavor::WasmLld(Cc::Yes)
| LinkerFlavor::Unix(Cc::Yes) => {
if cfg!(any(target_os = "solaris", target_os = "illumos")) {
// On historical Solaris systems, "cc" may have
// been Sun Studio, which is not flag-compatible
// with "gcc". This history casts a long shadow,
// and many modern illumos distributions today
// ship GCC as "gcc" without also making it
// available as "cc".
"gcc"
} else {
"cc"
}
}
LinkerFlavor::Gnu(_, Lld::Yes)
| LinkerFlavor::Darwin(_, Lld::Yes)
| LinkerFlavor::WasmLld(..)
| LinkerFlavor::Msvc(Lld::Yes) => "lld",
LinkerFlavor::Gnu(..) | LinkerFlavor::Darwin(..) | LinkerFlavor::Unix(..) => {
"ld"
}
LinkerFlavor::Msvc(..) => "link.exe",
LinkerFlavor::EmCc => {
if cfg!(windows) {
"emcc.bat"
} else {
"emcc"
}
}
LinkerFlavor::Bpf => "bpf-linker",
LinkerFlavor::Ptx => "rust-ptx-linker",
}),
flavor,
)),
(Some(linker), None) => {
let stem = linker.file_stem().and_then(|stem| stem.to_str()).unwrap_or_else(|| {
sess.fatal("couldn't extract file stem from specified linker")
});
let flavor = if stem == "emcc" {
LinkerFlavor::EmCc
} else if stem == "gcc"
|| stem.ends_with("-gcc")
|| stem == "clang"
|| stem.ends_with("-clang")
{
LinkerFlavor::from_cli(LinkerFlavorCli::Gcc, &sess.target)
} else if stem == "wasm-ld" || stem.ends_with("-wasm-ld") {
LinkerFlavor::WasmLld(Cc::No)
} else if stem == "ld" || stem.ends_with("-ld") {
LinkerFlavor::from_cli(LinkerFlavorCli::Ld, &sess.target)
} else if stem == "ld.lld" {
LinkerFlavor::Gnu(Cc::No, Lld::Yes)
} else if stem == "link" {
LinkerFlavor::Msvc(Lld::No)
} else if stem == "lld-link" {
LinkerFlavor::Msvc(Lld::Yes)
} else if stem == "lld" || stem == "rust-lld" {
let lld_flavor = sess.target.linker_flavor.lld_flavor();
LinkerFlavor::from_cli(LinkerFlavorCli::Lld(lld_flavor), &sess.target)
} else {
// fall back to the value in the target spec
sess.target.linker_flavor
};
Some((linker, flavor))
}
(None, None) => None,
}
}
// linker and linker flavor specified via command line have precedence over what the target
// specification specifies
let linker_flavor =
sess.opts.cg.linker_flavor.map(|flavor| LinkerFlavor::from_cli(flavor, &sess.target));
if let Some(ret) = infer_from(sess, sess.opts.cg.linker.clone(), linker_flavor) {
return ret;
}
if let Some(ret) = infer_from(
sess,
sess.target.linker.as_deref().map(PathBuf::from),
Some(sess.target.linker_flavor),
) {
return ret;
}
bug!("Not enough information provided to determine how to invoke the linker");
}
/// Returns a pair of boolean indicating whether we should preserve the object and
/// dwarf object files on the filesystem for their debug information. This is often
/// useful with split-dwarf like schemes.
fn preserve_objects_for_their_debuginfo(sess: &Session) -> (bool, bool) {
// If the objects don't have debuginfo there's nothing to preserve.
if sess.opts.debuginfo == config::DebugInfo::None {
return (false, false);
}
// If we're only producing artifacts that are archives, no need to preserve
// the objects as they're losslessly contained inside the archives.
if sess.crate_types().iter().all(|&x| x.is_archive()) {
return (false, false);
}
match (sess.split_debuginfo(), sess.opts.unstable_opts.split_dwarf_kind) {
// If there is no split debuginfo then do not preserve objects.
(SplitDebuginfo::Off, _) => (false, false),
// If there is packed split debuginfo, then the debuginfo in the objects
// has been packaged and the objects can be deleted.
(SplitDebuginfo::Packed, _) => (false, false),
// If there is unpacked split debuginfo and the current target can not use
// split dwarf, then keep objects.
(SplitDebuginfo::Unpacked, _) if !sess.target_can_use_split_dwarf() => (true, false),
// If there is unpacked split debuginfo and the target can use split dwarf, then
// keep the object containing that debuginfo (whether that is an object file or
// dwarf object file depends on the split dwarf kind).
(SplitDebuginfo::Unpacked, SplitDwarfKind::Single) => (true, false),
(SplitDebuginfo::Unpacked, SplitDwarfKind::Split) => (false, true),
}
}
fn archive_search_paths(sess: &Session) -> Vec<PathBuf> {
sess.target_filesearch(PathKind::Native).search_path_dirs()
}
#[derive(PartialEq)]
enum RlibFlavor {
Normal,
StaticlibBase,
}
fn print_native_static_libs(sess: &Session, all_native_libs: &[NativeLib]) {
let lib_args: Vec<_> = all_native_libs
.iter()
.filter(|l| relevant_lib(sess, l))
.filter_map(|lib| {
let name = lib.name?;
match lib.kind {
NativeLibKind::Static { bundle: Some(false), .. }
| NativeLibKind::Dylib { .. }
| NativeLibKind::Unspecified => {
let verbatim = lib.verbatim.unwrap_or(false);
if sess.target.is_like_msvc {
Some(format!("{}{}", name, if verbatim { "" } else { ".lib" }))
} else if sess.target.linker_flavor.is_gnu() {
Some(format!("-l{}{}", if verbatim { ":" } else { "" }, name))
} else {
Some(format!("-l{}", name))
}
}
NativeLibKind::Framework { .. } => {
// ld-only syntax, since there are no frameworks in MSVC
Some(format!("-framework {}", name))
}
// These are included, no need to print them
NativeLibKind::Static { bundle: None | Some(true), .. }
| NativeLibKind::LinkArg
| NativeLibKind::RawDylib => None,
}
})
.collect();
if !lib_args.is_empty() {
sess.note_without_error(
"Link against the following native artifacts when linking \
against this static library. The order and any duplication \
can be significant on some platforms.",
);
// Prefix for greppability
sess.note_without_error(&format!("native-static-libs: {}", &lib_args.join(" ")));
}
}
fn get_object_file_path(sess: &Session, name: &str, self_contained: bool) -> PathBuf {
let fs = sess.target_filesearch(PathKind::Native);
let file_path = fs.get_lib_path().join(name);
if file_path.exists() {
return file_path;
}
// Special directory with objects used only in self-contained linkage mode
if self_contained {
let file_path = fs.get_self_contained_lib_path().join(name);
if file_path.exists() {
return file_path;
}
}
for search_path in fs.search_paths() {
let file_path = search_path.dir.join(name);
if file_path.exists() {
return file_path;
}
}
PathBuf::from(name)
}
fn exec_linker(
sess: &Session,
cmd: &Command,
out_filename: &Path,
tmpdir: &Path,
) -> io::Result<Output> {
// When attempting to spawn the linker we run a risk of blowing out the
// size limits for spawning a new process with respect to the arguments
// we pass on the command line.
