blob: ff88d00135173ec90be84ffdef34170ea2d1f005 [file] [log] [blame]
use rustc_hir as hir;
use rustc_index::vec::Idx;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::mir::{self, Field};
use rustc_middle::thir::{FieldPat, Pat, PatKind};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::lint;
use rustc_span::Span;
use rustc_trait_selection::traits::predicate_for_trait_def;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCause, PredicateObligation};
use std::cell::Cell;
use super::PatCtxt;
use crate::errors::{
FloatPattern, IndirectStructuralMatch, InvalidPattern, NontrivialStructuralMatch,
PointerPattern, TypeNotStructural, UnionPattern, UnsizedPattern,
};
impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
/// Converts an evaluated constant to a pattern (if possible).
/// This means aggregate values (like structs and enums) are converted
/// to a pattern that matches the value (as if you'd compared via structural equality).
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn const_to_pat(
&self,
cv: mir::ConstantKind<'tcx>,
id: hir::HirId,
span: Span,
mir_structural_match_violation: bool,
) -> Box<Pat<'tcx>> {
let infcx = self.tcx.infer_ctxt().build();
let mut convert = ConstToPat::new(self, id, span, infcx);
convert.to_pat(cv, mir_structural_match_violation)
}
}
struct ConstToPat<'tcx> {
id: hir::HirId,
span: Span,
param_env: ty::ParamEnv<'tcx>,
// This tracks if we emitted some hard error for a given const value, so that
// we will not subsequently issue an irrelevant lint for the same const
// value.
saw_const_match_error: Cell<bool>,
// This tracks if we emitted some diagnostic for a given const value, so that
// we will not subsequently issue an irrelevant lint for the same const
// value.
saw_const_match_lint: Cell<bool>,
// For backcompat we need to keep allowing non-structurally-eq types behind references.
// See also all the `cant-hide-behind` tests.
behind_reference: Cell<bool>,
// inference context used for checking `T: Structural` bounds.
infcx: InferCtxt<'tcx>,
include_lint_checks: bool,
treat_byte_string_as_slice: bool,
}
mod fallback_to_const_ref {
#[derive(Debug)]
/// This error type signals that we encountered a non-struct-eq situation behind a reference.
/// We bubble this up in order to get back to the reference destructuring and make that emit
/// a const pattern instead of a deref pattern. This allows us to simply call `PartialEq::eq`
/// on such patterns (since that function takes a reference) and not have to jump through any
/// hoops to get a reference to the value.
pub(super) struct FallbackToConstRef(());
pub(super) fn fallback_to_const_ref(c2p: &super::ConstToPat<'_>) -> FallbackToConstRef {
assert!(c2p.behind_reference.get());
FallbackToConstRef(())
}
}
use fallback_to_const_ref::{fallback_to_const_ref, FallbackToConstRef};
impl<'tcx> ConstToPat<'tcx> {
fn new(
pat_ctxt: &PatCtxt<'_, 'tcx>,
id: hir::HirId,
span: Span,
infcx: InferCtxt<'tcx>,
) -> Self {
trace!(?pat_ctxt.typeck_results.hir_owner);
ConstToPat {
id,
span,
infcx,
param_env: pat_ctxt.param_env,
include_lint_checks: pat_ctxt.include_lint_checks,
saw_const_match_error: Cell::new(false),
saw_const_match_lint: Cell::new(false),
behind_reference: Cell::new(false),
treat_byte_string_as_slice: pat_ctxt
.typeck_results
.treat_byte_string_as_slice
.contains(&id.local_id),
}
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn type_marked_structural(&self, ty: Ty<'tcx>) -> bool {
ty.is_structural_eq_shallow(self.infcx.tcx)
}
fn to_pat(
&mut self,
cv: mir::ConstantKind<'tcx>,
mir_structural_match_violation: bool,
) -> Box<Pat<'tcx>> {
trace!(self.treat_byte_string_as_slice);
// This method is just a wrapper handling a validity check; the heavy lifting is
// performed by the recursive `recur` method, which is not meant to be
// invoked except by this method.
