blob: d1d6a7a90cf74b29916e314b90daad76fa6fb492 [file] [log] [blame]
//! Logic and data structures related to impl specialization, explained in
//! greater detail below.
//!
//! At the moment, this implementation support only the simple "chain" rule:
//! If any two impls overlap, one must be a strict subset of the other.
//!
//! See the [rustc dev guide] for a bit more detail on how specialization
//! fits together with the rest of the trait machinery.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
pub mod specialization_graph;
use specialization_graph::GraphExt;
use crate::errors::NegativePositiveConflict;
use crate::infer::{InferCtxt, InferOk, TyCtxtInferExt};
use crate::traits::select::IntercrateAmbiguityCause;
use crate::traits::{
self, coherence, FutureCompatOverlapErrorKind, ObligationCause, ObligationCtxt,
};
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::{error_code, DelayDm, Diagnostic};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt};
use rustc_middle::ty::{InternalSubsts, SubstsRef};
use rustc_session::lint::builtin::COHERENCE_LEAK_CHECK;
use rustc_session::lint::builtin::ORDER_DEPENDENT_TRAIT_OBJECTS;
use rustc_span::{Span, DUMMY_SP};
use super::util;
use super::SelectionContext;
/// Information pertinent to an overlapping impl error.
#[derive(Debug)]
pub struct OverlapError<'tcx> {
pub with_impl: DefId,
pub trait_ref: ty::TraitRef<'tcx>,
pub self_ty: Option<Ty<'tcx>>,
pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
pub involves_placeholder: bool,
}
/// Given a subst for the requested impl, translate it to a subst
/// appropriate for the actual item definition (whether it be in that impl,
/// a parent impl, or the trait).
///
/// When we have selected one impl, but are actually using item definitions from
/// a parent impl providing a default, we need a way to translate between the
/// type parameters of the two impls. Here the `source_impl` is the one we've
/// selected, and `source_substs` is a substitution of its generics.
/// And `target_node` is the impl/trait we're actually going to get the
/// definition from. The resulting substitution will map from `target_node`'s
/// generics to `source_impl`'s generics as instantiated by `source_subst`.
///
/// For example, consider the following scenario:
///
/// ```ignore (illustrative)
/// trait Foo { ... }
/// impl<T, U> Foo for (T, U) { ... } // target impl
/// impl<V> Foo for (V, V) { ... } // source impl
/// ```
///
/// Suppose we have selected "source impl" with `V` instantiated with `u32`.
/// This function will produce a substitution with `T` and `U` both mapping to `u32`.
///
/// where-clauses add some trickiness here, because they can be used to "define"
/// an argument indirectly:
///
/// ```ignore (illustrative)
/// impl<'a, I, T: 'a> Iterator for Cloned<I>
/// where I: Iterator<Item = &'a T>, T: Clone
/// ```
///
/// In a case like this, the substitution for `T` is determined indirectly,
/// through associated type projection. We deal with such cases by using
/// *fulfillment* to relate the two impls, requiring that all projections are
/// resolved.
pub fn translate_substs<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
source_impl: DefId,
source_substs: SubstsRef<'tcx>,
target_node: specialization_graph::Node,
) -> SubstsRef<'tcx> {
debug!(
"translate_substs({:?}, {:?}, {:?}, {:?})",
param_env, source_impl, source_substs, target_node
);
let source_trait_ref =
infcx.tcx.impl_trait_ref(source_impl).unwrap().subst(infcx.tcx, &source_substs);
// translate the Self and Param parts of the substitution, since those
// vary across impls
let target_substs = match target_node {
specialization_graph::Node::Impl(target_impl) => {
// no need to translate if we're targeting the impl we started with
if source_impl == target_impl {
return source_substs;
}
fulfill_implication(infcx, param_env, source_trait_ref, target_impl).unwrap_or_else(
|_| {
bug!(
"When translating substitutions for specialization, the expected \
specialization failed to hold"
)
},
)
}
specialization_graph::Node::Trait(..) => source_trait_ref.substs,
};
// directly inherent the method generics, since those do not vary across impls
source_substs.rebase_onto(infcx.tcx, source_impl, target_substs)
}
/// Is `impl1` a specialization of `impl2`?
///
/// Specialization is determined by the sets of types to which the impls apply;
/// `impl1` specializes `impl2` if it applies to a subset of the types `impl2` applies
/// to.
