blob: 7ba57b3b7a266d51761aa538e0d897ad5a67bea9 [file] [log] [blame]
use crate::FnCtxt;
use rustc_ast::util::parser::PREC_POSTFIX;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::MultiSpan;
use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::def::CtorKind;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{is_range_literal, Node};
use rustc_infer::infer::InferOk;
use rustc_middle::lint::in_external_macro;
use rustc_middle::middle::stability::EvalResult;
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::{BottomUpFolder, TypeFolder};
use rustc_middle::ty::print::{with_forced_trimmed_paths, with_no_trimmed_paths};
use rustc_middle::ty::relate::TypeRelation;
use rustc_middle::ty::{self, Article, AssocItem, Ty, TypeAndMut, TypeVisitableExt};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{BytePos, Span};
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::error_reporting::method_chain::CollectAllMismatches;
use rustc_trait_selection::traits::ObligationCause;
use super::method::probe;
use std::cmp::min;
use std::iter;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub fn emit_type_mismatch_suggestions(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'tcx>,
expr_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
error: Option<TypeError<'tcx>>,
) {
if expr_ty == expected {
return;
}
self.annotate_alternative_method_deref(err, expr, error);
// Use `||` to give these suggestions a precedence
let suggested = self.suggest_missing_parentheses(err, expr)
|| self.suggest_remove_last_method_call(err, expr, expected)
|| self.suggest_associated_const(err, expr, expected)
|| self.suggest_deref_ref_or_into(err, expr, expected, expr_ty, expected_ty_expr)
|| self.suggest_option_to_bool(err, expr, expr_ty, expected)
|| self.suggest_compatible_variants(err, expr, expected, expr_ty)
|| self.suggest_non_zero_new_unwrap(err, expr, expected, expr_ty)
|| self.suggest_calling_boxed_future_when_appropriate(err, expr, expected, expr_ty)
|| self.suggest_no_capture_closure(err, expected, expr_ty)
|| self.suggest_boxing_when_appropriate(err, expr, expected, expr_ty)
|| self.suggest_block_to_brackets_peeling_refs(err, expr, expr_ty, expected)
|| self.suggest_copied_or_cloned(err, expr, expr_ty, expected)
|| self.suggest_clone_for_ref(err, expr, expr_ty, expected)
|| self.suggest_into(err, expr, expr_ty, expected)
|| self.suggest_floating_point_literal(err, expr, expected)
|| self.suggest_null_ptr_for_literal_zero_given_to_ptr_arg(err, expr, expected)
|| self.note_result_coercion(err, expr, expected, expr_ty);
if !suggested {
self.point_at_expr_source_of_inferred_type(err, expr, expr_ty, expected, expr.span);
}
}
pub fn emit_coerce_suggestions(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'tcx>,
expr_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
error: Option<TypeError<'tcx>>,
) {
if expr_ty == expected {
return;
}
self.annotate_expected_due_to_let_ty(err, expr, error);
self.emit_type_mismatch_suggestions(err, expr, expr_ty, expected, expected_ty_expr, error);
self.note_type_is_not_clone(err, expected, expr_ty, expr);
self.note_internal_mutation_in_method(err, expr, expected, expr_ty);
self.check_for_range_as_method_call(err, expr, expr_ty, expected);
self.check_for_binding_assigned_block_without_tail_expression(err, expr, expr_ty, expected);
self.check_wrong_return_type_due_to_generic_arg(err, expr, expr_ty);
}
/// Requires that the two types unify, and prints an error message if
/// they don't.