//
// once indirect_structural_match is a full fledged error, this
// level of indirection can be eliminated
let inlined_const_as_pat =
self.recur(cv, mir_structural_match_violation).unwrap_or_else(|_| {
Box::new(Pat {
span: self.span,
ty: cv.ty(),
kind: PatKind::Constant { value: cv },
})
});
if self.include_lint_checks && !self.saw_const_match_error.get() {
// If we were able to successfully convert the const to some pat,
// double-check that all types in the const implement `Structural`.
let structural =
traits::search_for_structural_match_violation(self.span, self.tcx(), cv.ty());
debug!(
"search_for_structural_match_violation cv.ty: {:?} returned: {:?}",
cv.ty(),
structural
);
// This can occur because const qualification treats all associated constants as
// opaque, whereas `search_for_structural_match_violation` tries to monomorphize them
// before it runs.
//
// FIXME(#73448): Find a way to bring const qualification into parity with
// `search_for_structural_match_violation`.
if structural.is_none() && mir_structural_match_violation {
warn!("MIR const-checker found novel structural match violation. See #73448.");
return inlined_const_as_pat;
}
if let Some(non_sm_ty) = structural {
if !self.type_may_have_partial_eq_impl(cv.ty()) {
// fatal avoids ICE from resolution of non-existent method (rare case).
self.tcx()
.sess
.emit_fatal(TypeNotStructural { span: self.span, non_sm_ty: non_sm_ty });
} else if mir_structural_match_violation && !self.saw_const_match_lint.get() {
self.tcx().emit_spanned_lint(
lint::builtin::INDIRECT_STRUCTURAL_MATCH,
self.id,
self.span,
IndirectStructuralMatch { non_sm_ty },
);
} else {
debug!(
"`search_for_structural_match_violation` found one, but `CustomEq` was \
not in the qualifs for that `const`"
);
}
}
}
inlined_const_as_pat
}
fn type_may_have_partial_eq_impl(&self, ty: Ty<'tcx>) -> bool {
// double-check there even *is* a semantic `PartialEq` to dispatch to.
//
// (If there isn't, then we can safely issue a hard
// error, because that's never worked, due to compiler
// using `PartialEq::eq` in this scenario in the past.)
let partial_eq_trait_id =
self.tcx().require_lang_item(hir::LangItem::PartialEq, Some(self.span));
let obligation: PredicateObligation<'_> = predicate_for_trait_def(
self.tcx(),
self.param_env,
ObligationCause::misc(self.span, self.id.owner.def_id),
partial_eq_trait_id,
0,
[ty, ty],
);
// FIXME: should this call a `predicate_must_hold` variant instead?
let has_impl = self.infcx.predicate_may_hold(&obligation);
// Note: To fix rust-lang/rust#65466, we could just remove this type
// walk hack for function pointers, and unconditionally error
// if `PartialEq` is not implemented. However, that breaks stable
// code at the moment, because types like `for <'a> fn(&'a ())` do
// not *yet* implement `PartialEq`. So for now we leave this here.
has_impl
|| ty.walk().any(|t| match t.unpack() {
ty::subst::GenericArgKind::Lifetime(_) => false,
ty::subst::GenericArgKind::Type(t) => t.is_fn_ptr(),
ty::subst::GenericArgKind::Const(_) => false,
})
}
fn field_pats(
&self,
vals: impl Iterator<Item = mir::ConstantKind<'tcx>>,
) -> Result<Vec<FieldPat<'tcx>>, FallbackToConstRef> {
vals.enumerate()
.map(|(idx, val)| {
let field = Field::new(idx);
Ok(FieldPat { field, pattern: self.recur(val, false)? })
})
.collect()
}
// Recursive helper for `to_pat`; invoke that (instead of calling this directly).
#[instrument(skip(self), level = "debug")]
fn recur(
&self,
cv: mir::ConstantKind<'tcx>,
mir_structural_match_violation: bool,
) -> Result<Box<Pat<'tcx>>, FallbackToConstRef> {
let id = self.id;
let span = self.span;
let tcx = self.tcx();
let param_env = self.param_env;
let kind = match cv.ty().kind() {
ty::Float(_) => {
if self.include_lint_checks {
tcx.emit_spanned_lint(
lint::builtin::ILLEGAL_FLOATING_POINT_LITERAL_PATTERN,
id,
span,
FloatPattern,
);
}
PatKind::Constant { value: cv }
}
ty::Adt(adt_def, _) if adt_def.is_union() => {
// Matching on union fields is unsafe, we can't hide it in constants
self.saw_const_match_error.set(true);
let err = UnionPattern { span };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
}
ty::Adt(..)
if !self.type_may_have_partial_eq_impl(cv.ty())
// FIXME(#73448): Find a way to bring const qualification into parity with
// `search_for_structural_match_violation` and then remove this condition.
