blob: 5a4614c73a25eeb463c6a64f7fd4c3a6579d52ec [file] [log] [blame]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
use std::collections::hash_map::Entry;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::ops::Index;
macro_rules! declare_id {
(
$(#[$attr:meta])*
$name:ident
) => {
$(#[$attr])*
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $name(pub usize);
impl $name {
/// Get the index of this id.
pub fn index(self) -> usize {
self.0
}
}
};
}
/// A wrapper around a [HashSet] which prevents accidentally observing the non-deterministic
/// iteration order.
#[derive(Clone, Debug, Default)]
pub struct StableSet<T>(HashSet<T>);
impl<T> StableSet<T> {
fn new() -> Self {
StableSet(HashSet::new())
}
}
impl<T: Hash + Eq> StableSet<T> {
/// Adds a value to the set. Returns whether the value was newly inserted.
pub fn insert(&mut self, val: T) -> bool {
self.0.insert(val)
}
/// Returns true if the set contains a value.
pub fn contains(&self, val: &T) -> bool {
self.0.contains(val)
}
}
/// A wrapper around a [HashMap] which prevents accidentally observing the non-deterministic
/// iteration order.
#[derive(Clone, Debug)]
pub struct StableMap<K, V>(HashMap<K, V>);
impl<K, V> StableMap<K, V> {
fn new() -> Self {
StableMap(HashMap::new())
}
fn len(&self) -> usize {
self.0.len()
}
}
// NOTE: Can't auto-derive this
impl<K, V> Default for StableMap<K, V> {
fn default() -> Self {
StableMap(HashMap::new())
}
}
impl<K: Hash + Eq, V> StableMap<K, V> {
fn insert(&mut self, k: K, v: V) -> Option<V> {
self.0.insert(k, v)
}
fn contains_key(&self, k: &K) -> bool {
self.0.contains_key(k)
}
fn get(&self, k: &K) -> Option<&V> {
self.0.get(k)
}
fn entry(&mut self, k: K) -> Entry<K, V> {
self.0.entry(k)
}
}
impl<K: Hash + Eq, V> Index<&K> for StableMap<K, V> {
type Output = V;
fn index(&self, index: &K) -> &Self::Output {
self.0.index(index)
}
}
/// Stores disjoint sets and provides efficient operations to merge two sets, and to find a
/// representative member of a set given any member of that set. In this implementation, sets always
/// have at least two members, and can only be formed by the `merge` operation.
#[derive(Debug, Default)]
pub struct DisjointSets<T> {
parent: HashMap<T, (T, u8)>,
}
impl<T: Copy + std::fmt::Debug + Eq + Hash> DisjointSets<T> {
/// Find a representative member of the set containing `x`. If `x` has not been merged with any
/// other items using `merge`, returns `None`. This method updates the data structure to make
/// future queries faster, and takes amortized constant time.
///
/// ```
/// let mut sets = cranelift_isle::DisjointSets::default();
/// sets.merge(1, 2);
/// sets.merge(1, 3);
/// sets.merge(2, 4);
/// assert_eq!(sets.find_mut(3).unwrap(), sets.find_mut(4).unwrap());
/// assert_eq!(sets.find_mut(10), None);
/// ```
pub fn find_mut(&mut self, mut x: T) -> Option<T> {
while let Some(node) = self.parent.get(&x) {
if node.0 == x {
return Some(x);
}
let grandparent = self.parent[&node.0].0;
// Re-do the lookup but take a mutable borrow this time
self.parent.get_mut(&x).unwrap().0 = grandparent;
x = grandparent;
}
None
}
/// Find a representative member of the set containing `x`. If `x` has not been merged with any
/// other items using `merge`, returns `None`. This method does not update the data structure to
/// make future queries faster, so `find_mut` should be preferred.
///
/// ```
/// let mut sets = cranelift_isle::DisjointSets::default();
/// sets.merge(1, 2);
/// sets.merge(1, 3);
/// sets.merge(2, 4);
/// assert_eq!(sets.find(3).unwrap(), sets.find(4).unwrap());
/// assert_eq!(sets.find(10), None);
/// ```
pub fn find(&self, mut x: T) -> Option<T> {
while let Some(node) = self.parent.get(&x) {
if node.0 == x {
return Some(x);
}
x = node.0;
}
None
}
/// Merge the set containing `x` with the set containing `y`. This method takes amortized
/// constant time.
pub fn merge(&mut self, x: T, y: T) {
assert_ne!(x, y);
let mut x = if let Some(x) = self.find_mut(x) {
self.parent[&x]
} else {
self.parent.insert(x, (x, 0));
(x, 0)
};
let mut y = if let Some(y) = self.find_mut(y) {
self.parent[&y]
} else {
self.parent.insert(y, (y, 0));
(y, 0)
};
if x == y {
return;
}
if x.1 < y.1 {
std::mem::swap(&mut x, &mut y);
}
self.parent.get_mut(&y.0).unwrap().0 = x.0;
if x.1 == y.1 {
let x_rank = &mut self.parent.get_mut(&x.0).unwrap().1;
*x_rank = x_rank.saturating_add(1);
}
}
/// Remove the set containing the given item, and return all members of that set. The set is
/// returned in sorted order. This method takes time linear in the total size of all sets.
///
/// ```
/// let mut sets = cranelift_isle::DisjointSets::default();
/// sets.merge(1, 2);
/// sets.merge(1, 3);
/// sets.merge(2, 4);
/// assert_eq!(sets.remove_set_of(4), &[1, 2, 3, 4]);
/// assert_eq!(sets.remove_set_of(1), &[]);
/// assert!(sets.is_empty());
/// ```
pub fn remove_set_of(&mut self, x: T) -> Vec<T>
where
T: Ord,
{
let mut set = Vec::new();
if let Some(x) = self.find_mut(x) {
set.extend(self.parent.keys().copied());
// It's important to use `find_mut` here to avoid quadratic worst-case time.
set.retain(|&y| self.find_mut(y).unwrap() == x);
for y in set.iter() {
self.parent.remove(y);
}
set.sort_unstable();
}
set
}
/// Returns true if there are no sets. This method takes constant time.
///
/// ```
/// let mut sets = cranelift_isle::DisjointSets::default();
/// assert!(sets.is_empty());
/// sets.merge(1, 2);
/// assert!(!sets.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.parent.is_empty()
}
/// Returns the total number of elements in all sets. This method takes constant time.
///
/// ```
/// let mut sets = cranelift_isle::DisjointSets::default();
/// sets.merge(1, 2);
/// assert_eq!(sets.len(), 2);
/// sets.merge(3, 4);
/// sets.merge(3, 5);
/// assert_eq!(sets.len(), 5);
/// ```
pub fn len(&self) -> usize {
self.parent.len()
}
}
pub mod ast;
pub mod codegen;
pub mod compile;
pub mod error;
pub mod ir;
pub mod lexer;
mod log;
pub mod overlap;
pub mod parser;
pub mod sema;
pub mod trie;
pub mod trie_again;