//
// Here we attempt to handle errors from the OS saying "your list of
// arguments is too big" by reinvoking the linker again with an `@`-file
// that contains all the arguments. The theory is that this is then
// accepted on all linkers and the linker will read all its options out of
// there instead of looking at the command line.
if !cmd.very_likely_to_exceed_some_spawn_limit() {
match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() {
Ok(child) => {
let output = child.wait_with_output();
flush_linked_file(&output, out_filename)?;
return output;
}
Err(ref e) if command_line_too_big(e) => {
info!("command line to linker was too big: {}", e);
}
Err(e) => return Err(e),
}
}
info!("falling back to passing arguments to linker via an @-file");
let mut cmd2 = cmd.clone();
let mut args = String::new();
for arg in cmd2.take_args() {
args.push_str(
&Escape { arg: arg.to_str().unwrap(), is_like_msvc: sess.target.is_like_msvc }
.to_string(),
);
args.push('\n');
}
let file = tmpdir.join("linker-arguments");
let bytes = if sess.target.is_like_msvc {
let mut out = Vec::with_capacity((1 + args.len()) * 2);
// start the stream with a UTF-16 BOM
for c in std::iter::once(0xFEFF).chain(args.encode_utf16()) {
// encode in little endian
out.push(c as u8);
out.push((c >> 8) as u8);
}
out
} else {
args.into_bytes()
};
fs::write(&file, &bytes)?;
cmd2.arg(format!("@{}", file.display()));
info!("invoking linker {:?}", cmd2);
let output = cmd2.output();
flush_linked_file(&output, out_filename)?;
return output;
#[cfg(not(windows))]
fn flush_linked_file(_: &io::Result<Output>, _: &Path) -> io::Result<()> {
Ok(())
}
#[cfg(windows)]
fn flush_linked_file(
command_output: &io::Result<Output>,
out_filename: &Path,
) -> io::Result<()> {
// On Windows, under high I/O load, output buffers are sometimes not flushed,
// even long after process exit, causing nasty, non-reproducible output bugs.
//
// File::sync_all() calls FlushFileBuffers() down the line, which solves the problem.
//
// А full writeup of the original Chrome bug can be found at
// randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp
if let &Ok(ref out) = command_output {
if out.status.success() {
if let Ok(of) = fs::OpenOptions::new().write(true).open(out_filename) {
of.sync_all()?;
}
}
}
Ok(())
}
#[cfg(unix)]
fn command_line_too_big(err: &io::Error) -> bool {
err.raw_os_error() == Some(::libc::E2BIG)
}
#[cfg(windows)]
fn command_line_too_big(err: &io::Error) -> bool {
const ERROR_FILENAME_EXCED_RANGE: i32 = 206;
err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE)
}
#[cfg(not(any(unix, windows)))]
fn command_line_too_big(_: &io::Error) -> bool {
false
}
struct Escape<'a> {
arg: &'a str,
is_like_msvc: bool,
}
impl<'a> fmt::Display for Escape<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_like_msvc {
// This is "documented" at
// https://docs.microsoft.com/en-us/cpp/build/reference/at-specify-a-linker-response-file
//
// Unfortunately there's not a great specification of the
// syntax I could find online (at least) but some local
// testing showed that this seemed sufficient-ish to catch
// at least a few edge cases.
write!(f, "\"")?;
for c in self.arg.chars() {
match c {
'"' => write!(f, "\\{}", c)?,
c => write!(f, "{}", c)?,
}
}
write!(f, "\"")?;
} else {
// This is documented at https://linux.die.net/man/1/ld, namely:
//
// > Options in file are separated by whitespace. A whitespace
// > character may be included in an option by surrounding the
// > entire option in either single or double quotes. Any
// > character (including a backslash) may be included by
// > prefixing the character to be included with a backslash.
//
// We put an argument on each line, so all we need to do is
// ensure the line is interpreted as one whole argument.
for c in self.arg.chars() {
match c {
'\\' | ' ' => write!(f, "\\{}", c)?,
c => write!(f, "{}", c)?,
}
}
}
Ok(())
}
}
}
fn link_output_kind(sess: &Session, crate_type: CrateType) -> LinkOutputKind {
let kind = match (crate_type, sess.crt_static(Some(crate_type)), sess.relocation_model()) {
(CrateType::Executable, _, _) if sess.is_wasi_reactor() => LinkOutputKind::WasiReactorExe,
(CrateType::Executable, false, RelocModel::Pic | RelocModel::Pie) => {
LinkOutputKind::DynamicPicExe
}
(CrateType::Executable, false, _) => LinkOutputKind::DynamicNoPicExe,
(CrateType::Executable, true, RelocModel::Pic | RelocModel::Pie) => {
LinkOutputKind::StaticPicExe
}
(CrateType::Executable, true, _) => LinkOutputKind::StaticNoPicExe,
(_, true, _) => LinkOutputKind::StaticDylib,
(_, false, _) => LinkOutputKind::DynamicDylib,
};
// Adjust the output kind to target capabilities.
let opts = &sess.target;
let pic_exe_supported = opts.position_independent_executables;
let static_pic_exe_supported = opts.static_position_independent_executables;
let static_dylib_supported = opts.crt_static_allows_dylibs;
match kind {
LinkOutputKind::DynamicPicExe if !pic_exe_supported => LinkOutputKind::DynamicNoPicExe,
LinkOutputKind::StaticPicExe if !static_pic_exe_supported => LinkOutputKind::StaticNoPicExe,
LinkOutputKind::StaticDylib if !static_dylib_supported => LinkOutputKind::DynamicDylib,
_ => kind,
}
}
// Returns true if linker is located within sysroot
fn detect_self_contained_mingw(sess: &Session) -> bool {
let (linker, _) = linker_and_flavor(&sess);
// Assume `-C linker=rust-lld` as self-contained mode
if linker == Path::new("rust-lld") {
return true;
}
let linker_with_extension = if cfg!(windows) && linker.extension().is_none() {
linker.with_extension("exe")
} else {
linker
};
for dir in env::split_paths(&env::var_os("PATH").unwrap_or_default()) {
let full_path = dir.join(&linker_with_extension);
// If linker comes from sysroot assume self-contained mode
if full_path.is_file() && !full_path.starts_with(&sess.sysroot) {
return false;
}
}
true
}
/// Various toolchain components used during linking are used from rustc distribution
/// instead of being found somewhere on the host system.
/// We only provide such support for a very limited number of targets.
fn self_contained(sess: &Session, crate_type: CrateType) -> bool {
if let Some(self_contained) = sess.opts.cg.link_self_contained {
return self_contained;
}
match sess.target.link_self_contained {
LinkSelfContainedDefault::False => false,
LinkSelfContainedDefault::True => true,
// FIXME: Find a better heuristic for "native musl toolchain is available",
// based on host and linker path, for example.
// (https://github.com/rust-lang/rust/pull/71769#issuecomment-626330237).