// Obtain the actual type that isn't annotated. If we just looked at `cv.ty` we
// could get `Option<NonStructEq>`, even though `Option` is annotated with derive.
&& let Some(non_sm_ty) = traits::search_for_structural_match_violation(span, tcx, cv.ty()) =>
{
self.saw_const_match_error.set(true);
let err = TypeNotStructural { span, non_sm_ty };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
}
// If the type is not structurally comparable, just emit the constant directly,
// causing the pattern match code to treat it opaquely.
// FIXME: This code doesn't emit errors itself, the caller emits the errors.
// So instead of specific errors, you just get blanket errors about the whole
// const type. See
// https://github.com/rust-lang/rust/pull/70743#discussion_r404701963 for
// details.
// Backwards compatibility hack because we can't cause hard errors on these
// types, so we compare them via `PartialEq::eq` at runtime.
ty::Adt(..) if !self.type_marked_structural(cv.ty()) && self.behind_reference.get() => {
if self.include_lint_checks
&& !self.saw_const_match_error.get()
&& !self.saw_const_match_lint.get()
{
self.saw_const_match_lint.set(true);
tcx.emit_spanned_lint(
lint::builtin::INDIRECT_STRUCTURAL_MATCH,
id,
span,
IndirectStructuralMatch { non_sm_ty: cv.ty() },
);
}
// Since we are behind a reference, we can just bubble the error up so we get a
// constant at reference type, making it easy to let the fallback call
// `PartialEq::eq` on it.
return Err(fallback_to_const_ref(self));
}
ty::Adt(adt_def, _) if !self.type_marked_structural(cv.ty()) => {
debug!(
"adt_def {:?} has !type_marked_structural for cv.ty: {:?}",
adt_def,
cv.ty()
);
self.saw_const_match_error.set(true);
let err = TypeNotStructural { span, non_sm_ty: cv.ty() };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
}
ty::Adt(adt_def, substs) if adt_def.is_enum() => {
let destructured = tcx.destructure_mir_constant(param_env, cv);
PatKind::Variant {
adt_def: *adt_def,
substs,
variant_index: destructured
.variant
.expect("destructed const of adt without variant id"),
subpatterns: self.field_pats(destructured.fields.iter().copied())?,
}
}
ty::Tuple(_) | ty::Adt(_, _) => {
let destructured = tcx.destructure_mir_constant(param_env, cv);
PatKind::Leaf { subpatterns: self.field_pats(destructured.fields.iter().copied())? }
}
ty::Array(..) => PatKind::Array {
prefix: tcx
.destructure_mir_constant(param_env, cv)
.fields
.iter()
.map(|val| self.recur(*val, false))
.collect::<Result<_, _>>()?,
slice: None,
suffix: Box::new([]),
},
ty::Ref(_, pointee_ty, ..) => match *pointee_ty.kind() {
// These are not allowed and will error elsewhere anyway.
ty::Dynamic(..) => {
self.saw_const_match_error.set(true);
let err = InvalidPattern { span, non_sm_ty: cv.ty() };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
}
// `&str` is represented as `ConstValue::Slice`, let's keep using this
// optimization for now.
ty::Str => PatKind::Constant { value: cv },
// `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when
// matching against references, you can only use byte string literals.
// The typechecker has a special case for byte string literals, by treating them
// as slices. This means we turn `&[T; N]` constants into slice patterns, which
// has no negative effects on pattern matching, even if we're actually matching on
// arrays.
ty::Array(..) if !self.treat_byte_string_as_slice => {
let old = self.behind_reference.replace(true);
let array = tcx.deref_mir_constant(self.param_env.and(cv));
let val = PatKind::Deref {
subpattern: Box::new(Pat {
kind: PatKind::Array {
prefix: tcx
.destructure_mir_constant(param_env, array)
.fields
.iter()
.map(|val| self.recur(*val, false))
.collect::<Result<_, _>>()?,
slice: None,
suffix: Box::new([]),
},
span,
ty: *pointee_ty,
}),
};
self.behind_reference.set(old);
val
}
ty::Array(elem_ty, _) |
// Cannot merge this with the catch all branch below, because the `const_deref`
// changes the type from slice to array, we need to keep the original type in the
// pattern.
ty::Slice(elem_ty) => {
let old = self.behind_reference.replace(true);
let array = tcx.deref_mir_constant(self.param_env.and(cv));
let val = PatKind::Deref {
subpattern: Box::new(Pat {
kind: PatKind::Slice {
prefix: tcx
.destructure_mir_constant(param_env, array)
.fields
.iter()
.map(|val| self.recur(*val, false))
.collect::<Result<_, _>>()?,
slice: None,
suffix: Box::new([]),
},
span,
ty: tcx.mk_slice(elem_ty),
}),
};
self.behind_reference.set(old);
val
}
// Backwards compatibility hack: support references to non-structural types.
