blob: 41ae596eba942d12eda00ca30dd62494465561a7 [file] [log] [blame]
//! Encodes instructions in the standard x86 encoding mode. This is called IA-32E mode in the Intel
//! manuals but corresponds to the addition of the REX-prefix format (hence the name of this module)
//! that allowed encoding instructions in both compatibility mode (32-bit instructions running on a
//! 64-bit OS) and in 64-bit mode (using the full 64-bit address space).
//!
//! For all of the routines that take both a memory-or-reg operand (sometimes called "E" in the
//! Intel documentation, see the Intel Developer's manual, vol. 2, section A.2) and a reg-only
//! operand ("G" in Intelese), the order is always G first, then E. The term "enc" in the following
//! means "hardware register encoding number".
use crate::machinst::{Reg, RegClass};
use crate::{
ir::TrapCode,
isa::x64::inst::{
args::{Amode, OperandSize},
regs, Inst, LabelUse,
},
machinst::MachBuffer,
};
pub(crate) fn low8_will_sign_extend_to_64(x: u32) -> bool {
let xs = (x as i32) as i64;
xs == ((xs << 56) >> 56)
}
pub(crate) fn low8_will_sign_extend_to_32(x: u32) -> bool {
let xs = x as i32;
xs == ((xs << 24) >> 24)
}
/// Encode the ModR/M byte.
#[inline(always)]
pub fn encode_modrm(m0d: u8, enc_reg_g: u8, rm_e: u8) -> u8 {
debug_assert!(m0d < 4);
debug_assert!(enc_reg_g < 8);
debug_assert!(rm_e < 8);
((m0d & 3) << 6) | ((enc_reg_g & 7) << 3) | (rm_e & 7)
}
#[inline(always)]
pub(crate) fn encode_sib(shift: u8, enc_index: u8, enc_base: u8) -> u8 {
debug_assert!(shift < 4);
debug_assert!(enc_index < 8);
debug_assert!(enc_base < 8);
((shift & 3) << 6) | ((enc_index & 7) << 3) | (enc_base & 7)
}
/// Get the encoding number of a GPR.
#[inline(always)]
pub(crate) fn int_reg_enc(reg: impl Into<Reg>) -> u8 {
let reg = reg.into();
debug_assert!(reg.is_real());
debug_assert_eq!(reg.class(), RegClass::Int);
reg.to_real_reg().unwrap().hw_enc()
}
/// Get the encoding number of any register.
#[inline(always)]
pub(crate) fn reg_enc(reg: impl Into<Reg>) -> u8 {
let reg = reg.into();
debug_assert!(reg.is_real());
reg.to_real_reg().unwrap().hw_enc()
}
/// A small bit field to record a REX prefix specification:
/// - bit 0 set to 1 indicates REX.W must be 0 (cleared).
/// - bit 1 set to 1 indicates the REX prefix must always be emitted.
#[repr(transparent)]
#[derive(Clone, Copy)]
pub(crate) struct RexFlags(u8);
impl RexFlags {
/// By default, set the W field, and don't always emit.
#[inline(always)]
pub(crate) fn set_w() -> Self {
Self(0)
}
/// Creates a new RexPrefix for which the REX.W bit will be cleared.
#[inline(always)]
pub(crate) fn clear_w() -> Self {
Self(1)
}
#[inline(always)]
pub(crate) fn always_emit(&mut self) -> &mut Self {
self.0 = self.0 | 2;
self
}
#[inline(always)]
pub(crate) fn always_emit_if_8bit_needed(&mut self, reg: Reg) -> &mut Self {
let enc_reg = int_reg_enc(reg);
if enc_reg >= 4 && enc_reg <= 7 {
self.always_emit();
}
self
}
#[inline(always)]
pub(crate) fn must_clear_w(&self) -> bool {
(self.0 & 1) != 0
}
#[inline(always)]
pub(crate) fn must_always_emit(&self) -> bool {
(self.0 & 2) != 0
}
#[inline(always)]
pub(crate) fn emit_one_op(&self, sink: &mut MachBuffer<Inst>, enc_e: u8) {
// Register Operand coded in Opcode Byte
// REX.R and REX.X unused
// REX.B == 1 accesses r8-r15
let w = if self.must_clear_w() { 0 } else { 1 };
let r = 0;
let x = 0;
let b = (enc_e >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
#[inline(always)]
pub(crate) fn emit_two_op(&self, sink: &mut MachBuffer<Inst>, enc_g: u8, enc_e: u8) {
let w = if self.must_clear_w() { 0 } else { 1 };
let r = (enc_g >> 3) & 1;
let x = 0;
let b = (enc_e >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
#[inline(always)]
pub fn emit_three_op(
&self,
sink: &mut MachBuffer<Inst>,
enc_g: u8,
enc_index: u8,
enc_base: u8,
) {
let w = if self.must_clear_w() { 0 } else { 1 };
let r = (enc_g >> 3) & 1;
let x = (enc_index >> 3) & 1;
let b = (enc_base >> 3) & 1;
let rex = 0x40 | (w << 3) | (r << 2) | (x << 1) | b;
if rex != 0x40 || self.must_always_emit() {
sink.put1(rex);
}
}
}
/// Generate the proper Rex flags for the given operand size.
