blob: 669dc464d91dae18bb0bac54dff2cf4be6fe54db [file] [log] [blame]
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use crate::store::*;
use alloc::borrow::Borrow;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem;
use core::ops::{Index, IndexMut};
/// A simple "flat" map based on a sorted vector
///
/// See the [module level documentation][super] for why one should use this.
///
/// The API is roughly similar to that of [`std::collections::BTreeMap`].
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[cfg_attr(feature = "yoke", derive(yoke::Yokeable))]
pub struct LiteMap<K: ?Sized, V: ?Sized, S = alloc::vec::Vec<(K, V)>> {
pub(crate) values: S,
pub(crate) _key_type: PhantomData<K>,
pub(crate) _value_type: PhantomData<V>,
}
impl<K, V> LiteMap<K, V> {
/// Construct a new [`LiteMap`] backed by Vec
pub const fn new_vec() -> Self {
Self {
values: alloc::vec::Vec::new(),
_key_type: PhantomData,
_value_type: PhantomData,
}
}
}
impl<K, V, S> LiteMap<K, V, S> {
/// Construct a new [`LiteMap`] using the given values
///
/// The store must be sorted and have no duplicate keys.
pub const fn from_sorted_store_unchecked(values: S) -> Self {
Self {
values,
_key_type: PhantomData,
_value_type: PhantomData,
}
}
}
impl<K, V> LiteMap<K, V, Vec<(K, V)>> {
/// Convert a [`LiteMap`] into a sorted `Vec<(K, V)>`.
#[inline]
pub fn into_tuple_vec(self) -> Vec<(K, V)> {
self.values
}
}
impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
where
S: StoreConstEmpty<K, V>,
{
/// Create a new empty [`LiteMap`]
pub const fn new() -> Self {
Self {
values: S::EMPTY,
_key_type: PhantomData,
_value_type: PhantomData,
}
}
}
impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
where
S: Store<K, V>,
{
/// The number of elements in the [`LiteMap`]
pub fn len(&self) -> usize {
self.values.lm_len()
}
/// Whether the [`LiteMap`] is empty
pub fn is_empty(&self) -> bool {
self.values.lm_is_empty()
}
/// Get the key-value pair residing at a particular index
///
/// In most cases, prefer [`LiteMap::get()`] over this method.
#[inline]
pub fn get_indexed(&self, index: usize) -> Option<(&K, &V)> {
self.values.lm_get(index)
}
}
impl<K: ?Sized, V: ?Sized, S> LiteMap<K, V, S>
where
K: Ord,
S: Store<K, V>,
{
/// Get the value associated with `key`, if it exists.
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// assert_eq!(map.get(&1), Some(&"one"));
/// assert_eq!(map.get(&3), None);
/// ```
pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
where
K: Borrow<Q>,
Q: Ord,
{
match self.find_index(key) {
#[allow(clippy::unwrap_used)] // find_index returns a valid index
Ok(found) => Some(self.values.lm_get(found).unwrap().1),
Err(_) => None,
}
}
/// Binary search the map with `predicate` to find a key, returning the value.
pub fn get_by(&self, predicate: impl FnMut(&K) -> Ordering) -> Option<&V> {
let index = self.values.lm_binary_search_by(predicate).ok()?;
self.values.lm_get(index).map(|(_, v)| v)
}
/// Returns whether `key` is contained in this map
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// assert!(map.contains_key(&1));
/// assert!(!map.contains_key(&3));
/// ```
pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: Ord,
{
self.find_index(key).is_ok()
}
/// Get the lowest-rank key/value pair from the `LiteMap`, if it exists.
///
/// # Examples
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// assert!(map.try_append(1, "uno").is_none());
/// assert!(map.try_append(3, "tres").is_none());
///
/// assert_eq!(map.first(), Some((&1, &"uno")));
/// ```
#[inline]
pub fn first(&self) -> Option<(&K, &V)> {
self.values.lm_get(0).map(|(k, v)| (k, v))
}
/// Get the highest-rank key/value pair from the `LiteMap`, if it exists.
///
/// # Examples
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// assert!(map.try_append(1, "uno").is_none());
/// assert!(map.try_append(3, "tres").is_none());
///
/// assert_eq!(map.last(), Some((&3, &"tres")));
/// ```
#[inline]
pub fn last(&self) -> Option<(&K, &V)> {
self.values.lm_get(self.len() - 1).map(|(k, v)| (k, v))
}
/// Obtain the index for a given key, or if the key is not found, the index
/// at which it would be inserted.
