blob: c41469eff668842fb899d167e2ac391e06443545 [file] [log] [blame]
//! ISLE integration glue code for riscv64 lowering.
// Pull in the ISLE generated code.
#[allow(unused)]
pub mod generated_code;
use generated_code::{Context, MInst};
// Types that the generated ISLE code uses via `use super::*`.
use super::{writable_zero_reg, zero_reg};
use crate::isa::riscv64::abi::Riscv64ABICaller;
use crate::isa::riscv64::Riscv64Backend;
use crate::machinst::Reg;
use crate::machinst::{isle::*, MachInst, SmallInstVec};
use crate::machinst::{VCodeConstant, VCodeConstantData};
use crate::{
ir::{
immediates::*, types::*, AtomicRmwOp, ExternalName, Inst, InstructionData, MemFlags,
StackSlot, TrapCode, Value, ValueList,
},
isa::riscv64::inst::*,
machinst::{ArgPair, InstOutput, Lower},
};
use crate::{isle_common_prelude_methods, isle_lower_prelude_methods};
use regalloc2::PReg;
use std::boxed::Box;
use std::convert::TryFrom;
use std::vec::Vec;
type BoxCallInfo = Box<CallInfo>;
type BoxCallIndInfo = Box<CallIndInfo>;
type BoxExternalName = Box<ExternalName>;
type VecMachLabel = Vec<MachLabel>;
type VecArgPair = Vec<ArgPair>;
use crate::machinst::valueregs;
/// The main entry point for lowering with ISLE.
pub(crate) fn lower(
lower_ctx: &mut Lower<MInst>,
backend: &Riscv64Backend,
inst: Inst,
) -> Option<InstOutput> {
// TODO: reuse the ISLE context across lowerings so we can reuse its
// internal heap allocations.
let mut isle_ctx = IsleContext { lower_ctx, backend };
generated_code::constructor_lower(&mut isle_ctx, inst)
}
impl IsleContext<'_, '_, MInst, Riscv64Backend> {
isle_prelude_method_helpers!(Riscv64ABICaller);
}
impl generated_code::Context for IsleContext<'_, '_, MInst, Riscv64Backend> {
isle_lower_prelude_methods!();
isle_prelude_caller_methods!(Riscv64MachineDeps, Riscv64ABICaller);
fn vec_writable_to_regs(&mut self, val: &VecWritableReg) -> ValueRegs {
match val.len() {
1 => ValueRegs::one(val[0].to_reg()),
2 => ValueRegs::two(val[0].to_reg(), val[1].to_reg()),
_ => unreachable!(),
}
}
fn lower_brz_or_nz(
&mut self,
cc: &IntCC,
a: ValueRegs,
targets: &VecMachLabel,
ty: Type,
) -> Unit {
MInst::lower_br_icmp(
*cc,
a,
self.int_zero_reg(ty),
BranchTarget::Label(targets[0]),
BranchTarget::Label(targets[1]),
ty,
)
.iter()
.for_each(|i| self.emit(i));
}
fn lower_br_icmp(
&mut self,
cc: &IntCC,
a: ValueRegs,
b: ValueRegs,
targets: &VecMachLabel,
ty: Type,
) -> Unit {
let test = generated_code::constructor_lower_icmp(self, cc, a, b, ty);
self.emit(&MInst::CondBr {
taken: BranchTarget::Label(targets[0]),
not_taken: BranchTarget::Label(targets[1]),
kind: IntegerCompare {
kind: IntCC::NotEqual,
rs1: test,
rs2: zero_reg(),
},
});
}
fn load_ra(&mut self) -> Reg {
if self.backend.flags.preserve_frame_pointers() {
let tmp = self.temp_writable_reg(I64);
self.emit(&MInst::Load {
rd: tmp,
op: LoadOP::Ld,
flags: MemFlags::trusted(),
from: AMode::FPOffset(8, I64),
});
tmp.to_reg()
} else {
self.gen_move2(link_reg(), I64, I64)
}
}