LinkSelfContainedDefault::Musl => sess.crt_static(Some(crate_type)),
LinkSelfContainedDefault::Mingw => {
sess.host == sess.target
&& sess.target.vendor != "uwp"
&& detect_self_contained_mingw(&sess)
}
}
}
/// Add pre-link object files defined by the target spec.
fn add_pre_link_objects(
cmd: &mut dyn Linker,
sess: &Session,
flavor: LinkerFlavor,
link_output_kind: LinkOutputKind,
self_contained: bool,
) {
// FIXME: we are currently missing some infra here (per-linker-flavor CRT objects),
// so Fuchsia has to be special-cased.
let opts = &sess.target;
let empty = Default::default();
let objects = if self_contained {
&opts.pre_link_objects_self_contained
} else if !(sess.target.os == "fuchsia" && matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))) {
&opts.pre_link_objects
} else {
&empty
};
for obj in objects.get(&link_output_kind).iter().copied().flatten() {
cmd.add_object(&get_object_file_path(sess, obj, self_contained));
}
}
/// Add post-link object files defined by the target spec.
fn add_post_link_objects(
cmd: &mut dyn Linker,
sess: &Session,
link_output_kind: LinkOutputKind,
self_contained: bool,
) {
let objects = if self_contained {
&sess.target.post_link_objects_self_contained
} else {
&sess.target.post_link_objects
};
for obj in objects.get(&link_output_kind).iter().copied().flatten() {
cmd.add_object(&get_object_file_path(sess, obj, self_contained));
}
}
/// Add arbitrary "pre-link" args defined by the target spec or from command line.
/// FIXME: Determine where exactly these args need to be inserted.
fn add_pre_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
if let Some(args) = sess.target.pre_link_args.get(&flavor) {
cmd.args(args.iter().map(Deref::deref));
}
cmd.args(&sess.opts.unstable_opts.pre_link_args);
}
/// Add a link script embedded in the target, if applicable.
fn add_link_script(cmd: &mut dyn Linker, sess: &Session, tmpdir: &Path, crate_type: CrateType) {
match (crate_type, &sess.target.link_script) {
(CrateType::Cdylib | CrateType::Executable, Some(script)) => {
if !sess.target.linker_flavor.is_gnu() {
sess.fatal("can only use link script when linking with GNU-like linker");
}
let file_name = ["rustc", &sess.target.llvm_target, "linkfile.ld"].join("-");
let path = tmpdir.join(file_name);
if let Err(e) = fs::write(&path, script.as_ref()) {
sess.fatal(&format!("failed to write link script to {}: {}", path.display(), e));
}
cmd.arg("--script");
cmd.arg(path);
}
_ => {}
}
}
/// Add arbitrary "user defined" args defined from command line.
/// FIXME: Determine where exactly these args need to be inserted.
fn add_user_defined_link_args(cmd: &mut dyn Linker, sess: &Session) {
cmd.args(&sess.opts.cg.link_args);
}
/// Add arbitrary "late link" args defined by the target spec.
/// FIXME: Determine where exactly these args need to be inserted.
fn add_late_link_args(
cmd: &mut dyn Linker,
sess: &Session,
flavor: LinkerFlavor,
crate_type: CrateType,
codegen_results: &CodegenResults,
) {
let any_dynamic_crate = crate_type == CrateType::Dylib
|| codegen_results.crate_info.dependency_formats.iter().any(|(ty, list)| {
*ty == crate_type && list.iter().any(|&linkage| linkage == Linkage::Dynamic)
});
if any_dynamic_crate {
if let Some(args) = sess.target.late_link_args_dynamic.get(&flavor) {
cmd.args(args.iter().map(Deref::deref));
}
} else {
if let Some(args) = sess.target.late_link_args_static.get(&flavor) {
cmd.args(args.iter().map(Deref::deref));
}
}
if let Some(args) = sess.target.late_link_args.get(&flavor) {
cmd.args(args.iter().map(Deref::deref));
}
}
/// Add arbitrary "post-link" args defined by the target spec.
/// FIXME: Determine where exactly these args need to be inserted.
fn add_post_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
if let Some(args) = sess.target.post_link_args.get(&flavor) {
cmd.args(args.iter().map(Deref::deref));
}
}
/// Add a synthetic object file that contains reference to all symbols that we want to expose to
/// the linker.
///
/// Background: we implement rlibs as static library (archives). Linkers treat archives
/// differently from object files: all object files participate in linking, while archives will
/// only participate in linking if they can satisfy at least one undefined reference (version
/// scripts doesn't count). This causes `#[no_mangle]` or `#[used]` items to be ignored by the
/// linker, and since they never participate in the linking, using `KEEP` in the linker scripts
/// can't keep them either. This causes #47384.
///
/// To keep them around, we could use `--whole-archive` and equivalents to force rlib to
/// participate in linking like object files, but this proves to be expensive (#93791). Therefore
/// we instead just introduce an undefined reference to them. This could be done by `-u` command
/// line option to the linker or `EXTERN(...)` in linker scripts, however they does not only
/// introduce an undefined reference, but also make them the GC roots, preventing `--gc-sections`
/// from removing them, and this is especially problematic for embedded programming where every
/// byte counts.
///
/// This method creates a synthetic object file, which contains undefined references to all symbols
/// that are necessary for the linking. They are only present in symbol table but not actually
/// used in any sections, so the linker will therefore pick relevant rlibs for linking, but
/// unused `#[no_mangle]` or `#[used]` can still be discard by GC sections.
///
/// There's a few internal crates in the standard library (aka libcore and
/// libstd) which actually have a circular dependence upon one another. This
/// currently arises through "weak lang items" where libcore requires things
/// like `rust_begin_unwind` but libstd ends up defining it. To get this
/// circular dependence to work correctly we declare some of these things
/// in this synthetic object.
fn add_linked_symbol_object(
cmd: &mut dyn Linker,
sess: &Session,
tmpdir: &Path,
symbols: &[(String, SymbolExportKind)],
) {
if symbols.is_empty() {
return;
}
let Some(mut file) = super::metadata::create_object_file(sess) else {
return;
};
// NOTE(nbdd0121): MSVC will hang if the input object file contains no sections,
// so add an empty section.
if file.format() == object::BinaryFormat::Coff {
file.add_section(Vec::new(), ".text".into(), object::SectionKind::Text);
// We handle the name decoration of COFF targets in `symbol_export.rs`, so disable the
// default mangler in `object` crate.
file.set_mangling(object::write::Mangling::None);
// Add feature flags to the object file. On MSVC this is optional but LLD will complain if
// not present.
let mut feature = 0;
if file.architecture() == object::Architecture::I386 {
// Indicate that all SEH handlers are registered in .sxdata section.
// We don't have generate any code, so we don't need .sxdata section but LLD still
// expects us to set this bit (see #96498).