#[instrument(skip(tcx), level = "debug")]
pub(super) fn specializes(tcx: TyCtxt<'_>, (impl1_def_id, impl2_def_id): (DefId, DefId)) -> bool {
// The feature gate should prevent introducing new specializations, but not
// taking advantage of upstream ones.
let features = tcx.features();
let specialization_enabled = features.specialization || features.min_specialization;
if !specialization_enabled && (impl1_def_id.is_local() || impl2_def_id.is_local()) {
return false;
}
// We determine whether there's a subset relationship by:
//
// - replacing bound vars with placeholders in impl1,
// - assuming the where clauses for impl1,
// - instantiating impl2 with fresh inference variables,
// - unifying,
// - attempting to prove the where clauses for impl2
//
// The last three steps are encapsulated in `fulfill_implication`.
//
// See RFC 1210 for more details and justification.
// Currently we do not allow e.g., a negative impl to specialize a positive one
if tcx.impl_polarity(impl1_def_id) != tcx.impl_polarity(impl2_def_id) {
return false;
}
// create a parameter environment corresponding to a (placeholder) instantiation of impl1
let penv = tcx.param_env(impl1_def_id);
let impl1_trait_ref = tcx.impl_trait_ref(impl1_def_id).unwrap().subst_identity();
// Create an infcx, taking the predicates of impl1 as assumptions:
let infcx = tcx.infer_ctxt().build();
let impl1_trait_ref =
match traits::fully_normalize(&infcx, ObligationCause::dummy(), penv, impl1_trait_ref) {
Ok(impl1_trait_ref) => impl1_trait_ref,
Err(_errors) => {
tcx.sess.delay_span_bug(
tcx.def_span(impl1_def_id),
format!("failed to fully normalize {impl1_trait_ref}"),
);
impl1_trait_ref
}
};
// Attempt to prove that impl2 applies, given all of the above.
fulfill_implication(&infcx, penv, impl1_trait_ref, impl2_def_id).is_ok()
}
/// Attempt to fulfill all obligations of `target_impl` after unification with
/// `source_trait_ref`. If successful, returns a substitution for *all* the
/// generics of `target_impl`, including both those needed to unify with
/// `source_trait_ref` and those whose identity is determined via a where
/// clause in the impl.
fn fulfill_implication<'tcx>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
source_trait_ref: ty::TraitRef<'tcx>,
target_impl: DefId,
) -> Result<SubstsRef<'tcx>, ()> {
debug!(
"fulfill_implication({:?}, trait_ref={:?} |- {:?} applies)",
param_env, source_trait_ref, target_impl
);
let source_trait = ImplSubject::Trait(source_trait_ref);
let selcx = &mut SelectionContext::new(&infcx);
let target_substs = infcx.fresh_substs_for_item(DUMMY_SP, target_impl);
let (target_trait, obligations) =
util::impl_subject_and_oblig(selcx, param_env, target_impl, target_substs);
// do the impls unify? If not, no specialization.
let Ok(InferOk { obligations: more_obligations, .. }) =
infcx.at(&ObligationCause::dummy(), param_env).eq(source_trait, target_trait)
else {
debug!(
"fulfill_implication: {:?} does not unify with {:?}",
source_trait, target_trait
);
return Err(());
};
// Needs to be `in_snapshot` because this function is used to rebase
// substitutions, which may happen inside of a select within a probe.
let ocx = ObligationCtxt::new_in_snapshot(infcx);
// attempt to prove all of the predicates for impl2 given those for impl1
// (which are packed up in penv)
ocx.register_obligations(obligations.chain(more_obligations));
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
// no dice!
debug!(
"fulfill_implication: for impls on {:?} and {:?}, \
could not fulfill: {:?} given {:?}",
source_trait,
target_trait,
errors,
param_env.caller_bounds()
);
return Err(());
}
debug!("fulfill_implication: an impl for {:?} specializes {:?}", source_trait, target_trait);
// Now resolve the *substitution* we built for the target earlier, replacing
// the inference variables inside with whatever we got from fulfillment.