pub fn demand_suptype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Some(mut e) = self.demand_suptype_diag(sp, expected, actual) {
e.emit();
}
}
pub fn demand_suptype_diag(
&self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx, ErrorGuaranteed>> {
self.demand_suptype_with_origin(&self.misc(sp), expected, actual)
}
#[instrument(skip(self), level = "debug")]
pub fn demand_suptype_with_origin(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx, ErrorGuaranteed>> {
match self.at(cause, self.param_env).define_opaque_types(true).sup(expected, actual) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
None
}
Err(e) => Some(self.err_ctxt().report_mismatched_types(&cause, expected, actual, e)),
}
}
pub fn demand_eqtype(&self, sp: Span, expected: Ty<'tcx>, actual: Ty<'tcx>) {
if let Some(mut err) = self.demand_eqtype_diag(sp, expected, actual) {
err.emit();
}
}
pub fn demand_eqtype_diag(
&self,
sp: Span,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx, ErrorGuaranteed>> {
self.demand_eqtype_with_origin(&self.misc(sp), expected, actual)
}
pub fn demand_eqtype_with_origin(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> Option<DiagnosticBuilder<'tcx, ErrorGuaranteed>> {
match self.at(cause, self.param_env).define_opaque_types(true).eq(expected, actual) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
None
}
Err(e) => Some(self.err_ctxt().report_mismatched_types(cause, expected, actual, e)),
}
}
pub fn demand_coerce(
&self,
expr: &hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> Ty<'tcx> {
let (ty, err) =
self.demand_coerce_diag(expr, checked_ty, expected, expected_ty_expr, allow_two_phase);
if let Some(mut err) = err {
err.emit();
}
ty
}
/// Checks that the type of `expr` can be coerced to `expected`.
///
/// N.B., this code relies on `self.diverges` to be accurate. In particular, assignments to `!`
/// will be permitted if the diverges flag is currently "always".
#[instrument(level = "debug", skip(self, expr, expected_ty_expr, allow_two_phase))]
pub fn demand_coerce_diag(
&self,
expr: &hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
allow_two_phase: AllowTwoPhase,
) -> (Ty<'tcx>, Option<DiagnosticBuilder<'tcx, ErrorGuaranteed>>) {
let expected = self.resolve_vars_with_obligations(expected);
let e = match self.try_coerce(expr, checked_ty, expected, allow_two_phase, None) {
Ok(ty) => return (ty, None),
Err(e) => e,
};
self.set_tainted_by_errors(self.tcx.sess.delay_span_bug(
expr.span,
"`TypeError` when attempting coercion but no error emitted",
));
let expr = expr.peel_drop_temps();
let cause = self.misc(expr.span);
let expr_ty = self.resolve_vars_with_obligations(checked_ty);
let mut err = self.err_ctxt().report_mismatched_types(&cause, expected, expr_ty, e);
let is_insufficiently_polymorphic =
matches!(e, TypeError::RegionsInsufficientlyPolymorphic(..));
// FIXME(#73154): For now, we do leak check when coercing function
// pointers in typeck, instead of only during borrowck. This can lead
// to these `RegionsInsufficientlyPolymorphic` errors that aren't helpful.
if !is_insufficiently_polymorphic {
self.emit_coerce_suggestions(
&mut err,
expr,
expr_ty,
expected,
expected_ty_expr,
Some(e),
);
}
(expected, Some(err))
}
pub fn point_at_expr_source_of_inferred_type(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
found: Ty<'tcx>,
expected: Ty<'tcx>,
mismatch_span: Span,
) -> bool {
let map = self.tcx.hir();
let hir::ExprKind::Path(hir::QPath::Resolved(None, p)) = expr.kind else { return false; };
let [hir::PathSegment { ident, args: None, .. }] = p.segments else { return false; };
let hir::def::Res::Local(hir_id) = p.res else { return false; };
let Some(hir::Node::Pat(pat)) = map.find(hir_id) else { return false; };
let Some(hir::Node::Local(hir::Local {
ty: None,
init: Some(init),
..
})) = map.find_parent(pat.hir_id) else { return false; };
let Some(ty) = self.node_ty_opt(init.hir_id) else { return false; };
if ty.is_closure() || init.span.overlaps(expr.span) || pat.span.from_expansion() {
return false;
}
// Locate all the usages of the relevant binding.
struct FindExprs<'hir> {
hir_id: hir::HirId,
uses: Vec<&'hir hir::Expr<'hir>>,
}
impl<'v> Visitor<'v> for FindExprs<'v> {
fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = ex.kind
&& let hir::def::Res::Local(hir_id) = path.res
&& hir_id == self.hir_id
{
self.uses.push(ex);
}
hir::intravisit::walk_expr(self, ex);
}
}
let mut expr_finder = FindExprs { hir_id, uses: vec![] };
let id = map.get_parent_item(hir_id);
let hir_id: hir::HirId = id.into();
let Some(node) = map.find(hir_id) else { return false; };
let Some(body_id) = node.body_id() else { return false; };
let body = map.body(body_id);
expr_finder.visit_expr(body.value);
// Hack to make equality checks on types with inference variables and regions useful.
