blob: c1e7f62dea5c82276ddf7298b16d5f8437bc04e0 [file] [log] [blame]
use either::Either;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::middle::resolve_bound_vars::Set1;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{ParamEnv, TyCtxt};
#[derive(Debug)]
pub struct SsaLocals {
/// Assignments to each local. This defines whether the local is SSA.
assignments: IndexVec<Local, Set1<LocationExtended>>,
/// We visit the body in reverse postorder, to ensure each local is assigned before it is used.
/// We remember the order in which we saw the assignments to compute the SSA values in a single
/// pass.
assignment_order: Vec<Local>,
/// Copy equivalence classes between locals. See `copy_classes` for documentation.
copy_classes: IndexVec<Local, Local>,
}
/// We often encounter MIR bodies with 1 or 2 basic blocks. In those cases, it's unnecessary to
/// actually compute dominators, we can just compare block indices because bb0 is always the first
/// block, and in any body all other blocks are always always dominated by bb0.
struct SmallDominators {
inner: Option<Dominators<BasicBlock>>,
}
trait DomExt {
fn dominates(self, _other: Self, dominators: &SmallDominators) -> bool;
}
impl DomExt for Location {
fn dominates(self, other: Location, dominators: &SmallDominators) -> bool {
if self.block == other.block {
self.statement_index <= other.statement_index
} else {
dominators.dominates(self.block, other.block)
}
}
}
impl SmallDominators {
fn dominates(&self, dom: BasicBlock, node: BasicBlock) -> bool {
if let Some(inner) = &self.inner { inner.dominates(dom, node) } else { dom < node }
}
}
impl SsaLocals {
pub fn new<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
body: &Body<'tcx>,
borrowed_locals: &BitSet<Local>,
) -> SsaLocals {
let assignment_order = Vec::new();
let assignments = IndexVec::from_elem(Set1::Empty, &body.local_decls);
let dominators =
if body.basic_blocks.len() > 2 { Some(body.basic_blocks.dominators()) } else { None };
let dominators = SmallDominators { inner: dominators };
let mut visitor = SsaVisitor { assignments, assignment_order, dominators };
for (local, decl) in body.local_decls.iter_enumerated() {
if matches!(body.local_kind(local), LocalKind::Arg) {
visitor.assignments[local] = Set1::One(LocationExtended::Arg);
}
if borrowed_locals.contains(local) && !decl.ty.is_freeze(tcx, param_env) {
visitor.assignments[local] = Set1::Many;
}
}
if body.basic_blocks.len() > 2 {
for (bb, data) in traversal::reverse_postorder(body) {
visitor.visit_basic_block_data(bb, data);
}
} else {
for (bb, data) in body.basic_blocks.iter_enumerated() {
visitor.visit_basic_block_data(bb, data);
}
}
for var_debug_info in &body.var_debug_info {
visitor.visit_var_debug_info(var_debug_info);
}
debug!(?visitor.assignments);
visitor
.assignment_order
.retain(|&local| matches!(visitor.assignments[local], Set1::One(_)));
debug!(?visitor.assignment_order);
let copy_classes = compute_copy_classes(&visitor, body);
SsaLocals {
assignments: visitor.assignments,
assignment_order: visitor.assignment_order,
copy_classes,
}
}
pub fn is_ssa(&self, local: Local) -> bool {
matches!(self.assignments[local], Set1::One(_))
}
pub fn assignments<'a, 'tcx>(
&'a self,
body: &'a Body<'tcx>,
) -> impl Iterator<Item = (Local, &'a Rvalue<'tcx>)> + 'a {
self.assignment_order.iter().filter_map(|&local| {
if let Set1::One(LocationExtended::Plain(loc)) = self.assignments[local] {
// `loc` must point to a direct assignment to `local`.
let Either::Left(stmt) = body.stmt_at(loc) else { bug!() };
let Some((target, rvalue)) = stmt.kind.as_assign() else { bug!() };
assert_eq!(target.as_local(), Some(local));
Some((local, rvalue))
} else {
None
}
})
}
/// Compute the equivalence classes for locals, based on copy statements.