Ok(infcx.resolve_vars_if_possible(target_substs))
}
/// Query provider for `specialization_graph_of`.
pub(super) fn specialization_graph_provider(
tcx: TyCtxt<'_>,
trait_id: DefId,
) -> specialization_graph::Graph {
let mut sg = specialization_graph::Graph::new();
let overlap_mode = specialization_graph::OverlapMode::get(tcx, trait_id);
let mut trait_impls: Vec<_> = tcx.all_impls(trait_id).collect();
// The coherence checking implementation seems to rely on impls being
// iterated over (roughly) in definition order, so we are sorting by
// negated `CrateNum` (so remote definitions are visited first) and then
// by a flattened version of the `DefIndex`.
trait_impls
.sort_unstable_by_key(|def_id| (-(def_id.krate.as_u32() as i64), def_id.index.index()));
for impl_def_id in trait_impls {
if let Some(impl_def_id) = impl_def_id.as_local() {
// This is where impl overlap checking happens:
let insert_result = sg.insert(tcx, impl_def_id.to_def_id(), overlap_mode);
// Report error if there was one.
let (overlap, used_to_be_allowed) = match insert_result {
Err(overlap) => (Some(overlap), None),
Ok(Some(overlap)) => (Some(overlap.error), Some(overlap.kind)),
Ok(None) => (None, None),
};
if let Some(overlap) = overlap {
report_overlap_conflict(tcx, overlap, impl_def_id, used_to_be_allowed, &mut sg);
}
} else {
let parent = tcx.impl_parent(impl_def_id).unwrap_or(trait_id);
sg.record_impl_from_cstore(tcx, parent, impl_def_id)
}
}
sg
}
// This function is only used when
// encountering errors and inlining
// it negatively impacts perf.
#[cold]
#[inline(never)]
fn report_overlap_conflict<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: OverlapError<'tcx>,
impl_def_id: LocalDefId,
used_to_be_allowed: Option<FutureCompatOverlapErrorKind>,
sg: &mut specialization_graph::Graph,
) {
let impl_polarity = tcx.impl_polarity(impl_def_id.to_def_id());
let other_polarity = tcx.impl_polarity(overlap.with_impl);
match (impl_polarity, other_polarity) {
(ty::ImplPolarity::Negative, ty::ImplPolarity::Positive) => {
report_negative_positive_conflict(
tcx,
&overlap,
impl_def_id,
impl_def_id.to_def_id(),
overlap.with_impl,
sg,
);
}
(ty::ImplPolarity::Positive, ty::ImplPolarity::Negative) => {
report_negative_positive_conflict(
tcx,
&overlap,
impl_def_id,
overlap.with_impl,
impl_def_id.to_def_id(),
sg,
);
}
_ => {
report_conflicting_impls(tcx, overlap, impl_def_id, used_to_be_allowed, sg);
}
}
}
fn report_negative_positive_conflict<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: &OverlapError<'tcx>,
local_impl_def_id: LocalDefId,
negative_impl_def_id: DefId,
positive_impl_def_id: DefId,
sg: &mut specialization_graph::Graph,
) {
let mut err = tcx.sess.create_err(NegativePositiveConflict {
impl_span: tcx.def_span(local_impl_def_id),
trait_desc: overlap.trait_ref,
self_ty: overlap.self_ty,
negative_impl_span: tcx.span_of_impl(negative_impl_def_id),
positive_impl_span: tcx.span_of_impl(positive_impl_def_id),
});
sg.has_errored = Some(err.emit());
}
fn report_conflicting_impls<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: OverlapError<'tcx>,
impl_def_id: LocalDefId,
used_to_be_allowed: Option<FutureCompatOverlapErrorKind>,
sg: &mut specialization_graph::Graph,
) {
let impl_span = tcx.def_span(impl_def_id);
// Work to be done after we've built the DiagnosticBuilder. We have to define it
// now because the struct_lint methods don't return back the DiagnosticBuilder
// that's passed in.