// Reference: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
feature |= 1;
}
file.add_symbol(object::write::Symbol {
name: "@feat.00".into(),
value: feature,
size: 0,
kind: object::SymbolKind::Data,
scope: object::SymbolScope::Compilation,
weak: false,
section: object::write::SymbolSection::Absolute,
flags: object::SymbolFlags::None,
});
}
for (sym, kind) in symbols.iter() {
file.add_symbol(object::write::Symbol {
name: sym.clone().into(),
value: 0,
size: 0,
kind: match kind {
SymbolExportKind::Text => object::SymbolKind::Text,
SymbolExportKind::Data => object::SymbolKind::Data,
SymbolExportKind::Tls => object::SymbolKind::Tls,
},
scope: object::SymbolScope::Unknown,
weak: false,
section: object::write::SymbolSection::Undefined,
flags: object::SymbolFlags::None,
});
}
let path = tmpdir.join("symbols.o");
let result = std::fs::write(&path, file.write().unwrap());
if let Err(e) = result {
sess.fatal(&format!("failed to write {}: {}", path.display(), e));
}
cmd.add_object(&path);
}
/// Add object files containing code from the current crate.
fn add_local_crate_regular_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) {
for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
cmd.add_object(obj);
}
}
/// Add object files for allocator code linked once for the whole crate tree.
fn add_local_crate_allocator_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) {
if let Some(obj) = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref()) {
cmd.add_object(obj);
}
}
/// Add object files containing metadata for the current crate.
fn add_local_crate_metadata_objects(
cmd: &mut dyn Linker,
crate_type: CrateType,
codegen_results: &CodegenResults,
) {
// When linking a dynamic library, we put the metadata into a section of the
// executable. This metadata is in a separate object file from the main
// object file, so we link that in here.
if crate_type == CrateType::Dylib || crate_type == CrateType::ProcMacro {
if let Some(obj) = codegen_results.metadata_module.as_ref().and_then(|m| m.object.as_ref())
{
cmd.add_object(obj);
}
}
}
/// Add sysroot and other globally set directories to the directory search list.
fn add_library_search_dirs(cmd: &mut dyn Linker, sess: &Session, self_contained: bool) {
// The default library location, we need this to find the runtime.
// The location of crates will be determined as needed.
let lib_path = sess.target_filesearch(PathKind::All).get_lib_path();
cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path));
// Special directory with libraries used only in self-contained linkage mode
if self_contained {
let lib_path = sess.target_filesearch(PathKind::All).get_self_contained_lib_path();
cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path));
}
}
/// Add options making relocation sections in the produced ELF files read-only
/// and suppressing lazy binding.
fn add_relro_args(cmd: &mut dyn Linker, sess: &Session) {
match sess.opts.unstable_opts.relro_level.unwrap_or(sess.target.relro_level) {
RelroLevel::Full => cmd.full_relro(),
RelroLevel::Partial => cmd.partial_relro(),
RelroLevel::Off => cmd.no_relro(),
RelroLevel::None => {}
}
}
/// Add library search paths used at runtime by dynamic linkers.
fn add_rpath_args(
cmd: &mut dyn Linker,
sess: &Session,
codegen_results: &CodegenResults,
out_filename: &Path,
) {
// FIXME (#2397): At some point we want to rpath our guesses as to
// where extern libraries might live, based on the
// add_lib_search_paths
if sess.opts.cg.rpath {
let libs = codegen_results
.crate_info
.used_crates
.iter()
.filter_map(|cnum| {
codegen_results.crate_info.used_crate_source[cnum]
.dylib
.as_ref()
.map(|(path, _)| &**path)
})
.collect::<Vec<_>>();
let mut rpath_config = RPathConfig {
libs: &*libs,
out_filename: out_filename.to_path_buf(),
has_rpath: sess.target.has_rpath,
is_like_osx: sess.target.is_like_osx,
linker_is_gnu: sess.target.linker_flavor.is_gnu(),
};
cmd.args(&rpath::get_rpath_flags(&mut rpath_config));
}
}
/// Produce the linker command line containing linker path and arguments.
///
/// When comments in the function say "order-(in)dependent" they mean order-dependence between
/// options and libraries/object files. For example `--whole-archive` (order-dependent) applies
/// to specific libraries passed after it, and `-o` (output file, order-independent) applies
/// to the linking process as a whole.
/// Order-independent options may still override each other in order-dependent fashion,
/// e.g `--foo=yes --foo=no` may be equivalent to `--foo=no`.
fn linker_with_args<'a>(
path: &Path,
flavor: LinkerFlavor,
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
crate_type: CrateType,
tmpdir: &Path,
out_filename: &Path,
codegen_results: &CodegenResults,
) -> Result<Command, ErrorGuaranteed> {
let self_contained = self_contained(sess, crate_type);
let cmd = &mut *super::linker::get_linker(
sess,
path,
flavor,
self_contained,
&codegen_results.crate_info.target_cpu,
);
let link_output_kind = link_output_kind(sess, crate_type);
// ------------ Early order-dependent options ------------
// If we're building something like a dynamic library then some platforms
// need to make sure that all symbols are exported correctly from the
// dynamic library.
// Must be passed before any libraries to prevent the symbols to export from being thrown away,
// at least on some platforms (e.g. windows-gnu).
cmd.export_symbols(
tmpdir,
crate_type,
&codegen_results.crate_info.exported_symbols[&crate_type],
);
// Can be used for adding custom CRT objects or overriding order-dependent options above.
// FIXME: In practice built-in target specs use this for arbitrary order-independent options,
// introduce a target spec option for order-independent linker options and migrate built-in
// specs to it.
add_pre_link_args(cmd, sess, flavor);
// ------------ Object code and libraries, order-dependent ------------
// Pre-link CRT objects.
add_pre_link_objects(cmd, sess, flavor, link_output_kind, self_contained);
add_linked_symbol_object(
cmd,
sess,
tmpdir,
&codegen_results.crate_info.linked_symbols[&crate_type],
);
// Sanitizer libraries.
add_sanitizer_libraries(sess, crate_type, cmd);
// Object code from the current crate.
// Take careful note of the ordering of the arguments we pass to the linker
// here. Linkers will assume that things on the left depend on things to the
// right. Things on the right cannot depend on things on the left. This is
// all formally implemented in terms of resolving symbols (libs on the right
// resolve unknown symbols of libs on the left, but not vice versa).
//
// For this reason, we have organized the arguments we pass to the linker as
// such:
//
// 1. The local object that LLVM just generated
// 2. Local native libraries
// 3. Upstream rust libraries
// 4. Upstream native libraries
//
// The rationale behind this ordering is that those items lower down in the
// list can't depend on items higher up in the list. For example nothing can
// depend on what we just generated (e.g., that'd be a circular dependency).
// Upstream rust libraries are not supposed to depend on our local native
// libraries as that would violate the structure of the DAG, in that
// scenario they are required to link to them as well in a shared fashion.
//
// Note that upstream rust libraries may contain native dependencies as
// well, but they also can't depend on what we just started to add to the
// link line. And finally upstream native libraries can't depend on anything
// in this DAG so far because they can only depend on other native libraries
// and such dependencies are also required to be specified.
add_local_crate_regular_objects(cmd, codegen_results);
add_local_crate_metadata_objects(cmd, crate_type, codegen_results);
add_local_crate_allocator_objects(cmd, codegen_results);
// Avoid linking to dynamic libraries unless they satisfy some undefined symbols
// at the point at which they are specified on the command line.
// Must be passed before any (dynamic) libraries to have effect on them.
// On Solaris-like systems, `-z ignore` acts as both `--as-needed` and `--gc-sections`
// so it will ignore unreferenced ELF sections from relocatable objects.
// For that reason, we put this flag after metadata objects as they would otherwise be removed.
// FIXME: Support more fine-grained dead code removal on Solaris/illumos
// and move this option back to the top.
cmd.add_as_needed();
// Local native libraries of all kinds.
//
// If `-Zlink-native-libraries=false` is set, then the assumption is that an
// external build system already has the native dependencies defined, and it
// will provide them to the linker itself.
if sess.opts.unstable_opts.link_native_libraries {
add_local_native_libraries(cmd, sess, codegen_results);
}
// Upstream rust libraries and their (possibly bundled) static native libraries.
add_upstream_rust_crates(
cmd,
sess,
archive_builder_builder,
codegen_results,
crate_type,
tmpdir,
);
// Dynamic native libraries from upstream crates.
