blob: 86b13c05f76aa16a7706601514b6dd1ea5327ce9 [file] [log] [blame]
//! This module both handles the global cache which stores "finished" goals,
//! and the provisional cache which contains partially computed goals.
//!
//! The provisional cache is necessary when dealing with coinductive cycles.
//!
//! For more information about the provisional cache and coinduction in general,
//! check out the relevant section of the rustc-dev-guide.
//!
//! FIXME(@lcnr): Write that section, feel free to ping me if you need help here
//! before then or if I still haven't done that before January 2023.
use super::overflow::OverflowData;
use super::StackDepth;
use crate::solve::{CanonicalGoal, QueryResult};
use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::IndexVec;
use rustc_middle::ty::TyCtxt;
rustc_index::newtype_index! {
pub struct EntryIndex {}
}
#[derive(Debug, Clone)]
pub(super) struct ProvisionalEntry<'tcx> {
// In case we have a coinductive cycle, this is the
// the currently least restrictive result of this goal.
pub(super) response: QueryResult<'tcx>,
// In case of a cycle, the position of deepest stack entry involved
// in that cycle. This is monotonically decreasing in the stack as all
// elements between the current stack element in the deepest stack entry
// involved have to also be involved in that cycle.
//
// We can only move entries to the global cache once we're complete done
// with the cycle. If this entry has not been involved in a cycle,
// this is just its own depth.
pub(super) depth: StackDepth,
// The goal for this entry. Should always be equal to the corresponding goal
// in the lookup table.
pub(super) goal: CanonicalGoal<'tcx>,
}
pub(super) struct ProvisionalCache<'tcx> {
pub(super) entries: IndexVec<EntryIndex, ProvisionalEntry<'tcx>>,
// FIXME: This is only used to quickly check whether a given goal
// is in the cache. We should experiment with using something like
// `SsoHashSet` here because in most cases there are only a few entries.
pub(super) lookup_table: FxHashMap<CanonicalGoal<'tcx>, EntryIndex>,
}
impl<'tcx> ProvisionalCache<'tcx> {
pub(super) fn empty() -> ProvisionalCache<'tcx> {
ProvisionalCache { entries: Default::default(), lookup_table: Default::default() }
}
pub(super) fn is_empty(&self) -> bool {
self.entries.is_empty() && self.lookup_table.is_empty()
}
/// Adds a dependency from the current leaf to `target` in the cache
/// to prevent us from moving any goals which depend on the current leaf
/// to the global cache while we're still computing `target`.
///
/// Its important to note that `target` may already be part of a different cycle.
/// In this case we have to ensure that we also depend on all other goals
/// in the existing cycle in addition to the potentially direct cycle with `target`.
pub(super) fn add_dependency_of_leaf_on(&mut self, target: EntryIndex) {
let depth = self.entries[target].depth;
for provisional_entry in &mut self.entries.raw[target.index()..] {
// The depth of `target` is the position of the deepest goal in the stack
// on which `target` depends. That goal is the `root` of this cycle.
//
// Any entry which was added after `target` is either on the stack itself
// at which point its depth is definitely at least as high as the depth of
// `root`. If it's not on the stack itself it has to depend on a goal
// between `root` and `leaf`. If it were to depend on a goal deeper in the
// stack than `root`, then `root` would also depend on that goal, at which
// point `root` wouldn't be the root anymore.
debug_assert!(provisional_entry.depth >= depth);
provisional_entry.depth = depth;
}
// We only update entries which were added after `target` as no other
// entry should have a higher depth.
//
// Any entry which previously had a higher depth than target has to
// be between `target` and `root`. Because of this we would have updated
// its depth when calling `add_dependency_of_leaf_on(root)` for `target`.
if cfg!(debug_assertions) {
self.entries.iter().all(|e| e.depth <= depth);
}
}
pub(super) fn depth(&self, entry_index: EntryIndex) -> StackDepth {
self.entries[entry_index].depth
}
pub(super) fn provisional_result(&self, entry_index: EntryIndex) -> QueryResult<'tcx> {
self.entries[entry_index].response
}
}
pub(super) fn try_move_finished_goal_to_global_cache<'tcx>(
tcx: TyCtxt<'tcx>,
overflow_data: &mut OverflowData,
stack: &IndexVec<super::StackDepth, super::StackElem<'tcx>>,
goal: CanonicalGoal<'tcx>,
response: QueryResult<'tcx>,
) {
// We move goals to the global cache if we either did not hit an overflow or if it's
// the root goal as that will now always hit the same overflow limit.
//
// NOTE: We cannot move any non-root goals to the global cache even if their final result
// isn't impacted by the overflow as that goal still has unstable query dependencies
// because it didn't go its full depth.
//
// FIXME(@lcnr): We could still cache subtrees which are not impacted by overflow though.
// Tracking that info correctly isn't trivial, so I haven't implemented it for now.
let should_cache_globally = !overflow_data.did_overflow() || stack.is_empty();
if should_cache_globally {
// FIXME: move the provisional entry to the global cache.
let _ = (tcx, goal, response);
}
}