impl From<OperandSize> for RexFlags {
fn from(size: OperandSize) -> Self {
match size {
OperandSize::Size64 => RexFlags::set_w(),
_ => RexFlags::clear_w(),
}
}
}
/// Generate Rex flags for an OperandSize/register tuple.
impl From<(OperandSize, Reg)> for RexFlags {
fn from((size, reg): (OperandSize, Reg)) -> Self {
let mut rex = RexFlags::from(size);
if size == OperandSize::Size8 {
rex.always_emit_if_8bit_needed(reg);
}
rex
}
}
/// Allows using the same opcode byte in different "opcode maps" to allow for more instruction
/// encodings. See appendix A in the Intel Software Developer's Manual, volume 2A, for more details.
#[allow(missing_docs)]
#[derive(PartialEq)]
pub enum OpcodeMap {
None,
_0F,
_0F38,
_0F3A,
}
impl OpcodeMap {
/// Normally the opcode map is specified as bytes in the instruction, but some x64 encoding
/// formats pack this information as bits in a prefix (e.g. VEX / EVEX).
pub(crate) fn bits(&self) -> u8 {
match self {
OpcodeMap::None => 0b00,
OpcodeMap::_0F => 0b01,
OpcodeMap::_0F38 => 0b10,
OpcodeMap::_0F3A => 0b11,
}
}
}
impl Default for OpcodeMap {
fn default() -> Self {
Self::None
}
}
/// We may need to include one or more legacy prefix bytes before the REX prefix. This enum
/// covers only the small set of possibilities that we actually need.
#[derive(PartialEq)]
pub enum LegacyPrefixes {
/// No prefix bytes.
None,
/// Operand Size Override -- here, denoting "16-bit operation".
_66,
/// The Lock prefix.
_F0,
/// Operand size override and Lock.
_66F0,
/// REPNE, but no specific meaning here -- is just an opcode extension.
_F2,
/// REP/REPE, but no specific meaning here -- is just an opcode extension.
_F3,
/// Operand size override and same effect as F3.
_66F3,
}
impl LegacyPrefixes {
/// Emit the legacy prefix as bytes (e.g. in REX instructions).
#[inline(always)]
pub(crate) fn emit(&self, sink: &mut MachBuffer<Inst>) {
match self {
Self::_66 => sink.put1(0x66),
Self::_F0 => sink.put1(0xF0),
Self::_66F0 => {
// I don't think the order matters, but in any case, this is the same order that
// the GNU assembler uses.
sink.put1(0x66);
sink.put1(0xF0);
}
Self::_F2 => sink.put1(0xF2),
Self::_F3 => sink.put1(0xF3),
Self::_66F3 => {
sink.put1(0x66);
sink.put1(0xF3);
}
Self::None => (),
}
}
/// Emit the legacy prefix as bits (e.g. for EVEX instructions).
#[inline(always)]
pub(crate) fn bits(&self) -> u8 {
match self {
Self::None => 0b00,
Self::_66 => 0b01,
Self::_F3 => 0b10,
Self::_F2 => 0b11,
_ => panic!(
"VEX and EVEX bits can only be extracted from single prefixes: None, 66, F3, F2"
),
}
}
}
impl Default for LegacyPrefixes {
fn default() -> Self {
Self::None
}
}
/// This is the core 'emit' function for instructions that reference memory.