fn int_zero_reg(&mut self, ty: Type) -> ValueRegs {
assert!(ty.is_int(), "{:?}", ty);
if ty.bits() == 128 {
ValueRegs::two(self.zero_reg(), self.zero_reg())
} else {
ValueRegs::one(self.zero_reg())
}
}
fn vec_label_get(&mut self, val: &VecMachLabel, x: u8) -> MachLabel {
val[x as usize]
}
fn label_to_br_target(&mut self, label: MachLabel) -> BranchTarget {
BranchTarget::Label(label)
}
fn vec_writable_clone(&mut self, v: &VecWritableReg) -> VecWritableReg {
v.clone()
}
fn gen_moves(&mut self, rs: ValueRegs, in_ty: Type, out_ty: Type) -> ValueRegs {
let tmp = construct_dest(|ty| self.temp_writable_reg(ty), out_ty);
if in_ty.bits() < 64 {
self.emit(&gen_move(tmp.regs()[0], out_ty, rs.regs()[0], in_ty));
} else {
gen_moves(tmp.regs(), rs.regs())
.iter()
.for_each(|i| self.emit(i));
}
tmp.map(|r| r.to_reg())
}
fn imm12_and(&mut self, imm: Imm12, x: i32) -> Imm12 {
Imm12::from_bits(imm.as_i16() & (x as i16))
}
fn alloc_vec_writable(&mut self, ty: Type) -> VecWritableReg {
if ty.is_int() || ty == R32 || ty == R64 {
if ty.bits() <= 64 {
vec![self.temp_writable_reg(I64)]
} else {
vec![self.temp_writable_reg(I64), self.temp_writable_reg(I64)]
}
} else if ty.is_float() {
vec![self.temp_writable_reg(ty)]
} else {
unimplemented!("ty:{:?}", ty)
}
}
fn imm(&mut self, ty: Type, val: u64) -> Reg {
let tmp = self.temp_writable_reg(ty);
let alloc_tmp = &mut |ty| self.temp_writable_reg(ty);
let insts = match ty {
F32 => MInst::load_fp_constant32(tmp, val as u32, alloc_tmp),
F64 => MInst::load_fp_constant64(tmp, val, alloc_tmp),
_ => MInst::load_constant_u64(tmp, val, alloc_tmp),
};
self.emit_list(&insts);
tmp.to_reg()
}
#[inline]
fn emit(&mut self, arg0: &MInst) -> Unit {
self.lower_ctx.emit(arg0.clone());
}
#[inline]
fn imm12_from_u64(&mut self, arg0: u64) -> Option<Imm12> {
Imm12::maybe_from_u64(arg0)
}
#[inline]
fn writable_zero_reg(&mut self) -> WritableReg {
writable_zero_reg()
}
#[inline]
fn neg_imm12(&mut self, arg0: Imm12) -> Imm12 {
-arg0
}
#[inline]
fn zero_reg(&mut self) -> Reg {
zero_reg()
}
#[inline]
fn imm_from_bits(&mut self, val: u64) -> Imm12 {
Imm12::maybe_from_u64(val).unwrap()
}
#[inline]
fn imm_from_neg_bits(&mut self, val: i64) -> Imm12 {
Imm12::maybe_from_u64(val as u64).unwrap()
}
fn gen_default_frm(&mut self) -> OptionFloatRoundingMode {
None
}
fn gen_select_reg(&mut self, cc: &IntCC, a: Reg, b: Reg, rs1: Reg, rs2: Reg) -> Reg {
let rd = self.temp_writable_reg(MInst::canonical_type_for_rc(rs1.class()));
self.emit(&MInst::SelectReg {
rd,
rs1,
rs2,
condition: IntegerCompare {
kind: *cc,
rs1: a,
rs2: b,
},
});
rd.to_reg()
}
fn load_u64_constant(&mut self, val: u64) -> Reg {
let rd = self.temp_writable_reg(I64);
MInst::load_constant_u64(rd, val, &mut |ty| self.temp_writable_reg(ty))
.iter()
.for_each(|i| self.emit(i));
rd.to_reg()
}
fn u8_as_i32(&mut self, x: u8) -> i32 {
x as i32
}
fn ext_sign_bit(&mut self, ty: Type, r: Reg) -> Reg {
assert!(ty.is_int());
let rd = self.temp_writable_reg(I64);
self.emit(&MInst::AluRRImm12 {
alu_op: AluOPRRI::Bexti,
rd,