let mut eraser = BottomUpFolder {
tcx: self.tcx,
lt_op: |_| self.tcx.lifetimes.re_erased,
ct_op: |c| c,
ty_op: |t| match *t.kind() {
ty::Infer(ty::TyVar(_)) => self.tcx.mk_ty_var(ty::TyVid::from_u32(0)),
ty::Infer(ty::IntVar(_)) => self.tcx.mk_int_var(ty::IntVid { index: 0 }),
ty::Infer(ty::FloatVar(_)) => self.tcx.mk_float_var(ty::FloatVid { index: 0 }),
_ => t,
},
};
let mut prev = eraser.fold_ty(ty);
let mut prev_span: Option<Span> = None;
for binding in expr_finder.uses {
// In every expression where the binding is referenced, we will look at that
// expression's type and see if it is where the incorrect found type was fully
// "materialized" and point at it. We will also try to provide a suggestion there.
if let Some(hir::Node::Expr(expr)
| hir::Node::Stmt(hir::Stmt {
kind: hir::StmtKind::Expr(expr) | hir::StmtKind::Semi(expr),
..
})) = &map.find_parent(binding.hir_id)
&& let hir::ExprKind::MethodCall(segment, rcvr, args, _span) = expr.kind
&& rcvr.hir_id == binding.hir_id
&& let Some(def_id) = self.typeck_results.borrow().type_dependent_def_id(expr.hir_id)
{
// We special case methods, because they can influence inference through the
// call's arguments and we can provide a more explicit span.
let sig = self.tcx.fn_sig(def_id).subst_identity();
let def_self_ty = sig.input(0).skip_binder();
let param_tys = sig.inputs().skip_binder().iter().skip(1);
// If there's an arity mismatch, pointing out the call as the source of an inference
// can be misleading, so we skip it.
if param_tys.len() != args.len() {
continue;
}
let rcvr_ty = self.node_ty(rcvr.hir_id);
// Get the evaluated type *after* calling the method call, so that the influence
// of the arguments can be reflected in the receiver type. The receiver
// expression has the type *before* theis analysis is done.
let ty = match self.lookup_probe_for_diagnostic(
segment.ident,
rcvr_ty,
expr,
probe::ProbeScope::TraitsInScope,
None,
) {
Ok(pick) => eraser.fold_ty(pick.self_ty),
Err(_) => rcvr_ty,
};
// Remove one layer of references to account for `&mut self` and
// `&self`, so that we can compare it against the binding.
let (ty, def_self_ty) = match (ty.kind(), def_self_ty.kind()) {
(ty::Ref(_, ty, a), ty::Ref(_, self_ty, b)) if a == b => (*ty, *self_ty),
_ => (ty, def_self_ty),
};
let mut param_args = FxHashMap::default();
let mut param_expected = FxHashMap::default();
let mut param_found = FxHashMap::default();
if self.can_eq(self.param_env, ty, found) {
// We only point at the first place where the found type was inferred.
for (param_ty, arg) in param_tys.zip(args) {
if def_self_ty.contains(*param_ty) && let ty::Param(_) = param_ty.kind() {
// We found an argument that references a type parameter in `Self`,
// so we assume that this is the argument that caused the found
// type, which we know already because of `can_eq` above was first
// inferred in this method call.
let arg_ty = self.node_ty(arg.hir_id);
if !arg.span.overlaps(mismatch_span) {
err.span_label(
arg.span,
&format!(
"this is of type `{arg_ty}`, which causes `{ident}` to be \
inferred as `{ty}`",
),
);
}
param_args.insert(param_ty, (arg, arg_ty));
}
}
}
// Here we find, for a type param `T`, the type that `T` is in the current
// method call *and* in the original expected type. That way, we can see if we
// can give any structured suggestion for the function argument.