///
/// (The return value works equivalently to [`slice::binary_search_by()`])
///
/// The indices returned can be used with [`Self::get_indexed()`]. Prefer using
/// [`Self::get()`] directly where possible.
#[inline]
pub fn find_index<Q: ?Sized>(&self, key: &Q) -> Result<usize, usize>
where
K: Borrow<Q>,
Q: Ord,
{
self.values.lm_binary_search_by(|k| k.borrow().cmp(key))
}
}
impl<K, V, S> LiteMap<K, V, S>
where
S: StoreMut<K, V>,
{
/// Construct a new [`LiteMap`] with a given capacity
pub fn with_capacity(capacity: usize) -> Self {
Self {
values: S::lm_with_capacity(capacity),
_key_type: PhantomData,
_value_type: PhantomData,
}
}
/// Remove all elements from the [`LiteMap`]
pub fn clear(&mut self) {
self.values.lm_clear()
}
/// Reserve capacity for `additional` more elements to be inserted into
/// the [`LiteMap`] to avoid frequent reallocations.
///
/// See [`Vec::reserve()`] for more information.
///
/// [`Vec::reserve()`]: alloc::vec::Vec::reserve
pub fn reserve(&mut self, additional: usize) {
self.values.lm_reserve(additional)
}
}
impl<K, V, S> LiteMap<K, V, S>
where
K: Ord,
S: StoreMut<K, V>,
{
/// Get the value associated with `key`, if it exists, as a mutable reference.
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// if let Some(mut v) = map.get_mut(&1) {
/// *v = "uno";
/// }
/// assert_eq!(map.get(&1), Some(&"uno"));
/// ```
pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
where
K: Borrow<Q>,
Q: Ord,
{
match self.find_index(key) {
#[allow(clippy::unwrap_used)] // find_index returns a valid index
Ok(found) => Some(self.values.lm_get_mut(found).unwrap().1),
Err(_) => None,
}
}
/// Appends `value` with `key` to the end of the underlying vector, returning
/// `key` and `value` _if it failed_. Useful for extending with an existing
/// sorted list.
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// assert!(map.try_append(1, "uno").is_none());
/// assert!(map.try_append(3, "tres").is_none());
///
/// assert!(
/// matches!(map.try_append(3, "tres-updated"), Some((3, "tres-updated"))),
/// "append duplicate of last key",
/// );
///
/// assert!(
/// matches!(map.try_append(2, "dos"), Some((2, "dos"))),
/// "append out of order"
/// );
///
/// assert_eq!(map.get(&1), Some(&"uno"));
///
/// // contains the original value for the key: 3
/// assert_eq!(map.get(&3), Some(&"tres"));
///
/// // not appended since it wasn't in order
/// assert_eq!(map.get(&2), None);
/// ```
#[must_use]
pub fn try_append(&mut self, key: K, value: V) -> Option<(K, V)> {
if let Some(last) = self.values.lm_last() {
if last.0 >= &key {
return Some((key, value));
}
}
self.values.lm_push(key, value);
None
}
/// Insert `value` with `key`, returning the existing value if it exists.
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// assert_eq!(map.get(&1), Some(&"one"));
/// assert_eq!(map.get(&3), None);
/// ```
pub fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert_save_key(key, value).map(|(_, v)| v)
}
/// Version of [`Self::insert()`] that returns both the key and the old value.
fn insert_save_key(&mut self, key: K, value: V) -> Option<(K, V)> {
match self.values.lm_binary_search_by(|k| k.cmp(&key)) {
#[allow(clippy::unwrap_used)] // Index came from binary_search
Ok(found) => Some((
key,
mem::replace(self.values.lm_get_mut(found).unwrap().1, value),
)),
Err(ins) => {
self.values.lm_insert(ins, key, value);
None
}
}
}
/// Attempts to insert a unique entry into the map.
///
/// If `key` is not already in the map, inserts it with the corresponding `value`
/// and returns `None`.
///
/// If `key` is already in the map, no change is made to the map, and the key and value
/// are returned back to the caller.
///
/// ```
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(3, "three");
///
/// // 2 is not yet in the map...