rs: r,
imm12: Imm12::from_bits((ty.bits() - 1) as i16),
});
rd.to_reg()
}
fn imm12_const(&mut self, val: i32) -> Imm12 {
if let Some(res) = Imm12::maybe_from_u64(val as u64) {
res
} else {
panic!("Unable to make an Imm12 value from {}", val)
}
}
fn imm12_const_add(&mut self, val: i32, add: i32) -> Imm12 {
Imm12::maybe_from_u64((val + add) as u64).unwrap()
}
//
fn gen_shamt(&mut self, ty: Type, shamt: Reg) -> ValueRegs {
let shamt = {
let tmp = self.temp_writable_reg(I64);
self.emit(&MInst::AluRRImm12 {
alu_op: AluOPRRI::Andi,
rd: tmp,
rs: shamt,
imm12: Imm12::from_bits((ty.bits() - 1) as i16),
});
tmp.to_reg()
};
let len_sub_shamt = {
let tmp = self.temp_writable_reg(I64);
self.emit(&MInst::load_imm12(tmp, Imm12::from_bits(ty.bits() as i16)));
let len_sub_shamt = self.temp_writable_reg(I64);
self.emit(&MInst::AluRRR {
alu_op: AluOPRRR::Sub,
rd: len_sub_shamt,
rs1: tmp.to_reg(),
rs2: shamt,
});
len_sub_shamt.to_reg()
};
ValueRegs::two(shamt, len_sub_shamt)
}
fn has_b(&mut self) -> bool {
self.backend.isa_flags.has_b()
}
fn has_zbkb(&mut self) -> bool {
self.backend.isa_flags.has_zbkb()
}
fn has_zbb(&mut self) -> bool {
self.backend.isa_flags.has_zbb()
}
fn inst_output_get(&mut self, x: InstOutput, index: u8) -> ValueRegs {
x[index as usize]
}
fn move_f_to_x(&mut self, r: Reg, ty: Type) -> Reg {
let result = self.temp_writable_reg(I64);
self.emit(&gen_move(result, I64, r, ty));
result.to_reg()
}
fn offset32_imm(&mut self, offset: i32) -> Offset32 {
Offset32::new(offset)
}
fn default_memflags(&mut self) -> MemFlags {
MemFlags::new()
}
fn move_x_to_f(&mut self, r: Reg, ty: Type) -> Reg {
let result = self.temp_writable_reg(ty);
self.emit(&gen_move(result, ty, r, I64));
result.to_reg()
}
fn pack_float_rounding_mode(&mut self, f: &FRM) -> OptionFloatRoundingMode {
Some(*f)
}
fn int_convert_2_float_op(&mut self, from: Type, is_signed: bool, to: Type) -> FpuOPRR {
FpuOPRR::int_convert_2_float_op(from, is_signed, to)
}
fn gen_amode(&mut self, base: Reg, offset: Offset32, ty: Type) -> AMode {
AMode::RegOffset(base, i64::from(offset), ty)
}
fn valid_atomic_transaction(&mut self, ty: Type) -> Option<Type> {
if ty.is_int() && ty.bits() <= 64 {
Some(ty)
} else {
None
}
}
fn is_atomic_rmw_max_etc(&mut self, op: &AtomicRmwOp) -> Option<(AtomicRmwOp, bool)> {
let op = *op;
match op {
crate::ir::AtomicRmwOp::Umin => Some((op, false)),
crate::ir::AtomicRmwOp::Umax => Some((op, false)),
crate::ir::AtomicRmwOp::Smin => Some((op, true)),
crate::ir::AtomicRmwOp::Smax => Some((op, true)),
_ => None,
}
}
fn load_op(&mut self, ty: Type) -> LoadOP {
LoadOP::from_type(ty)
}
fn store_op(&mut self, ty: Type) -> StoreOP {
StoreOP::from_type(ty)
}
fn load_ext_name(&mut self, name: ExternalName, offset: i64) -> Reg {
let tmp = self.temp_writable_reg(I64);
self.emit(&MInst::LoadExtName {
rd: tmp,
name: Box::new(name),
offset,
});
tmp.to_reg()
}
fn offset32_add(&mut self, a: Offset32, adden: i64) -> Offset32 {
a.try_add_i64(adden).expect("offset exceed range.")