let mut c = CollectAllMismatches {
infcx: &self.infcx,
param_env: self.param_env,
errors: vec![],
};
let _ = c.relate(def_self_ty, ty);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_found.insert(error.expected, error.found);
}
}
c.errors = vec![];
let _ = c.relate(def_self_ty, expected);
for error in c.errors {
if let TypeError::Sorts(error) = error {
param_expected.insert(error.expected, error.found);
}
}
for (param, (arg, arg_ty)) in param_args.iter() {
let Some(expected) = param_expected.get(param) else { continue; };
let Some(found) = param_found.get(param) else { continue; };
if !self.can_eq(self.param_env, *arg_ty, *found) { continue; }
self.emit_coerce_suggestions(err, arg, *found, *expected, None, None);
}
let ty = eraser.fold_ty(ty);
if ty.references_error() {
break;
}
if ty != prev
&& param_args.is_empty()
&& self.can_eq(self.param_env, ty, found)
{
// We only point at the first place where the found type was inferred.
if !segment.ident.span.overlaps(mismatch_span) {
err.span_label(
segment.ident.span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);}
break;
} else if !param_args.is_empty() {
break;
}
prev = ty;
} else {
let ty = eraser.fold_ty(self.node_ty(binding.hir_id));
if ty.references_error() {
break;
}
if ty != prev
&& let Some(span) = prev_span
&& self.can_eq(self.param_env, ty, found)
{
// We only point at the first place where the found type was inferred.
// We use the *previous* span because if the type is known *here* it means
// it was *evaluated earlier*. We don't do this for method calls because we
// evaluate the method's self type eagerly, but not in any other case.
if !span.overlaps(mismatch_span) {
err.span_label(
span,
with_forced_trimmed_paths!(format!(
"here the type of `{ident}` is inferred to be `{ty}`",
)),
);
}
break;
}
prev = ty;
}
if binding.hir_id == expr.hir_id {
// Do not look at expressions that come after the expression we were originally
// evaluating and had a type error.
break;
}
prev_span = Some(binding.span);
}
true
}
fn annotate_expected_due_to_let_ty(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
error: Option<TypeError<'tcx>>,
) {
let parent = self.tcx.hir().parent_id(expr.hir_id);
match (self.tcx.hir().find(parent), error) {
(Some(hir::Node::Local(hir::Local { ty: Some(ty), init: Some(init), .. })), _)
if init.hir_id == expr.hir_id =>
{
// Point at `let` assignment type.
err.span_label(ty.span, "expected due to this");
}
(
Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Assign(lhs, rhs, _), ..
})),
Some(TypeError::Sorts(ExpectedFound { expected, .. })),
) if rhs.hir_id == expr.hir_id && !expected.is_closure() => {
// We ignore closures explicitly because we already point at them elsewhere.
// Point at the assigned-to binding.
let mut primary_span = lhs.span;
let mut secondary_span = lhs.span;
let mut post_message = "";
match lhs.kind {
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path {
res:
hir::def::Res::Def(
hir::def::DefKind::Static(_) | hir::def::DefKind::Const,
def_id,
),
..
},
)) => {
if let Some(hir::Node::Item(hir::Item {
ident,
kind: hir::ItemKind::Static(ty, ..) | hir::ItemKind::Const(ty, ..),
..
})) = self.tcx.hir().get_if_local(*def_id)
{
primary_span = ty.span;
secondary_span = ident.span;
post_message = " type";
}
}
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path { res: hir::def::Res::Local(hir_id), .. },
)) => {
if let Some(hir::Node::Pat(pat)) = self.tcx.hir().find(*hir_id) {
primary_span = pat.span;
secondary_span = pat.span;
match self.tcx.hir().find_parent(pat.hir_id) {
Some(hir::Node::Local(hir::Local { ty: Some(ty), .. })) => {
primary_span = ty.span;
post_message = " type";
}
Some(hir::Node::Local(hir::Local { init: Some(init), .. })) => {
primary_span = init.span;
post_message = " value";
}
Some(hir::Node::Param(hir::Param { ty_span, .. })) => {
primary_span = *ty_span;
post_message = " parameter type";
}
_ => {}
}
}
}
_ => {}
}
if primary_span != secondary_span
&& self
.tcx
.sess
.source_map()
.is_multiline(secondary_span.shrink_to_hi().until(primary_span))
{
// We are pointing at the binding's type or initializer value, but it's pattern
// is in a different line, so we point at both.
err.span_label(secondary_span, "expected due to the type of this binding");
err.span_label(primary_span, &format!("expected due to this{post_message}"));
} else if post_message == "" {
// We are pointing at either the assignment lhs or the binding def pattern.
err.span_label(primary_span, "expected due to the type of this binding");
} else {
// We are pointing at the binding's type or initializer value.
err.span_label(primary_span, &format!("expected due to this{post_message}"));
}
if !lhs.is_syntactic_place_expr() {
// We already emitted E0070 "invalid left-hand side of assignment", so we
// silence this.
err.downgrade_to_delayed_bug();
}
}
(
Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Binary(_, lhs, rhs), ..