/// assert_eq!(map.try_insert(2, "two"), None);
/// assert_eq!(map.len(), 3);
///
/// // ...but now it is.
/// assert_eq!(map.try_insert(2, "TWO"), Some((2, "TWO")));
/// assert_eq!(map.len(), 3);
/// ```
pub fn try_insert(&mut self, key: K, value: V) -> Option<(K, V)> {
match self.values.lm_binary_search_by(|k| k.cmp(&key)) {
Ok(_) => Some((key, value)),
Err(ins) => {
self.values.lm_insert(ins, key, value);
None
}
}
}
/// Remove the value at `key`, returning it if it exists.
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// assert_eq!(map.remove(&1), Some("one"));
/// assert_eq!(map.get(&1), None);
/// ```
pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
where
K: Borrow<Q>,
Q: Ord,
{
match self.values.lm_binary_search_by(|k| k.borrow().cmp(key)) {
Ok(found) => Some(self.values.lm_remove(found).1),
Err(_) => None,
}
}
}
impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
where
K: Ord,
S: StoreIterableMut<'a, K, V> + StoreFromIterator<K, V>,
{
/// Insert all elements from `other` into this `LiteMap`.
///
/// If `other` contains keys that already exist in `self`, the values in `other` replace the
/// corresponding ones in `self`, and the rejected items from `self` are returned as a new
/// `LiteMap`. Otherwise, `None` is returned.
///
/// The implementation of this function is optimized if `self` and `other` have no overlap.
///
/// # Examples
///
/// ```
/// use litemap::LiteMap;
///
/// let mut map1 = LiteMap::new_vec();
/// map1.insert(1, "one");
/// map1.insert(2, "two");
///
/// let mut map2 = LiteMap::new_vec();
/// map2.insert(2, "TWO");
/// map2.insert(4, "FOUR");
///
/// let leftovers = map1.extend_from_litemap(map2);
///
/// assert_eq!(map1.len(), 3);
/// assert_eq!(map1.get(&1), Some("one").as_ref());
/// assert_eq!(map1.get(&2), Some("TWO").as_ref());
/// assert_eq!(map1.get(&4), Some("FOUR").as_ref());
///
/// let map3 = leftovers.expect("Duplicate keys");
/// assert_eq!(map3.len(), 1);
/// assert_eq!(map3.get(&2), Some("two").as_ref());
/// ```
pub fn extend_from_litemap(&mut self, other: Self) -> Option<Self> {
if self.is_empty() {
self.values = other.values;
return None;
}
if other.is_empty() {
return None;
}
if self.last().map(|(k, _)| k) < other.first().map(|(k, _)| k) {
// append other to self
self.values.lm_extend_end(other.values);
None
} else if self.first().map(|(k, _)| k) > other.last().map(|(k, _)| k) {
// prepend other to self
self.values.lm_extend_start(other.values);
None
} else {
// insert every element
let leftover_tuples = other
.values
.lm_into_iter()
.filter_map(|(k, v)| self.insert_save_key(k, v))
.collect();
let ret = LiteMap {
values: leftover_tuples,
_key_type: PhantomData,
_value_type: PhantomData,
};
if ret.is_empty() {
None
} else {
Some(ret)
}
}
}
}
impl<K, V, S> Default for LiteMap<K, V, S>
where
S: Store<K, V> + Default,
{
fn default() -> Self {
Self {
values: S::default(),
_key_type: PhantomData,
_value_type: PhantomData,
}
}
}
impl<K, V, S> Index<&'_ K> for LiteMap<K, V, S>
where
K: Ord,
S: Store<K, V>,
{
type Output = V;
fn index(&self, key: &K) -> &V {
#[allow(clippy::panic)] // documented
match self.get(key) {
Some(v) => v,
None => panic!("no entry found for key"),
}
}
}
impl<K, V, S> IndexMut<&'_ K> for LiteMap<K, V, S>
where
K: Ord,
S: StoreMut<K, V>,
{
fn index_mut(&mut self, key: &K) -> &mut V {
#[allow(clippy::panic)] // documented
match self.get_mut(key) {
Some(v) => v,
None => panic!("no entry found for key"),
}
}
}
impl<K, V, S> FromIterator<(K, V)> for LiteMap<K, V, S>
where
K: Ord,
S: StoreMut<K, V>,
{
fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
