blob: cc2c22b3cdfb8511dbfa1c0f875d6e80e10c0b83 [file] [log] [blame]
use std::fmt;
use std::rc::Rc;
use crate::cdsl::camel_case;
use crate::cdsl::formats::InstructionFormat;
use crate::cdsl::operands::Operand;
use crate::cdsl::typevar::TypeVar;
pub(crate) type AllInstructions = Vec<Instruction>;
pub(crate) struct InstructionGroupBuilder<'all_inst> {
all_instructions: &'all_inst mut AllInstructions,
}
impl<'all_inst> InstructionGroupBuilder<'all_inst> {
pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
Self { all_instructions }
}
pub fn push(&mut self, builder: InstructionBuilder) {
let inst = builder.build();
self.all_instructions.push(inst);
}
}
#[derive(Debug)]
pub(crate) struct PolymorphicInfo {
pub use_typevar_operand: bool,
pub ctrl_typevar: TypeVar,
}
#[derive(Debug)]
pub(crate) struct InstructionContent {
/// Instruction mnemonic, also becomes opcode name.
pub name: String,
pub camel_name: String,
/// Documentation string.
pub doc: String,
/// Input operands. This can be a mix of SSA value operands and other operand kinds.
pub operands_in: Vec<Operand>,
/// Output operands. The output operands must be SSA values or `variable_args`.
pub operands_out: Vec<Operand>,
/// Instruction format.
pub format: Rc<InstructionFormat>,
/// One of the input or output operands is a free type variable. None if the instruction is not
/// polymorphic, set otherwise.
pub polymorphic_info: Option<PolymorphicInfo>,
/// Indices in operands_in of input operands that are values.
pub value_opnums: Vec<usize>,
/// Indices in operands_in of input operands that are immediates or entities.
pub imm_opnums: Vec<usize>,
/// Indices in operands_out of output operands that are values.
pub value_results: Vec<usize>,
/// True for instructions that terminate the block.
pub is_terminator: bool,
/// True for all branch or jump instructions.
pub is_branch: bool,
/// Is this a call instruction?
pub is_call: bool,
/// Is this a return instruction?
pub is_return: bool,
/// Can this instruction read from memory?
pub can_load: bool,
/// Can this instruction write to memory?
pub can_store: bool,
/// Can this instruction cause a trap?
pub can_trap: bool,
/// Does this instruction have other side effects besides can_* flags?
pub other_side_effects: bool,
/// Despite having other side effects, is this instruction okay to GVN?
pub side_effects_okay_for_gvn: bool,
}
impl InstructionContent {
pub fn snake_name(&self) -> &str {
if &self.name == "return" {
"return_"
} else {
&self.name
}
}
}
pub(crate) type Instruction = Rc<InstructionContent>;
impl fmt::Display for InstructionContent {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
if !self.operands_out.is_empty() {
let operands_out = self
.operands_out
.iter()
.map(|op| op.name)
.collect::<Vec<_>>()
.join(", ");
fmt.write_str(&operands_out)?;
fmt.write_str(" = ")?;
}
fmt.write_str(&self.name)?;
if !self.operands_in.is_empty() {
let operands_in = self
.operands_in
.iter()
.map(|op| op.name)
.collect::<Vec<_>>()
.join(", ");
fmt.write_str(" ")?;
fmt.write_str(&operands_in)?;
}
Ok(())
}
}
pub(crate) struct InstructionBuilder {
name: String,
doc: String,
format: Rc<InstructionFormat>,
operands_in: Option<Vec<Operand>>,
operands_out: Option<Vec<Operand>>,
// See Instruction comments for the meaning of these fields.