})),
Some(TypeError::Sorts(ExpectedFound { expected, .. })),
) if rhs.hir_id == expr.hir_id
&& self.typeck_results.borrow().expr_ty_adjusted_opt(lhs) == Some(expected) =>
{
err.span_label(lhs.span, &format!("expected because this is `{expected}`"));
}
_ => {}
}
}
fn annotate_alternative_method_deref(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
error: Option<TypeError<'tcx>>,
) {
let parent = self.tcx.hir().parent_id(expr.hir_id);
let Some(TypeError::Sorts(ExpectedFound { expected, .. })) = error else {return;};
let Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Assign(lhs, rhs, _), ..
})) = self.tcx.hir().find(parent) else {return; };
if rhs.hir_id != expr.hir_id || expected.is_closure() {
return;
}
let hir::ExprKind::Unary(hir::UnOp::Deref, deref) = lhs.kind else { return; };
let hir::ExprKind::MethodCall(path, base, args, _) = deref.kind else { return; };
let Some(self_ty) = self.typeck_results.borrow().expr_ty_adjusted_opt(base) else { return; };
let Ok(pick) = self
.lookup_probe_for_diagnostic(
path.ident,
self_ty,
deref,
probe::ProbeScope::TraitsInScope,
None,
) else {
return;
};
let in_scope_methods = self.probe_for_name_many(
probe::Mode::MethodCall,
path.ident,
Some(expected),
probe::IsSuggestion(true),
self_ty,
deref.hir_id,
probe::ProbeScope::TraitsInScope,
);
let other_methods_in_scope: Vec<_> =
in_scope_methods.iter().filter(|c| c.item.def_id != pick.item.def_id).collect();
let all_methods = self.probe_for_name_many(
probe::Mode::MethodCall,
path.ident,
Some(expected),
probe::IsSuggestion(true),
self_ty,
deref.hir_id,
probe::ProbeScope::AllTraits,
);
let suggestions: Vec<_> = all_methods
.into_iter()
.filter(|c| c.item.def_id != pick.item.def_id)
.map(|c| {
let m = c.item;
let substs = ty::InternalSubsts::for_item(self.tcx, m.def_id, |param, _| {
self.var_for_def(deref.span, param)
});
let mutability =
match self.tcx.fn_sig(m.def_id).skip_binder().input(0).skip_binder().kind() {
ty::Ref(_, _, hir::Mutability::Mut) => "&mut ",
ty::Ref(_, _, _) => "&",
_ => "",
};
vec![
(
deref.span.until(base.span),
format!(
"{}({}",
with_no_trimmed_paths!(
self.tcx.def_path_str_with_substs(m.def_id, substs,)
),
mutability,
),
),
match &args[..] {
[] => (base.span.shrink_to_hi().with_hi(deref.span.hi()), ")".to_string()),
[first, ..] => (base.span.between(first.span), ", ".to_string()),
},
]
})
.collect();
if suggestions.is_empty() {
return;
}
let mut path_span: MultiSpan = path.ident.span.into();
path_span.push_span_label(
path.ident.span,
with_no_trimmed_paths!(format!(
"refers to `{}`",
self.tcx.def_path_str(pick.item.def_id),
)),
);
let container_id = pick.item.container_id(self.tcx);
let container = with_no_trimmed_paths!(self.tcx.def_path_str(container_id));
for def_id in pick.import_ids {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
path_span.push_span_label(
self.tcx.hir().span(hir_id),
format!("`{container}` imported here"),
);
}
let tail = with_no_trimmed_paths!(match &other_methods_in_scope[..] {
[] => return,
[candidate] => format!(
"the method of the same name on {} `{}`",
match candidate.kind {
probe::CandidateKind::InherentImplCandidate(..) => "the inherent impl for",
_ => "trait",
},
self.tcx.def_path_str(candidate.item.container_id(self.tcx))
),
[.., last] if other_methods_in_scope.len() < 5 => {
format!(
"the methods of the same name on {} and `{}`",
other_methods_in_scope[..other_methods_in_scope.len() - 1]
.iter()
.map(|c| format!(
"`{}`",
self.tcx.def_path_str(c.item.container_id(self.tcx))