// We'll lower
// this pattern to a `PartialEq::eq` comparison and `PartialEq::eq` takes a
// reference. This makes the rest of the matching logic simpler as it doesn't have
// to figure out how to get a reference again.
ty::Adt(_, _) if !self.type_marked_structural(*pointee_ty) => {
if self.behind_reference.get() {
if self.include_lint_checks
&& !self.saw_const_match_error.get()
&& !self.saw_const_match_lint.get()
{
self.saw_const_match_lint.set(true);
tcx.emit_spanned_lint(
lint::builtin::INDIRECT_STRUCTURAL_MATCH,
self.id,
span,
IndirectStructuralMatch { non_sm_ty: *pointee_ty },
);
}
PatKind::Constant { value: cv }
} else {
if !self.saw_const_match_error.get() {
self.saw_const_match_error.set(true);
let err = TypeNotStructural { span, non_sm_ty: *pointee_ty };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
}
PatKind::Wild
}
}
// All other references are converted into deref patterns and then recursively
// convert the dereferenced constant to a pattern that is the sub-pattern of the
// deref pattern.
_ => {
if !pointee_ty.is_sized(tcx, param_env) {
// `tcx.deref_mir_constant()` below will ICE with an unsized type
// (except slices, which are handled in a separate arm above).
let err = UnsizedPattern { span, non_sm_ty: *pointee_ty };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
} else {
let old = self.behind_reference.replace(true);
// In case there are structural-match violations somewhere in this subpattern,
// we fall back to a const pattern. If we do not do this, we may end up with
// a !structural-match constant that is not of reference type, which makes it
// very hard to invoke `PartialEq::eq` on it as a fallback.
let val = match self.recur(tcx.deref_mir_constant(self.param_env.and(cv)), false) {
Ok(subpattern) => PatKind::Deref { subpattern },
Err(_) => PatKind::Constant { value: cv },
};
self.behind_reference.set(old);
val
}
}
},
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::FnDef(..) => {
PatKind::Constant { value: cv }
}
ty::RawPtr(pointee) if pointee.ty.is_sized(tcx, param_env) => {
PatKind::Constant { value: cv }
}
// FIXME: these can have very surprising behaviour where optimization levels or other
// compilation choices change the runtime behaviour of the match.
// See https://github.com/rust-lang/rust/issues/70861 for examples.
ty::FnPtr(..) | ty::RawPtr(..) => {
if self.include_lint_checks
&& !self.saw_const_match_error.get()
&& !self.saw_const_match_lint.get()
{
self.saw_const_match_lint.set(true);
tcx.emit_spanned_lint(
lint::builtin::POINTER_STRUCTURAL_MATCH,
id,
span,
PointerPattern
);
}
PatKind::Constant { value: cv }
}
_ => {
self.saw_const_match_error.set(true);
let err = InvalidPattern { span, non_sm_ty: cv.ty() };
tcx.sess.create_err(err).emit_unless(!self.include_lint_checks);
PatKind::Wild
}
};
if self.include_lint_checks
&& !self.saw_const_match_error.get()
&& !self.saw_const_match_lint.get()
&& mir_structural_match_violation
// FIXME(#73448): Find a way to bring const qualification into parity with
// `search_for_structural_match_violation` and then remove this condition.
// Obtain the actual type that isn't annotated. If we just looked at `cv.ty` we
// could get `Option<NonStructEq>`, even though `Option` is annotated with derive.
&& let Some(non_sm_ty) = traits::search_for_structural_match_violation(span, tcx, cv.ty())
{
self.saw_const_match_lint.set(true);
tcx.emit_spanned_lint(
lint::builtin::NONTRIVIAL_STRUCTURAL_MATCH,
id,
span,
NontrivialStructuralMatch {non_sm_ty}
);
}
Ok(Box::new(Pat { span, ty: cv.ty(), kind }))
}
}