}
fn gen_stack_addr(&mut self, slot: StackSlot, offset: Offset32) -> Reg {
let result = self.temp_writable_reg(I64);
let i = self
.lower_ctx
.abi()
.sized_stackslot_addr(slot, i64::from(offset) as u32, result);
self.emit(&i);
result.to_reg()
}
fn atomic_amo(&mut self) -> AMO {
AMO::SeqCst
}
fn gen_move2(&mut self, r: Reg, ity: Type, oty: Type) -> Reg {
let tmp = self.temp_writable_reg(oty);
self.emit(&gen_move(tmp, oty, r, ity));
tmp.to_reg()
}
fn lower_br_table(&mut self, index: Reg, targets: &VecMachLabel) -> Unit {
let tmp1 = self.temp_writable_reg(I64);
let targets: Vec<BranchTarget> = targets
.into_iter()
.copied()
.map(BranchTarget::Label)
.collect();
self.emit(&MInst::BrTable {
index,
tmp1,
targets,
});
}
fn fp_reg(&mut self) -> PReg {
px_reg(8)
}
fn sp_reg(&mut self) -> PReg {
px_reg(2)
}
fn shift_int_to_most_significant(&mut self, v: Reg, ty: Type) -> Reg {
assert!(ty.is_int() && ty.bits() <= 64);
if ty == I64 {
return v;
}
let tmp = self.temp_writable_reg(I64);
self.emit(&MInst::AluRRImm12 {
alu_op: AluOPRRI::Slli,
rd: tmp,
rs: v,
imm12: Imm12::from_bits((64 - ty.bits()) as i16),
});
tmp.to_reg()
}
#[inline]
fn int_compare(&mut self, kind: &IntCC, rs1: Reg, rs2: Reg) -> IntegerCompare {
IntegerCompare {
kind: *kind,
rs1,
rs2,
}
}
}
impl IsleContext<'_, '_, MInst, Riscv64Backend> {
#[inline]
fn emit_list(&mut self, list: &SmallInstVec<MInst>) {
for i in list {
self.lower_ctx.emit(i.clone());
}
}
}
/// The main entry point for branch lowering with ISLE.
pub(crate) fn lower_branch(
lower_ctx: &mut Lower<MInst>,
backend: &Riscv64Backend,
branch: Inst,
targets: &[MachLabel],
) -> Option<()> {
// TODO: reuse the ISLE context across lowerings so we can reuse its
// internal heap allocations.
let mut isle_ctx = IsleContext { lower_ctx, backend };
generated_code::constructor_lower_branch(&mut isle_ctx, branch, &targets.to_vec())
}
/// construct destination according to ty.
fn construct_dest<F: std::ops::FnMut(Type) -> WritableReg>(
mut alloc: F,
ty: Type,
) -> WritableValueRegs {
if ty.is_int() {
if ty.bits() == 128 {
WritableValueRegs::two(alloc(I64), alloc(I64))
} else {
WritableValueRegs::one(alloc(I64))
}
} else if ty.is_float() {
WritableValueRegs::one(alloc(F64))
} else {
unimplemented!("vector type not implemented.");
}
}