))
.collect::<Vec<String>>()
.join(", "),
self.tcx.def_path_str(last.item.container_id(self.tcx))
)
}
_ => format!(
"the methods of the same name on {} other traits",
other_methods_in_scope.len()
),
});
err.span_note(
path_span,
&format!(
"the `{}` call is resolved to the method in `{container}`, shadowing {tail}",
path.ident,
),
);
if suggestions.len() > other_methods_in_scope.len() {
err.note(&format!(
"additionally, there are {} other available methods that aren't in scope",
suggestions.len() - other_methods_in_scope.len()
));
}
err.multipart_suggestions(
&format!(
"you might have meant to call {}; you can use the fully-qualified path to call {} \
explicitly",
if suggestions.len() == 1 {
"the other method"
} else {
"one of the other methods"
},
if suggestions.len() == 1 { "it" } else { "one of them" },
),
suggestions,
Applicability::MaybeIncorrect,
);
}
pub(crate) fn note_result_coercion(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
) -> bool {
let ty::Adt(e, substs_e) = expected.kind() else { return false; };
let ty::Adt(f, substs_f) = found.kind() else { return false; };
if e.did() != f.did() {
return false;
}
if Some(e.did()) != self.tcx.get_diagnostic_item(sym::Result) {
return false;
}
let map = self.tcx.hir();
if let Some(hir::Node::Expr(expr)) = map.find_parent(expr.hir_id)
&& let hir::ExprKind::Ret(_) = expr.kind
{
// `return foo;`
} else if map.get_return_block(expr.hir_id).is_some() {
// Function's tail expression.
} else {
return false;
}
let e = substs_e.type_at(1);
let f = substs_f.type_at(1);
if self
.infcx
.type_implements_trait(
self.tcx.get_diagnostic_item(sym::Into).unwrap(),
[f, e],
self.param_env,
)
.must_apply_modulo_regions()
{
err.multipart_suggestion(
"use `?` to coerce and return an appropriate `Err`, and wrap the resulting value \
in `Ok` so the expression remains of type `Result`",
vec![
(expr.span.shrink_to_lo(), "Ok(".to_string()),
(expr.span.shrink_to_hi(), "?)".to_string()),
],
Applicability::MaybeIncorrect,
);
return true;
}
false
}
/// If the expected type is an enum (Issue #55250) with any variants whose
/// sole field is of the found type, suggest such variants. (Issue #42764)
fn suggest_compatible_variants(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
expr_ty: Ty<'tcx>,
) -> bool {
if let ty::Adt(expected_adt, substs) = expected.kind() {
if let hir::ExprKind::Field(base, ident) = expr.kind {
let base_ty = self.typeck_results.borrow().expr_ty(base);
if self.can_eq(self.param_env, base_ty, expected)
&& let Some(base_span) = base.span.find_ancestor_inside(expr.span)
{
err.span_suggestion_verbose(
expr.span.with_lo(base_span.hi()),
format!("consider removing the tuple struct field `{ident}`"),
"",
Applicability::MaybeIncorrect,
);
return true;
}
}
// If the expression is of type () and it's the return expression of a block,
// we suggest adding a separate return expression instead.
// (To avoid things like suggesting `Ok(while .. { .. })`.)
if expr_ty.is_unit() {
let mut id = expr.hir_id;
let mut parent;
// Unroll desugaring, to make sure this works for `for` loops etc.
loop {
parent = self.tcx.hir().parent_id(id);
if let Some(parent_span) = self.tcx.hir().opt_span(parent) {
if parent_span.find_ancestor_inside(expr.span).is_some() {
// The parent node is part of the same span, so is the result of the
// same expansion/desugaring and not the 'real' parent node.
id = parent;
continue;
}
}
break;
}
if let Some(hir::Node::Block(&hir::Block {
span: block_span, expr: Some(e), ..