let iter = iter.into_iter();
let mut map = match iter.size_hint() {
(_, Some(upper)) => Self::with_capacity(upper),
(lower, None) => Self::with_capacity(lower),
};
for (key, value) in iter {
if let Some((key, value)) = map.try_append(key, value) {
map.insert(key, value);
}
}
map
}
}
impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
where
S: StoreIterable<'a, K, V>,
{
/// Produce an ordered iterator over key-value pairs
pub fn iter(&'a self) -> impl Iterator<Item = (&'a K, &'a V)> + DoubleEndedIterator {
self.values.lm_iter()
}
/// Produce an ordered iterator over keys
pub fn iter_keys(&'a self) -> impl Iterator<Item = &'a K> + DoubleEndedIterator {
self.values.lm_iter().map(|val| val.0)
}
/// Produce an iterator over values, ordered by their keys
pub fn iter_values(&'a self) -> impl Iterator<Item = &'a V> + DoubleEndedIterator {
self.values.lm_iter().map(|val| val.1)
}
}
impl<'a, K: 'a, V: 'a, S> LiteMap<K, V, S>
where
S: StoreIterableMut<'a, K, V>,
{
/// Produce an ordered mutable iterator over key-value pairs
pub fn iter_mut(
&'a mut self,
) -> impl Iterator<Item = (&'a K, &'a mut V)> + DoubleEndedIterator {
self.values.lm_iter_mut()
}
}
impl<K, V, S> LiteMap<K, V, S>
where
S: StoreMut<K, V>,
{
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements such that `f((&k, &v))` returns `false`.
///
/// # Example
///
/// ```rust
/// use litemap::LiteMap;
///
/// let mut map = LiteMap::new_vec();
/// map.insert(1, "one");
/// map.insert(2, "two");
/// map.insert(3, "three");
///
/// // Retain elements with odd keys
/// map.retain(|k, _| k % 2 == 1);
///
/// assert_eq!(map.get(&1), Some(&"one"));
/// assert_eq!(map.get(&2), None);
/// ```
#[inline]
pub fn retain<F>(&mut self, predicate: F)
where
F: FnMut(&K, &V) -> bool,
{
self.values.lm_retain(predicate)
}
}
#[cfg(test)]
mod test {
use crate::LiteMap;
#[test]
fn from_iterator() {
let mut expected = LiteMap::with_capacity(4);
expected.insert(1, "updated-one");
expected.insert(2, "original-two");
expected.insert(3, "original-three");
expected.insert(4, "updated-four");
let actual = vec![
(1, "original-one"),
(2, "original-two"),
(4, "original-four"),
(4, "updated-four"),
(1, "updated-one"),
(3, "original-three"),
]
.into_iter()
.collect::<LiteMap<_, _>>();
assert_eq!(expected, actual);
}
fn make_13() -> LiteMap<usize, &'static str> {
let mut result = LiteMap::new();
result.insert(1, "one");
result.insert(3, "three");
result
}
fn make_24() -> LiteMap<usize, &'static str> {
let mut result = LiteMap::new();
result.insert(2, "TWO");
result.insert(4, "FOUR");
result
}
fn make_46() -> LiteMap<usize, &'static str> {
let mut result = LiteMap::new();
result.insert(4, "four");
result.insert(6, "six");
result
}
#[test]
fn extend_from_litemap_append() {
let mut map = LiteMap::new();
map.extend_from_litemap(make_13())
.ok_or(())
.expect_err("Append to empty map");
map.extend_from_litemap(make_46())
.ok_or(())
.expect_err("Append to lesser map");
assert_eq!(map.len(), 4);
}
#[test]
fn extend_from_litemap_prepend() {
let mut map = LiteMap::new();
map.extend_from_litemap(make_46())
.ok_or(())
.expect_err("Prepend to empty map");
map.extend_from_litemap(make_13())
.ok_or(())
.expect_err("Prepend to lesser map");
assert_eq!(map.len(), 4);
}
#[test]
fn extend_from_litemap_insert() {
let mut map = LiteMap::new();
map.extend_from_litemap(make_13())
.ok_or(())
.expect_err("Append to empty map");
map.extend_from_litemap(make_24())
.ok_or(())
.expect_err("Insert with no conflict");
map.extend_from_litemap(make_46())
.ok_or(())
.expect("Insert with conflict");
assert_eq!(map.len(), 5);
}
}