///
/// The returned vector maps each local to the one it copies. In the following case:
/// _a = &mut _0
/// _b = move? _a
/// _c = move? _a
/// _d = move? _c
/// We return the mapping
/// _a => _a // not a copy so, represented by itself
/// _b => _a
/// _c => _a
/// _d => _a // transitively through _c
///
/// Exception: we do not see through the return place, as it cannot be substituted.
pub fn copy_classes(&self) -> &IndexVec<Local, Local> {
&self.copy_classes
}
/// Make a property uniform on a copy equivalence class by removing elements.
pub fn meet_copy_equivalence(&self, property: &mut BitSet<Local>) {
// Consolidate to have a local iff all its copies are.
//
// `copy_classes` defines equivalence classes between locals. The `local`s that recursively
// move/copy the same local all have the same `head`.
for (local, &head) in self.copy_classes.iter_enumerated() {
// If any copy does not have `property`, then the head is not.
if !property.contains(local) {
property.remove(head);
}
}
for (local, &head) in self.copy_classes.iter_enumerated() {
// If any copy does not have `property`, then the head doesn't either,
// then no copy has `property`.
if !property.contains(head) {
property.remove(local);
}
}
// Verify that we correctly computed equivalence classes.
#[cfg(debug_assertions)]
for (local, &head) in self.copy_classes.iter_enumerated() {
assert_eq!(property.contains(local), property.contains(head));
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum LocationExtended {
Plain(Location),
Arg,
}
struct SsaVisitor {
dominators: SmallDominators,
assignments: IndexVec<Local, Set1<LocationExtended>>,
assignment_order: Vec<Local>,
}
impl<'tcx> Visitor<'tcx> for SsaVisitor {
fn visit_local(&mut self, local: Local, ctxt: PlaceContext, loc: Location) {
match ctxt {
PlaceContext::MutatingUse(MutatingUseContext::Store) => {
self.assignments[local].insert(LocationExtended::Plain(loc));
self.assignment_order.push(local);
}
// Anything can happen with raw pointers, so remove them.
PlaceContext::NonMutatingUse(NonMutatingUseContext::AddressOf)
| PlaceContext::MutatingUse(_) => self.assignments[local] = Set1::Many,
// Immutable borrows are taken into account in `SsaLocals::new` by
// removing non-freeze locals.
PlaceContext::NonMutatingUse(_) => {
let set = &mut self.assignments[local];
let assign_dominates = match *set {
Set1::Empty | Set1::Many => false,
Set1::One(LocationExtended::Arg) => true,
Set1::One(LocationExtended::Plain(assign)) => {
assign.successor_within_block().dominates(loc, &self.dominators)
}
};
// We are visiting a use that is not dominated by an assignment.
// Either there is a cycle involved, or we are reading for uninitialized local.
// Bail out.
if !assign_dominates {
*set = Set1::Many;
}
}
PlaceContext::NonUse(_) => {}
}
}
}
#[instrument(level = "trace", skip(ssa, body))]
fn compute_copy_classes(ssa: &SsaVisitor, body: &Body<'_>) -> IndexVec<Local, Local> {
let mut copies = IndexVec::from_fn_n(|l| l, body.local_decls.len());
for &local in &ssa.assignment_order {
debug!(?local);
if local == RETURN_PLACE {
// `_0` is special, we cannot rename it.
continue;
}
// This is not SSA: mark that we don't know the value.
debug!(assignments = ?ssa.assignments[local]);
let Set1::One(LocationExtended::Plain(loc)) = ssa.assignments[local] else { continue };
// `loc` must point to a direct assignment to `local`.
let Either::Left(stmt) = body.stmt_at(loc) else { bug!() };
let Some((_target, rvalue)) = stmt.kind.as_assign() else { bug!() };
assert_eq!(_target.as_local(), Some(local));
let (Rvalue::Use(Operand::Copy(place) | Operand::Move(place)) | Rvalue::CopyForDeref(place))
= rvalue
else { continue };
let Some(rhs) = place.as_local() else { continue };
let Set1::One(_) = ssa.assignments[rhs] else { continue };
// We visit in `assignment_order`, ie. reverse post-order, so `rhs` has been
// visited before `local`, and we just have to copy the representing local.
copies[local] = copies[rhs];
}
debug!(?copies);
// Invariant: `copies` must point to the head of an equivalence class.
#[cfg(debug_assertions)]
for &head in copies.iter() {
assert_eq!(copies[head], head);
}
copies
}