///
/// For an instruction that has as operands a reg encoding `enc_g` and a memory address `mem_e`,
/// create and emit:
/// - first the legacy prefixes, if any
/// - then the REX prefix, if needed
/// - then caller-supplied opcode byte(s) (`opcodes` and `num_opcodes`),
/// - then the MOD/RM byte,
/// - then optionally, a SIB byte,
/// - and finally optionally an immediate that will be derived from the `mem_e` operand.
///
/// For most instructions up to and including SSE4.2, that will be the whole instruction: this is
/// what we call "standard" instructions, and abbreviate "std" in the name here. VEX-prefixed
/// instructions will require their own emitter functions.
///
/// This will also work for 32-bits x86 instructions, assuming no REX prefix is provided.
///
/// The opcodes are written bigendianly for the convenience of callers. For example, if the opcode
/// bytes to be emitted are, in this order, F3 0F 27, then the caller should pass `opcodes` ==
/// 0xF3_0F_27 and `num_opcodes` == 3.
///
/// The register operand is represented here not as a `Reg` but as its hardware encoding, `enc_g`.
/// `rex` can specify special handling for the REX prefix. By default, the REX prefix will
/// indicate a 64-bit operation and will be deleted if it is redundant (0x40). Note that for a
/// 64-bit operation, the REX prefix will normally never be redundant, since REX.W must be 1 to
/// indicate a 64-bit operation.
pub(crate) fn emit_std_enc_mem(
sink: &mut MachBuffer<Inst>,
prefixes: LegacyPrefixes,
opcodes: u32,
mut num_opcodes: usize,
enc_g: u8,
mem_e: &Amode,
rex: RexFlags,
bytes_at_end: u8,
) {
// General comment for this function: the registers in `mem_e` must be
// 64-bit integer registers, because they are part of an address
// expression. But `enc_g` can be derived from a register of any class.
let can_trap = mem_e.can_trap();
if can_trap {
sink.add_trap(TrapCode::HeapOutOfBounds);
}
prefixes.emit(sink);
match *mem_e {
Amode::ImmReg { simm32, base, .. } => {
// First, the REX byte.
let enc_e = int_reg_enc(base);
rex.emit_two_op(sink, enc_g, enc_e);
// Now the opcode(s). These include any other prefixes the caller
// hands to us.
while num_opcodes > 0 {
num_opcodes -= 1;
sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
}
// Now the mod/rm and associated immediates. This is
// significantly complicated due to the multiple special cases.
if simm32 == 0
&& enc_e != regs::ENC_RSP
&& enc_e != regs::ENC_RBP
&& enc_e != regs::ENC_R12
&& enc_e != regs::ENC_R13
{
// FIXME JRS 2020Feb11: those four tests can surely be
// replaced by a single mask-and-compare check. We should do
// that because this routine is likely to be hot.
sink.put1(encode_modrm(0, enc_g & 7, enc_e & 7));
} else if simm32 == 0 && (enc_e == regs::ENC_RSP || enc_e == regs::ENC_R12) {
sink.put1(encode_modrm(0, enc_g & 7, 4));
sink.put1(0x24);
} else if low8_will_sign_extend_to_32(simm32)
&& enc_e != regs::ENC_RSP
&& enc_e != regs::ENC_R12
{
sink.put1(encode_modrm(1, enc_g & 7, enc_e & 7));
sink.put1((simm32 & 0xFF) as u8);
} else if enc_e != regs::ENC_RSP && enc_e != regs::ENC_R12 {
sink.put1(encode_modrm(2, enc_g & 7, enc_e & 7));
sink.put4(simm32);
} else if (enc_e == regs::ENC_RSP || enc_e == regs::ENC_R12)
&& low8_will_sign_extend_to_32(simm32)
{
// REX.B distinguishes RSP from R12
sink.put1(encode_modrm(1, enc_g & 7, 4));
sink.put1(0x24);
sink.put1((simm32 & 0xFF) as u8);
} else if enc_e == regs::ENC_R12 || enc_e == regs::ENC_RSP {
//.. wait for test case for RSP case
// REX.B distinguishes RSP from R12
sink.put1(encode_modrm(2, enc_g & 7, 4));
sink.put1(0x24);
sink.put4(simm32);
} else {
unreachable!("ImmReg");
}
}
Amode::ImmRegRegShift {
simm32,
base: reg_base,
index: reg_index,
shift,
..