//
// FIXME: Merge this to `add_upstream_rust_crates` so that all native libraries are linked
// together with their respective upstream crates, and in their originally specified order.
// This may be slightly breaking due to our use of `--as-needed` and needs a crater run.
if sess.opts.unstable_opts.link_native_libraries {
add_upstream_native_libraries(cmd, sess, codegen_results);
}
// Link with the import library generated for any raw-dylib functions.
for (raw_dylib_name, raw_dylib_imports) in
collate_raw_dylibs(sess, codegen_results.crate_info.used_libraries.iter())?
{
cmd.add_object(&archive_builder_builder.create_dll_import_lib(
sess,
&raw_dylib_name,
&raw_dylib_imports,
tmpdir,
true,
));
}
// As with add_upstream_native_libraries, we need to add the upstream raw-dylib symbols in case
// they are used within inlined functions or instantiated generic functions. We do this *after*
// handling the raw-dylib symbols in the current crate to make sure that those are chosen first
// by the linker.
let (_, dependency_linkage) = codegen_results
.crate_info
.dependency_formats
.iter()
.find(|(ty, _)| *ty == crate_type)
.expect("failed to find crate type in dependency format list");
let native_libraries_from_nonstatics = codegen_results
.crate_info
.native_libraries
.iter()
.filter_map(|(cnum, libraries)| {
(dependency_linkage[cnum.as_usize() - 1] != Linkage::Static).then(|| libraries)
})
.flatten();
for (raw_dylib_name, raw_dylib_imports) in
collate_raw_dylibs(sess, native_libraries_from_nonstatics)?
{
cmd.add_object(&archive_builder_builder.create_dll_import_lib(
sess,
&raw_dylib_name,
&raw_dylib_imports,
tmpdir,
false,
));
}
// Library linking above uses some global state for things like `-Bstatic`/`-Bdynamic` to make
// command line shorter, reset it to default here before adding more libraries.
cmd.reset_per_library_state();
// FIXME: Built-in target specs occasionally use this for linking system libraries,
// eliminate all such uses by migrating them to `#[link]` attributes in `lib(std,c,unwind)`
// and remove the option.
add_late_link_args(cmd, sess, flavor, crate_type, codegen_results);
// ------------ Arbitrary order-independent options ------------
// Add order-independent options determined by rustc from its compiler options,
// target properties and source code.
add_order_independent_options(
cmd,
sess,
link_output_kind,
self_contained,
flavor,
crate_type,
codegen_results,
out_filename,
tmpdir,
);
// Can be used for arbitrary order-independent options.
// In practice may also be occasionally used for linking native libraries.
// Passed after compiler-generated options to support manual overriding when necessary.
add_user_defined_link_args(cmd, sess);
// ------------ Object code and libraries, order-dependent ------------
// Post-link CRT objects.
add_post_link_objects(cmd, sess, link_output_kind, self_contained);
// ------------ Late order-dependent options ------------
// Doesn't really make sense.
// FIXME: In practice built-in target specs use this for arbitrary order-independent options,
// introduce a target spec option for order-independent linker options, migrate built-in specs
// to it and remove the option.
add_post_link_args(cmd, sess, flavor);
Ok(cmd.take_cmd())
}
fn add_order_independent_options(
cmd: &mut dyn Linker,
sess: &Session,
link_output_kind: LinkOutputKind,
self_contained: bool,
flavor: LinkerFlavor,
crate_type: CrateType,
codegen_results: &CodegenResults,
out_filename: &Path,
tmpdir: &Path,
) {
add_gcc_ld_path(cmd, sess, flavor);
add_apple_sdk(cmd, sess, flavor);
add_link_script(cmd, sess, tmpdir, crate_type);
if sess.target.os == "fuchsia"
&& crate_type == CrateType::Executable
&& !matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
{
let prefix = if sess.opts.unstable_opts.sanitizer.contains(SanitizerSet::ADDRESS) {
"asan/"
} else {
""
};
cmd.arg(format!("--dynamic-linker={}ld.so.1", prefix));
}
if sess.target.eh_frame_header {
cmd.add_eh_frame_header();
}
// Make the binary compatible with data execution prevention schemes.
cmd.add_no_exec();
if self_contained {
cmd.no_crt_objects();
}
if sess.target.os == "emscripten" {
cmd.arg("-s");
cmd.arg(if sess.panic_strategy() == PanicStrategy::Abort {
"DISABLE_EXCEPTION_CATCHING=1"
} else {
"DISABLE_EXCEPTION_CATCHING=0"
});
}
if flavor == LinkerFlavor::Ptx {
// Provide the linker with fallback to internal `target-cpu`.
cmd.arg("--fallback-arch");
cmd.arg(&codegen_results.crate_info.target_cpu);
} else if flavor == LinkerFlavor::Bpf {
cmd.arg("--cpu");
cmd.arg(&codegen_results.crate_info.target_cpu);
cmd.arg("--cpu-features");
cmd.arg(match &sess.opts.cg.target_feature {
feat if !feat.is_empty() => feat.as_ref(),
_ => sess.target.options.features.as_ref(),
});
}
cmd.linker_plugin_lto();
add_library_search_dirs(cmd, sess, self_contained);
cmd.output_filename(out_filename);
if crate_type == CrateType::Executable && sess.target.is_like_windows {
if let Some(ref s) = codegen_results.crate_info.windows_subsystem {
cmd.subsystem(s);
}
}
// Try to strip as much out of the generated object by removing unused
// sections if possible. See more comments in linker.rs
if !sess.link_dead_code() {
// If PGO is enabled sometimes gc_sections will remove the profile data section
// as it appears to be unused. This can then cause the PGO profile file to lose
// some functions. If we are generating a profile we shouldn't strip those metadata
// sections to ensure we have all the data for PGO.
let keep_metadata =
crate_type == CrateType::Dylib || sess.opts.cg.profile_generate.enabled();
if crate_type != CrateType::Executable || !sess.opts.unstable_opts.export_executable_symbols
{
cmd.gc_sections(keep_metadata);
} else {
cmd.no_gc_sections();
}
}
cmd.set_output_kind(link_output_kind, out_filename);
add_relro_args(cmd, sess);
// Pass optimization flags down to the linker.
cmd.optimize();
// Gather the set of NatVis files, if any, and write them out to a temp directory.
let natvis_visualizers = collect_natvis_visualizers(
tmpdir,
sess,
&codegen_results.crate_info.local_crate_name,
&codegen_results.crate_info.natvis_debugger_visualizers,
);
// Pass debuginfo, NatVis debugger visualizers and strip flags down to the linker.
cmd.debuginfo(strip_value(sess), &natvis_visualizers);
// We want to prevent the compiler from accidentally leaking in any system libraries,
// so by default we tell linkers not to link to any default libraries.
if !sess.opts.cg.default_linker_libraries && sess.target.no_default_libraries {
cmd.no_default_libraries();
}
if sess.opts.cg.profile_generate.enabled() || sess.instrument_coverage() {
cmd.pgo_gen();
}
if sess.opts.cg.control_flow_guard != CFGuard::Disabled {
cmd.control_flow_guard();
}
add_rpath_args(cmd, sess, codegen_results, out_filename);
}
// Write the NatVis debugger visualizer files for each crate to the temp directory and gather the file paths.