})) = self.tcx.hir().find(parent)
{
if e.hir_id == id {
if let Some(span) = expr.span.find_ancestor_inside(block_span) {
let return_suggestions = if self
.tcx
.is_diagnostic_item(sym::Result, expected_adt.did())
{
vec!["Ok(())"]
} else if self.tcx.is_diagnostic_item(sym::Option, expected_adt.did()) {
vec!["None", "Some(())"]
} else {
return false;
};
if let Some(indent) =
self.tcx.sess.source_map().indentation_before(span.shrink_to_lo())
{
// Add a semicolon, except after `}`.
let semicolon =
match self.tcx.sess.source_map().span_to_snippet(span) {
Ok(s) if s.ends_with('}') => "",
_ => ";",
};
err.span_suggestions(
span.shrink_to_hi(),
"try adding an expression at the end of the block",
return_suggestions
.into_iter()
.map(|r| format!("{semicolon}\n{indent}{r}")),
Applicability::MaybeIncorrect,
);
}
return true;
}
}
}
}
let compatible_variants: Vec<(String, _, _, Option<String>)> = expected_adt
.variants()
.iter()
.filter(|variant| {
variant.fields.len() == 1
})
.filter_map(|variant| {
let sole_field = &variant.fields[0];
let field_is_local = sole_field.did.is_local();
let field_is_accessible =
sole_field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
// Skip suggestions for unstable public fields (for example `Pin::pointer`)
&& matches!(self.tcx.eval_stability(sole_field.did, None, expr.span, None), EvalResult::Allow | EvalResult::Unmarked);
if !field_is_local && !field_is_accessible {
return None;
}
let note_about_variant_field_privacy = (field_is_local && !field_is_accessible)
.then(|| " (its field is private, but it's local to this crate and its privacy can be changed)".to_string());
let sole_field_ty = sole_field.ty(self.tcx, substs);
if self.can_coerce(expr_ty, sole_field_ty) {
let variant_path =
with_no_trimmed_paths!(self.tcx.def_path_str(variant.def_id));
// FIXME #56861: DRYer prelude filtering
if let Some(path) = variant_path.strip_prefix("std::prelude::")
&& let Some((_, path)) = path.split_once("::")
{
return Some((path.to_string(), variant.ctor_kind(), sole_field.name, note_about_variant_field_privacy));
}
Some((variant_path, variant.ctor_kind(), sole_field.name, note_about_variant_field_privacy))
} else {
None
}
})
.collect();
let suggestions_for = |variant: &_, ctor_kind, field_name| {
let prefix = match self.maybe_get_struct_pattern_shorthand_field(expr) {
Some(ident) => format!("{ident}: "),
None => String::new(),
};
let (open, close) = match ctor_kind {
Some(CtorKind::Fn) => ("(".to_owned(), ")"),
None => (format!(" {{ {field_name}: "), " }"),
// unit variants don't have fields
Some(CtorKind::Const) => unreachable!(),
};
// Suggest constructor as deep into the block tree as possible.
// This fixes https://github.com/rust-lang/rust/issues/101065,
// and also just helps make the most minimal suggestions.
let mut expr = expr;
while let hir::ExprKind::Block(block, _) = &expr.kind
&& let Some(expr_) = &block.expr
{
expr = expr_
}
vec![
(expr.span.shrink_to_lo(), format!("{prefix}{variant}{open}")),
(expr.span.shrink_to_hi(), close.to_owned()),
]
};
match &compatible_variants[..] {
[] => { /* No variants to format */ }
[(variant, ctor_kind, field_name, note)] => {
// Just a single matching variant.
err.multipart_suggestion_verbose(
&format!(
"try wrapping the expression in `{variant}`{note}",
note = note.as_deref().unwrap_or("")
),
suggestions_for(&**variant, *ctor_kind, *field_name),
Applicability::MaybeIncorrect,
);
return true;
}
_ => {
// More than one matching variant.