fn decorate<'tcx>(
tcx: TyCtxt<'tcx>,
overlap: &OverlapError<'tcx>,
impl_span: Span,
err: &mut Diagnostic,
) {
match tcx.span_of_impl(overlap.with_impl) {
Ok(span) => {
err.span_label(span, "first implementation here");
err.span_label(
impl_span,
format!(
"conflicting implementation{}",
overlap.self_ty.map_or_else(String::new, |ty| format!(" for `{}`", ty))
),
);
}
Err(cname) => {
let msg = match to_pretty_impl_header(tcx, overlap.with_impl) {
Some(s) => {
format!("conflicting implementation in crate `{}`:\n- {}", cname, s)
}
None => format!("conflicting implementation in crate `{}`", cname),
};
err.note(&msg);
}
}
for cause in &overlap.intercrate_ambiguity_causes {
cause.add_intercrate_ambiguity_hint(err);
}
if overlap.involves_placeholder {
coherence::add_placeholder_note(err);
}
}
let msg = DelayDm(|| {
format!(
"conflicting implementations of trait `{}`{}{}",
overlap.trait_ref.print_only_trait_path(),
overlap.self_ty.map_or_else(String::new, |ty| format!(" for type `{ty}`")),
match used_to_be_allowed {
Some(FutureCompatOverlapErrorKind::Issue33140) => ": (E0119)",
_ => "",
}
)
});
match used_to_be_allowed {
None => {
let reported = if overlap.with_impl.is_local()
|| tcx.orphan_check_impl(impl_def_id).is_ok()
{
let mut err = tcx.sess.struct_span_err(impl_span, msg);
err.code(error_code!(E0119));
decorate(tcx, &overlap, impl_span, &mut err);
Some(err.emit())
} else {
Some(tcx.sess.delay_span_bug(impl_span, "impl should have failed the orphan check"))
};
sg.has_errored = reported;
}
Some(kind) => {
let lint = match kind {
FutureCompatOverlapErrorKind::Issue33140 => ORDER_DEPENDENT_TRAIT_OBJECTS,
FutureCompatOverlapErrorKind::LeakCheck => COHERENCE_LEAK_CHECK,
};
tcx.struct_span_lint_hir(
lint,
tcx.hir().local_def_id_to_hir_id(impl_def_id),
impl_span,
msg,
|err| {
decorate(tcx, &overlap, impl_span, err);
err
},
);
}
};
}
/// Recovers the "impl X for Y" signature from `impl_def_id` and returns it as a
/// string.
pub(crate) fn to_pretty_impl_header(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Option<String> {
use std::fmt::Write;
let trait_ref = tcx.impl_trait_ref(impl_def_id)?.subst_identity();
let mut w = "impl".to_owned();
let substs = InternalSubsts::identity_for_item(tcx, impl_def_id);
// FIXME: Currently only handles ?Sized.
// Needs to support ?Move and ?DynSized when they are implemented.
let mut types_without_default_bounds = FxIndexSet::default();
let sized_trait = tcx.lang_items().sized_trait();
if !substs.is_empty() {
types_without_default_bounds.extend(substs.types());
w.push('<');
w.push_str(
&substs
.iter()
.map(|k| k.to_string())
.filter(|k| k != "'_")
.collect::<Vec<_>>()
.join(", "),
);
w.push('>');
}
write!(
w,
" {} for {}",
trait_ref.print_only_trait_path(),
tcx.type_of(impl_def_id).subst_identity()
)
.unwrap();
// The predicates will contain default bounds like `T: Sized`. We need to
// remove these bounds, and add `T: ?Sized` to any untouched type parameters.
let predicates = tcx.predicates_of(impl_def_id).predicates;
let mut pretty_predicates =
Vec::with_capacity(predicates.len() + types_without_default_bounds.len());
for (mut p, _) in predicates {
if let Some(poly_trait_ref) = p.to_opt_poly_trait_pred() {
if Some(poly_trait_ref.def_id()) == sized_trait {
types_without_default_bounds.remove(&poly_trait_ref.self_ty().skip_binder());
continue;
}
if ty::BoundConstness::ConstIfConst == poly_trait_ref.skip_binder().constness {
let new_trait_pred = poly_trait_ref.map_bound(|mut trait_pred| {
trait_pred.constness = ty::BoundConstness::NotConst;
trait_pred
});
p = tcx.mk_predicate(
new_trait_pred.map_bound(|p| ty::PredicateKind::Clause(ty::Clause::Trait(p))),
)
}
}
pretty_predicates.push(p.to_string());
}
pretty_predicates
.extend(types_without_default_bounds.iter().map(|ty| format!("{}: ?Sized", ty)));
if !pretty_predicates.is_empty() {
write!(w, "\n where {}", pretty_predicates.join(", ")).unwrap();
}
w.push(';');
Some(w)
}