} => {
let enc_base = int_reg_enc(*reg_base);
let enc_index = int_reg_enc(*reg_index);
// The rex byte.
rex.emit_three_op(sink, enc_g, enc_index, enc_base);
// All other prefixes and opcodes.
while num_opcodes > 0 {
num_opcodes -= 1;
sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
}
// modrm, SIB, immediates.
if low8_will_sign_extend_to_32(simm32) && enc_index != regs::ENC_RSP {
sink.put1(encode_modrm(1, enc_g & 7, 4));
sink.put1(encode_sib(shift, enc_index & 7, enc_base & 7));
sink.put1(simm32 as u8);
} else if enc_index != regs::ENC_RSP {
sink.put1(encode_modrm(2, enc_g & 7, 4));
sink.put1(encode_sib(shift, enc_index & 7, enc_base & 7));
sink.put4(simm32);
} else {
panic!("ImmRegRegShift");
}
}
Amode::RipRelative { ref target } => {
// First, the REX byte, with REX.B = 0.
rex.emit_two_op(sink, enc_g, 0);
// Now the opcode(s). These include any other prefixes the caller
// hands to us.
while num_opcodes > 0 {
num_opcodes -= 1;
sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
}
// RIP-relative is mod=00, rm=101.
sink.put1(encode_modrm(0, enc_g & 7, 0b101));
let offset = sink.cur_offset();
sink.use_label_at_offset(offset, *target, LabelUse::JmpRel32);
// N.B.: some instructions (XmmRmRImm format for example)
// have bytes *after* the RIP-relative offset. The
// addressed location is relative to the end of the
// instruction, but the relocation is nominally relative
// to the end of the u32 field. So, to compensate for
// this, we emit a negative extra offset in the u32 field
// initially, and the relocation will add to it.
sink.put4(-(bytes_at_end as i32) as u32);
}
}
}
/// This is the core 'emit' function for instructions that do not reference memory.
///
/// This is conceptually the same as emit_modrm_sib_enc_ge, except it is for the case where the E
/// operand is a register rather than memory. Hence it is much simpler.
pub(crate) fn emit_std_enc_enc(
sink: &mut MachBuffer<Inst>,
prefixes: LegacyPrefixes,
opcodes: u32,
mut num_opcodes: usize,
enc_g: u8,
enc_e: u8,
rex: RexFlags,
) {
// EncG and EncE can be derived from registers of any class, and they
// don't even have to be from the same class. For example, for an
// integer-to-FP conversion insn, one might be RegClass::I64 and the other
// RegClass::V128.
// The legacy prefixes.
prefixes.emit(sink);
// The rex byte.
rex.emit_two_op(sink, enc_g, enc_e);
// All other prefixes and opcodes.
while num_opcodes > 0 {
num_opcodes -= 1;
sink.put1(((opcodes >> (num_opcodes << 3)) & 0xFF) as u8);
}
// Now the mod/rm byte. The instruction we're generating doesn't access
// memory, so there is no SIB byte or immediate -- we're done.
sink.put1(encode_modrm(3, enc_g & 7, enc_e & 7));
}
// These are merely wrappers for the above two functions that facilitate passing
// actual `Reg`s rather than their encodings.
pub(crate) fn emit_std_reg_mem(
sink: &mut MachBuffer<Inst>,
prefixes: LegacyPrefixes,
opcodes: u32,
num_opcodes: usize,
reg_g: Reg,
mem_e: &Amode,
rex: RexFlags,
bytes_at_end: u8,
) {
let enc_g = reg_enc(reg_g);
emit_std_enc_mem(
sink,
prefixes,
opcodes,
num_opcodes,
enc_g,
mem_e,
rex,
bytes_at_end,
);
}
pub(crate) fn emit_std_reg_reg(
sink: &mut MachBuffer<Inst>,
prefixes: LegacyPrefixes,
opcodes: u32,
num_opcodes: usize,
reg_g: Reg,
reg_e: Reg,
rex: RexFlags,
) {
let enc_g = reg_enc(reg_g);
let enc_e = reg_enc(reg_e);
emit_std_enc_enc(sink, prefixes, opcodes, num_opcodes, enc_g, enc_e, rex);
}
/// Write a suitable number of bits from an imm64 to the sink.
pub(crate) fn emit_simm(sink: &mut MachBuffer<Inst>, size: u8, simm32: u32) {
match size {
8 | 4 => sink.put4(simm32),
2 => sink.put2(simm32 as u16),
1 => sink.put1(simm32 as u8),
_ => unreachable!(),
}
}