is_terminator: bool,
is_branch: bool,
is_call: bool,
is_return: bool,
can_load: bool,
can_store: bool,
can_trap: bool,
other_side_effects: bool,
side_effects_okay_for_gvn: bool,
}
impl InstructionBuilder {
pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
Self {
name: name.into(),
doc: doc.into(),
format: format.clone(),
operands_in: None,
operands_out: None,
is_terminator: false,
is_branch: false,
is_call: false,
is_return: false,
can_load: false,
can_store: false,
can_trap: false,
other_side_effects: false,
side_effects_okay_for_gvn: false,
}
}
pub fn operands_in(mut self, operands: Vec<&Operand>) -> Self {
assert!(self.operands_in.is_none());
self.operands_in = Some(operands.iter().map(|x| (*x).clone()).collect());
self
}
pub fn operands_out(mut self, operands: Vec<&Operand>) -> Self {
assert!(self.operands_out.is_none());
self.operands_out = Some(operands.iter().map(|x| (*x).clone()).collect());
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_terminator(mut self, val: bool) -> Self {
self.is_terminator = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_branch(mut self, val: bool) -> Self {
self.is_branch = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_call(mut self, val: bool) -> Self {
self.is_call = val;
self
}
#[allow(clippy::wrong_self_convention)]
pub fn is_return(mut self, val: bool) -> Self {
self.is_return = val;
self
}
pub fn can_load(mut self, val: bool) -> Self {
self.can_load = val;
self
}
pub fn can_store(mut self, val: bool) -> Self {
self.can_store = val;
self
}
pub fn can_trap(mut self, val: bool) -> Self {
self.can_trap = val;
self
}
pub fn other_side_effects(mut self, val: bool) -> Self {
self.other_side_effects = val;
self
}
pub fn side_effects_okay_for_gvn(mut self, val: bool) -> Self {
self.side_effects_okay_for_gvn = val;
self
}
fn build(self) -> Instruction {
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
let mut value_opnums = Vec::new();
let mut imm_opnums = Vec::new();
for (i, op) in operands_in.iter().enumerate() {
if op.is_value() {
value_opnums.push(i);
} else if op.is_immediate_or_entityref() {
imm_opnums.push(i);
} else {
assert!(op.is_varargs());
}
}
let value_results = operands_out
.iter()
.enumerate()
.filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
.collect();
verify_format(&self.name, &operands_in, &self.format);
let polymorphic_info =
verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);
let camel_name = camel_case(&self.name);
Rc::new(InstructionContent {
name: self.name,
camel_name,
doc: self.doc,
operands_in,
operands_out,
format: self.format,
polymorphic_info,
value_opnums,
value_results,
imm_opnums,
is_terminator: self.is_terminator,
is_branch: self.is_branch,
is_call: self.is_call,
is_return: self.is_return,
can_load: self.can_load,
can_store: self.can_store,
can_trap: self.can_trap,
other_side_effects: self.other_side_effects,
side_effects_okay_for_gvn: self.side_effects_okay_for_gvn,
})
}
}
/// Checks that the input operands actually match the given format.
fn verify_format(inst_name: &str, operands_in: &[Operand], format: &InstructionFormat) {
// A format is defined by:
// - its number of input value operands,
// - its number and names of input immediate operands,
// - whether it has a value list or not.
let mut num_values = 0;
let mut num_immediates = 0;
for operand in operands_in.iter() {
if operand.is_varargs() {
assert!(
format.has_value_list,
"instruction {} has varargs, but its format {} doesn't have a value list; you may \
need to use a different format.",
inst_name, format.name
);
}
if operand.is_value() {
num_values += 1;
}
if operand.is_immediate_or_entityref() {
if let Some(format_field) = format.imm_fields.get(num_immediates) {
assert_eq!(
format_field.kind.rust_field_name,
operand.kind.rust_field_name,
"{}th operand of {} should be {} (according to format), not {} (according to \
inst definition). You may need to use a different format.",
num_immediates,
inst_name,
format_field.kind.rust_field_name,
operand.kind.rust_field_name
);
num_immediates += 1;
}
}
}
assert_eq!(
num_values, format.num_value_operands,
"inst {} doesn't have as many value input operands as its format {} declares; you may need \
to use a different format.",
inst_name, format.name
);
assert_eq!(
num_immediates,
format.imm_fields.len(),
"inst {} doesn't have as many immediate input \
operands as its format {} declares; you may need to use a different format.",
inst_name,
format.name
);
}
/// Check if this instruction is polymorphic, and verify its use of type variables.