fn collect_natvis_visualizers(
tmpdir: &Path,
sess: &Session,
crate_name: &Symbol,
natvis_debugger_visualizers: &BTreeSet<DebuggerVisualizerFile>,
) -> Vec<PathBuf> {
let mut visualizer_paths = Vec::with_capacity(natvis_debugger_visualizers.len());
for (index, visualizer) in natvis_debugger_visualizers.iter().enumerate() {
let visualizer_out_file = tmpdir.join(format!("{}-{}.natvis", crate_name.as_str(), index));
match fs::write(&visualizer_out_file, &visualizer.src) {
Ok(()) => {
visualizer_paths.push(visualizer_out_file);
}
Err(error) => {
sess.warn(
format!(
"Unable to write debugger visualizer file `{}`: {} ",
visualizer_out_file.display(),
error
)
.as_str(),
);
}
};
}
visualizer_paths
}
/// # Native library linking
///
/// User-supplied library search paths (-L on the command line). These are the same paths used to
/// find Rust crates, so some of them may have been added already by the previous crate linking
/// code. This only allows them to be found at compile time so it is still entirely up to outside
/// forces to make sure that library can be found at runtime.
///
/// Also note that the native libraries linked here are only the ones located in the current crate.
/// Upstream crates with native library dependencies may have their native library pulled in above.
fn add_local_native_libraries(
cmd: &mut dyn Linker,
sess: &Session,
codegen_results: &CodegenResults,
) {
let filesearch = sess.target_filesearch(PathKind::All);
for search_path in filesearch.search_paths() {
match search_path.kind {
PathKind::Framework => {
cmd.framework_path(&search_path.dir);
}
_ => {
cmd.include_path(&fix_windows_verbatim_for_gcc(&search_path.dir));
}
}
}
let relevant_libs =
codegen_results.crate_info.used_libraries.iter().filter(|l| relevant_lib(sess, l));
let search_path = OnceCell::new();
let mut last = (None, NativeLibKind::Unspecified, None);
for lib in relevant_libs {
let Some(name) = lib.name else {
continue;
};
let name = name.as_str();
// Skip if this library is the same as the last.
last = if (lib.name, lib.kind, lib.verbatim) == last {
continue;
} else {
(lib.name, lib.kind, lib.verbatim)
};
let verbatim = lib.verbatim.unwrap_or(false);
match lib.kind {
NativeLibKind::Dylib { as_needed } => {
cmd.link_dylib(name, verbatim, as_needed.unwrap_or(true))
}
NativeLibKind::Unspecified => cmd.link_dylib(name, verbatim, true),
NativeLibKind::Framework { as_needed } => {
cmd.link_framework(name, as_needed.unwrap_or(true))
}
NativeLibKind::Static { whole_archive, bundle, .. } => {
if whole_archive == Some(true)
// Backward compatibility case: this can be a rlib (so `+whole-archive` cannot
// be added explicitly if necessary, see the error in `fn link_rlib`) compiled
// as an executable due to `--test`. Use whole-archive implicitly, like before
// the introduction of native lib modifiers.
|| (whole_archive == None && bundle != Some(false) && sess.opts.test)
{
cmd.link_whole_staticlib(
name,
verbatim,
&search_path.get_or_init(|| archive_search_paths(sess)),
);
} else {
cmd.link_staticlib(name, verbatim)
}
}
NativeLibKind::RawDylib => {
// Ignore RawDylib here, they are handled separately in linker_with_args().
}
NativeLibKind::LinkArg => {
cmd.arg(name);
}
}
}
}
/// # Linking Rust crates and their non-bundled static libraries
///
/// Rust crates are not considered at all when creating an rlib output. All dependencies will be
/// linked when producing the final output (instead of the intermediate rlib version).
fn add_upstream_rust_crates<'a>(
cmd: &mut dyn Linker,
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
codegen_results: &CodegenResults,
crate_type: CrateType,
tmpdir: &Path,
) {
// All of the heavy lifting has previously been accomplished by the
// dependency_format module of the compiler. This is just crawling the
// output of that module, adding crates as necessary.
//
// Linking to a rlib involves just passing it to the linker (the linker
// will slurp up the object files inside), and linking to a dynamic library
// involves just passing the right -l flag.
let (_, data) = codegen_results
.crate_info
.dependency_formats
.iter()
.find(|(ty, _)| *ty == crate_type)
.expect("failed to find crate type in dependency format list");
// Invoke get_used_crates to ensure that we get a topological sorting of
// crates.
let deps = &codegen_results.crate_info.used_crates;
let mut compiler_builtins = None;
let search_path = OnceCell::new();
for &cnum in deps.iter() {
// We may not pass all crates through to the linker. Some crates may
// appear statically in an existing dylib, meaning we'll pick up all the
// symbols from the dylib.
let src = &codegen_results.crate_info.used_crate_source[&cnum];
match data[cnum.as_usize() - 1] {
_ if codegen_results.crate_info.profiler_runtime == Some(cnum) => {
add_static_crate(
cmd,
sess,
archive_builder_builder,
codegen_results,
tmpdir,
cnum,
&Default::default(),
);
}
// compiler-builtins are always placed last to ensure that they're
// linked correctly.
_ if codegen_results.crate_info.compiler_builtins == Some(cnum) => {
assert!(compiler_builtins.is_none());
compiler_builtins = Some(cnum);
}
Linkage::NotLinked | Linkage::IncludedFromDylib => {}
Linkage::Static => {
let bundled_libs = if sess.opts.unstable_opts.packed_bundled_libs {
codegen_results.crate_info.native_libraries[&cnum]
.iter()
.filter_map(|lib| lib.filename)
.collect::<FxHashSet<_>>()
} else {
Default::default()
};
add_static_crate(
cmd,
sess,
archive_builder_builder,
codegen_results,
tmpdir,
cnum,
&bundled_libs,
);
// Link static native libs with "-bundle" modifier only if the crate they originate from
// is being linked statically to the current crate. If it's linked dynamically
// or is an rlib already included via some other dylib crate, the symbols from
// native libs will have already been included in that dylib.
//
// If `-Zlink-native-libraries=false` is set, then the assumption is that an
// external build system already has the native dependencies defined, and it
// will provide them to the linker itself.
if sess.opts.unstable_opts.link_native_libraries {
if sess.opts.unstable_opts.packed_bundled_libs {
// If rlib contains native libs as archives, unpack them to tmpdir.
let rlib = &src.rlib.as_ref().unwrap().0;
archive_builder_builder
.extract_bundled_libs(rlib, tmpdir, &bundled_libs)
.unwrap_or_else(|e| sess.fatal(e));
}
let mut last = (None, NativeLibKind::Unspecified, None);
for lib in &codegen_results.crate_info.native_libraries[&cnum] {
let Some(name) = lib.name else {
continue;
};
let name = name.as_str();
if !relevant_lib(sess, lib) {
continue;
}
// Skip if this library is the same as the last.
last = if (lib.name, lib.kind, lib.verbatim) == last {
continue;
} else {
(lib.name, lib.kind, lib.verbatim)
};
match lib.kind {
NativeLibKind::Static {
bundle: Some(false),
whole_archive: Some(true),
} => {
cmd.link_whole_staticlib(
name,
lib.verbatim.unwrap_or(false),
search_path.get_or_init(|| archive_search_paths(sess)),
);
}
NativeLibKind::Static {
bundle: Some(false),
whole_archive: Some(false) | None,
} => {
// HACK/FIXME: Fixup a circular dependency between libgcc and libc
// with glibc. This logic should be moved to the libc crate.
if sess.target.os == "linux"
&& sess.target.env == "gnu"
&& name == "c"
{
cmd.link_staticlib("gcc", false);
}
cmd.link_staticlib(name, lib.verbatim.unwrap_or(false));
}
NativeLibKind::LinkArg => {
cmd.arg(name);
}
NativeLibKind::Dylib { .. }
| NativeLibKind::Framework { .. }
| NativeLibKind::Unspecified
| NativeLibKind::RawDylib => {}
NativeLibKind::Static { bundle: Some(true) | None, whole_archive } => {
if sess.opts.unstable_opts.packed_bundled_libs {
// If rlib contains native libs as archives, they are unpacked to tmpdir.
let path = tmpdir.join(lib.filename.unwrap().as_str());
if whole_archive == Some(true) {
cmd.link_whole_rlib(&path);
} else {
cmd.link_rlib(&path);
}
}
}
}
}
}
}
Linkage::Dynamic => add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0),
}
}
// compiler-builtins are always placed last to ensure that they're
// linked correctly.
// We must always link the `compiler_builtins` crate statically. Even if it
// was already "included" in a dylib (e.g., `libstd` when `-C prefer-dynamic`
// is used)
if let Some(cnum) = compiler_builtins {
add_static_crate(
cmd,
sess,
archive_builder_builder,
codegen_results,
tmpdir,
cnum,
&Default::default(),
);
}
// Converts a library file-stem into a cc -l argument
fn unlib<'a>(target: &Target, stem: &'a str) -> &'a str {
if stem.starts_with("lib") && !target.is_like_windows { &stem[3..] } else { stem }
}
// Adds the static "rlib" versions of all crates to the command line.
// There's a bit of magic which happens here specifically related to LTO,
// namely that we remove upstream object files.
//
// When performing LTO, almost(*) all of the bytecode from the upstream
// libraries has already been included in our object file output. As a
// result we need to remove the object files in the upstream libraries so
// the linker doesn't try to include them twice (or whine about duplicate
// symbols). We must continue to include the rest of the rlib, however, as
// it may contain static native libraries which must be linked in.
//
// (*) Crates marked with `#![no_builtins]` don't participate in LTO and
// their bytecode wasn't included. The object files in those libraries must
// still be passed to the linker.
//
// Note, however, that if we're not doing LTO we can just pass the rlib
// blindly to the linker (fast) because it's fine if it's not actually
// included as we're at the end of the dependency chain.
fn add_static_crate<'a>(
cmd: &mut dyn Linker,
sess: &'a Session,
archive_builder_builder: &dyn ArchiveBuilderBuilder,
codegen_results: &CodegenResults,
tmpdir: &Path,
cnum: CrateNum,
bundled_lib_file_names: &FxHashSet<Symbol>,
) {
let src = &codegen_results.crate_info.used_crate_source[&cnum];
let cratepath = &src.rlib.as_ref().unwrap().0;
let mut link_upstream = |path: &Path| {
cmd.link_rlib(&fix_windows_verbatim_for_gcc(path));
};
// See the comment above in `link_staticlib` and `link_rlib` for why if
// there's a static library that's not relevant we skip all object
// files.
let native_libs = &codegen_results.crate_info.native_libraries[&cnum];
let skip_native = native_libs.iter().any(|lib| {
matches!(lib.kind, NativeLibKind::Static { bundle: None | Some(true), .. })
&& !relevant_lib(sess, lib)
});
if (!are_upstream_rust_objects_already_included(sess)
|| ignored_for_lto(sess, &codegen_results.crate_info, cnum))
&& !skip_native
{
link_upstream(cratepath);
return;
}
let dst = tmpdir.join(cratepath.file_name().unwrap());
let name = cratepath.file_name().unwrap().to_str().unwrap();
let name = &name[3..name.len() - 5]; // chop off lib/.rlib
let bundled_lib_file_names = bundled_lib_file_names.clone();
sess.prof.generic_activity_with_arg("link_altering_rlib", name).run(|| {
let canonical_name = name.replace('-', "_");
let upstream_rust_objects_already_included =
are_upstream_rust_objects_already_included(sess);
let is_builtins = sess.target.no_builtins
|| !codegen_results.crate_info.is_no_builtins.contains(&cnum);
let mut archive = archive_builder_builder.new_archive_builder(sess);
if let Err(e) = archive.add_archive(
cratepath,
Box::new(move |f| {
if f == METADATA_FILENAME {
return true;
}
let canonical = f.replace('-', "_");
let is_rust_object =
canonical.starts_with(&canonical_name) && looks_like_rust_object_file(&f);
// If we've been requested to skip all native object files
// (those not generated by the rust compiler) then we can skip
// this file. See above for why we may want to do this.
let skip_because_cfg_say_so = skip_native && !is_rust_object;
// If we're performing LTO and this is a rust-generated object
// file, then we don't need the object file as it's part of the
// LTO module. Note that `#![no_builtins]` is excluded from LTO,
// though, so we let that object file slide.
let skip_because_lto =
upstream_rust_objects_already_included && is_rust_object && is_builtins;
// We skip native libraries because:
// 1. This native libraries won't be used from the generated rlib,
// so we can throw them away to avoid the copying work.
// 2. We can't allow it to be a single remaining entry in archive
// as some linkers may complain on that.
if bundled_lib_file_names.contains(&Symbol::intern(f)) {
return true;
}
if skip_because_cfg_say_so || skip_because_lto {
return true;
}
false
}),
) {
sess.fatal(&format!("failed to build archive from rlib: {}", e));
}
if archive.build(&dst) {
link_upstream(&dst);
}
});
}
// Same thing as above, but for dynamic crates instead of static crates.
fn add_dynamic_crate(cmd: &mut dyn Linker, sess: &Session, cratepath: &Path) {
// Just need to tell the linker about where the library lives and
// what its name is
let parent = cratepath.parent();
if let Some(dir) = parent {
cmd.include_path(&fix_windows_verbatim_for_gcc(dir));
}
let filestem = cratepath.file_stem().unwrap().to_str().unwrap();
cmd.link_rust_dylib(
&unlib(&sess.target, filestem),
parent.unwrap_or_else(|| Path::new("")),
);
}
}
/// Link in all of our upstream crates' native dependencies. Remember that all of these upstream
/// native dependencies are all non-static dependencies. We've got two cases then:
///
/// 1. The upstream crate is an rlib. In this case we *must* link in the native dependency because
/// the rlib is just an archive.
///
/// 2. The upstream crate is a dylib. In order to use the dylib, we have to have the dependency
/// present on the system somewhere. Thus, we don't gain a whole lot from not linking in the
/// dynamic dependency to this crate as well.