fn verify_polymorphic(
operands_in: &[Operand],
operands_out: &[Operand],
format: &InstructionFormat,
value_opnums: &[usize],
) -> Option<PolymorphicInfo> {
// The instruction is polymorphic if it has one free input or output operand.
let is_polymorphic = operands_in
.iter()
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
|| operands_out
.iter()
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());
if !is_polymorphic {
return None;
}
// Verify the use of type variables.
let tv_op = format.typevar_operand;
let mut maybe_error_message = None;
if let Some(tv_op) = tv_op {
if tv_op < value_opnums.len() {
let op_num = value_opnums[tv_op];
let tv = operands_in[op_num].type_var().unwrap();
let free_typevar = tv.free_typevar();
if (free_typevar.is_some() && tv == &free_typevar.unwrap())
|| tv.singleton_type().is_some()
{
match is_ctrl_typevar_candidate(tv, &operands_in, &operands_out) {
Ok(_other_typevars) => {
return Some(PolymorphicInfo {
use_typevar_operand: true,
ctrl_typevar: tv.clone(),
});
}
Err(error_message) => {
maybe_error_message = Some(error_message);
}
}
}
}
};
// If we reached here, it means the type variable indicated as the typevar operand couldn't
// control every other input and output type variable. We need to look at the result type
// variables.
if operands_out.is_empty() {
// No result means no other possible type variable, so it's a type inference failure.
match maybe_error_message {
Some(msg) => panic!("{}", msg),
None => panic!("typevar_operand must be a free type variable"),
}
}
// Otherwise, try to infer the controlling type variable by looking at the first result.
let tv = operands_out[0].type_var().unwrap();
let free_typevar = tv.free_typevar();
if free_typevar.is_some() && tv != &free_typevar.unwrap() {
panic!("first result must be a free type variable");
}
// At this point, if the next unwrap() fails, it means the output type couldn't be used as a
// controlling type variable either; panicking is the right behavior.
is_ctrl_typevar_candidate(tv, &operands_in, &operands_out).unwrap();
Some(PolymorphicInfo {
use_typevar_operand: false,
ctrl_typevar: tv.clone(),
})
}
/// Verify that the use of TypeVars is consistent with `ctrl_typevar` as the controlling type
/// variable.
///
/// All polymorhic inputs must either be derived from `ctrl_typevar` or be independent free type
/// variables only used once.
///
/// All polymorphic results must be derived from `ctrl_typevar`.
///
/// Return a vector of other type variables used, or a string explaining what went wrong.
fn is_ctrl_typevar_candidate(
ctrl_typevar: &TypeVar,
operands_in: &[Operand],
operands_out: &[Operand],
) -> Result<Vec<TypeVar>, String> {
let mut other_typevars = Vec::new();
// Check value inputs.
for input in operands_in {
if !input.is_value() {
continue;
}
let typ = input.type_var().unwrap();
let free_typevar = typ.free_typevar();
// Non-polymorphic or derived from ctrl_typevar is OK.
if free_typevar.is_none() {
continue;
}
let free_typevar = free_typevar.unwrap();
if &free_typevar == ctrl_typevar {
continue;
}
// No other derived typevars allowed.
if typ != &free_typevar {
return Err(format!(
"{:?}: type variable {} must be derived from {:?} while it is derived from {:?}",
input, typ.name, ctrl_typevar, free_typevar
));
}
// Other free type variables can only be used once each.
for other_tv in &other_typevars {
if &free_typevar == other_tv {
return Err(format!(
"non-controlling type variable {} can't be used more than once",
free_typevar.name
));
}
}
other_typevars.push(free_typevar);
}
// Check outputs.
for result in operands_out {
if !result.is_value() {
continue;
}
let typ = result.type_var().unwrap();
let free_typevar = typ.free_typevar();
// Non-polymorphic or derived from ctrl_typevar is OK.
if free_typevar.is_none() || &free_typevar.unwrap() == ctrl_typevar {
continue;
}
return Err("type variable in output not derived from ctrl_typevar".into());
}
Ok(other_typevars)
}