///
/// The use case for this is a little subtle. In theory the native dependencies of a crate are
/// purely an implementation detail of the crate itself, but the problem arises with generic and
/// inlined functions. If a generic function calls a native function, then the generic function
/// must be instantiated in the target crate, meaning that the native symbol must also be resolved
/// in the target crate.
fn add_upstream_native_libraries(
cmd: &mut dyn Linker,
sess: &Session,
codegen_results: &CodegenResults,
) {
let mut last = (None, NativeLibKind::Unspecified, None);
for &cnum in &codegen_results.crate_info.used_crates {
for lib in codegen_results.crate_info.native_libraries[&cnum].iter() {
let Some(name) = lib.name else {
continue;
};
let name = name.as_str();
if !relevant_lib(sess, &lib) {
continue;
}
// Skip if this library is the same as the last.
last = if (lib.name, lib.kind, lib.verbatim) == last {
continue;
} else {
(lib.name, lib.kind, lib.verbatim)
};
let verbatim = lib.verbatim.unwrap_or(false);
match lib.kind {
NativeLibKind::Dylib { as_needed } => {
cmd.link_dylib(name, verbatim, as_needed.unwrap_or(true))
}
NativeLibKind::Unspecified => cmd.link_dylib(name, verbatim, true),
NativeLibKind::Framework { as_needed } => {
cmd.link_framework(name, as_needed.unwrap_or(true))
}
// ignore static native libraries here as we've
// already included them in add_local_native_libraries and
// add_upstream_rust_crates
NativeLibKind::Static { .. } => {}
NativeLibKind::RawDylib | NativeLibKind::LinkArg => {}
}
}
}
}
fn relevant_lib(sess: &Session, lib: &NativeLib) -> bool {
match lib.cfg {
Some(ref cfg) => rustc_attr::cfg_matches(cfg, &sess.parse_sess, CRATE_NODE_ID, None),
None => true,
}
}
pub(crate) fn are_upstream_rust_objects_already_included(sess: &Session) -> bool {
match sess.lto() {
config::Lto::Fat => true,
config::Lto::Thin => {
// If we defer LTO to the linker, we haven't run LTO ourselves, so
// any upstream object files have not been copied yet.
!sess.opts.cg.linker_plugin_lto.enabled()
}
config::Lto::No | config::Lto::ThinLocal => false,
}
}
fn add_apple_sdk(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
let arch = &sess.target.arch;
let os = &sess.target.os;
let llvm_target = &sess.target.llvm_target;
if sess.target.vendor != "apple"
|| !matches!(os.as_ref(), "ios" | "tvos" | "watchos" | "macos")
|| !matches!(flavor, LinkerFlavor::Darwin(..))
{
return;
}
if os == "macos" && !matches!(flavor, LinkerFlavor::Darwin(Cc::No, _)) {
return;
}
let sdk_name = match (arch.as_ref(), os.as_ref()) {
("aarch64", "tvos") => "appletvos",
("x86_64", "tvos") => "appletvsimulator",
("arm", "ios") => "iphoneos",
("aarch64", "ios") if llvm_target.contains("macabi") => "macosx",
("aarch64", "ios") if llvm_target.ends_with("-simulator") => "iphonesimulator",
("aarch64", "ios") => "iphoneos",
("x86", "ios") => "iphonesimulator",
("x86_64", "ios") if llvm_target.contains("macabi") => "macosx",
("x86_64", "ios") => "iphonesimulator",
("x86_64", "watchos") => "watchsimulator",
("arm64_32", "watchos") => "watchos",
("aarch64", "watchos") if llvm_target.ends_with("-simulator") => "watchsimulator",
("aarch64", "watchos") => "watchos",
("arm", "watchos") => "watchos",
(_, "macos") => "macosx",
_ => {
sess.err(&format!("unsupported arch `{}` for os `{}`", arch, os));
return;
}
};
let sdk_root = match get_apple_sdk_root(sdk_name) {
Ok(s) => s,
Err(e) => {
sess.err(&e);
return;
}
};
match flavor {
LinkerFlavor::Darwin(Cc::Yes, _) => {
cmd.args(&["-isysroot", &sdk_root, "-Wl,-syslibroot", &sdk_root]);
}
LinkerFlavor::Darwin(Cc::No, _) => {
cmd.args(&["-syslibroot", &sdk_root]);
}
_ => unreachable!(),
}
}
fn get_apple_sdk_root(sdk_name: &str) -> Result<String, String> {
// Following what clang does
// (https://github.com/llvm/llvm-project/blob/
// 296a80102a9b72c3eda80558fb78a3ed8849b341/clang/lib/Driver/ToolChains/Darwin.cpp#L1661-L1678)
// to allow the SDK path to be set. (For clang, xcrun sets
// SDKROOT; for rustc, the user or build system can set it, or we
// can fall back to checking for xcrun on PATH.)
if let Ok(sdkroot) = env::var("SDKROOT") {
let p = Path::new(&sdkroot);
match sdk_name {
// Ignore `SDKROOT` if it's clearly set for the wrong platform.
"appletvos"
if sdkroot.contains("TVSimulator.platform")
|| sdkroot.contains("MacOSX.platform") => {}
"appletvsimulator"
if sdkroot.contains("TVOS.platform") || sdkroot.contains("MacOSX.platform") => {}
"iphoneos"
if sdkroot.contains("iPhoneSimulator.platform")
|| sdkroot.contains("MacOSX.platform") => {}
"iphonesimulator"
if sdkroot.contains("iPhoneOS.platform") || sdkroot.contains("MacOSX.platform") => {
}
"macosx10.15"
if sdkroot.contains("iPhoneOS.platform")
|| sdkroot.contains("iPhoneSimulator.platform") => {}
"watchos"
if sdkroot.contains("WatchSimulator.platform")
|| sdkroot.contains("MacOSX.platform") => {}
"watchsimulator"
if sdkroot.contains("WatchOS.platform") || sdkroot.contains("MacOSX.platform") => {}
// Ignore `SDKROOT` if it's not a valid path.
_ if !p.is_absolute() || p == Path::new("/") || !p.exists() => {}
_ => return Ok(sdkroot),
}
}
let res =
Command::new("xcrun").arg("--show-sdk-path").arg("-sdk").arg(sdk_name).output().and_then(
|output| {
if output.status.success() {
Ok(String::from_utf8(output.stdout).unwrap())
} else {
let error = String::from_utf8(output.stderr);
let error = format!("process exit with error: {}", error.unwrap());
Err(io::Error::new(io::ErrorKind::Other, &error[..]))
}
},
);
match res {
Ok(output) => Ok(output.trim().to_string()),
Err(e) => Err(format!("failed to get {} SDK path: {}", sdk_name, e)),
}
}
fn add_gcc_ld_path(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
if let Some(ld_impl) = sess.opts.unstable_opts.gcc_ld {
if let LinkerFlavor::Gnu(Cc::Yes, _)
| LinkerFlavor::Darwin(Cc::Yes, _)
| LinkerFlavor::WasmLld(Cc::Yes) = flavor
{
match ld_impl {
LdImpl::Lld => {
// Implement the "self-contained" part of -Zgcc-ld
// by adding rustc distribution directories to the tool search path.
for path in sess.get_tools_search_paths(false) {
cmd.arg({
let mut arg = OsString::from("-B");
arg.push(path.join("gcc-ld"));
arg
});
}
// Implement the "linker flavor" part of -Zgcc-ld
// by asking cc to use some kind of lld.
cmd.arg("-fuse-ld=lld");
if !flavor.is_gnu() {
// Tell clang to use a non-default LLD flavor.
// Gcc doesn't understand the target option, but we currently assume
// that gcc is not used for Apple and Wasm targets (#97402).
cmd.arg(format!("--target={}", sess.target.llvm_target));
}
}
}
} else {
sess.fatal("option `-Z gcc-ld` is used even though linker flavor is not gcc");
}
}
}