err.multipart_suggestions(
&format!(
"try wrapping the expression in a variant of `{}`",
self.tcx.def_path_str(expected_adt.did())
),
compatible_variants.into_iter().map(
|(variant, ctor_kind, field_name, _)| {
suggestions_for(&variant, ctor_kind, field_name)
},
),
Applicability::MaybeIncorrect,
);
return true;
}
}
}
false
}
fn suggest_non_zero_new_unwrap(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
expected: Ty<'tcx>,
expr_ty: Ty<'tcx>,
) -> bool {
let tcx = self.tcx;
let (adt, unwrap) = match expected.kind() {
// In case Option<NonZero*> is wanted, but * is provided, suggest calling new
ty::Adt(adt, substs) if tcx.is_diagnostic_item(sym::Option, adt.did()) => {
// Unwrap option
let ty::Adt(adt, _) = substs.type_at(0).kind() else { return false; };
(adt, "")
}
// In case NonZero* is wanted, but * is provided also add `.unwrap()` to satisfy types
ty::Adt(adt, _) => (adt, ".unwrap()"),
_ => return false,
};
let map = [
(sym::NonZeroU8, tcx.types.u8),
(sym::NonZeroU16, tcx.types.u16),
(sym::NonZeroU32, tcx.types.u32),
(sym::NonZeroU64, tcx.types.u64),
(sym::NonZeroU128, tcx.types.u128),
(sym::NonZeroI8, tcx.types.i8),
(sym::NonZeroI16, tcx.types.i16),
(sym::NonZeroI32, tcx.types.i32),
(sym::NonZeroI64, tcx.types.i64),
(sym::NonZeroI128, tcx.types.i128),
];
let Some((s, _)) = map
.iter()
.find(|&&(s, t)| self.tcx.is_diagnostic_item(s, adt.did()) && self.can_coerce(expr_ty, t))
else { return false; };
let path = self.tcx.def_path_str(adt.non_enum_variant().def_id);
err.multipart_suggestion(
format!("consider calling `{s}::new`"),
vec![
(expr.span.shrink_to_lo(), format!("{path}::new(")),
(expr.span.shrink_to_hi(), format!("){unwrap}")),
],
Applicability::MaybeIncorrect,
);
true
}
pub fn get_conversion_methods(
&self,
span: Span,
expected: Ty<'tcx>,
checked_ty: Ty<'tcx>,
hir_id: hir::HirId,
) -> Vec<AssocItem> {
let methods = self.probe_for_return_type(
span,
probe::Mode::MethodCall,
expected,
checked_ty,
hir_id,
|m| {
self.has_only_self_parameter(m)
&& self
.tcx
// This special internal attribute is used to permit
// "identity-like" conversion methods to be suggested here.
//
// FIXME (#46459 and #46460): ideally
// `std::convert::Into::into` and `std::borrow:ToOwned` would
// also be `#[rustc_conversion_suggestion]`, if not for
// method-probing false-positives and -negatives (respectively).
//
// FIXME? Other potential candidate methods: `as_ref` and
// `as_mut`?
.has_attr(m.def_id, sym::rustc_conversion_suggestion)
},
);
methods
}
/// This function checks whether the method is not static and does not accept other parameters than `self`.
fn has_only_self_parameter(&self, method: &AssocItem) -> bool {
match method.kind {
ty::AssocKind::Fn => {
method.fn_has_self_parameter
&& self.tcx.fn_sig(method.def_id).skip_binder().inputs().skip_binder().len()
== 1
}
_ => false,
}
}
/// Identify some cases where `as_ref()` would be appropriate and suggest it.
///
/// Given the following code:
/// ```compile_fail,E0308
/// struct Foo;
/// fn takes_ref(_: &Foo) {}
/// let ref opt = Some(Foo);
///
/// opt.map(|param| takes_ref(param));
/// ```
/// Suggest using `opt.as_ref().map(|param| takes_ref(param));` instead.
///
/// It only checks for `Option` and `Result` and won't work with
/// ```ignore (illustrative)
/// opt.map(|param| { takes_ref(param) });
/// ```
fn can_use_as_ref(&self, expr: &hir::Expr<'_>) -> Option<(Span, &'static str, String)> {
let hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) = expr.kind else {
return None;
};
let hir::def::Res::Local(local_id) = path.res else {
return None;
};
let local_parent = self.tcx.hir().parent_id(local_id);
let Some(Node::Param(hir::Param { hir_id: param_hir_id, .. })) = self.tcx.hir().find(local_parent) else {
return None;
};
let param_parent = self.tcx.hir().parent_id(*param_hir_id);
let Some(Node::Expr(hir::Expr {
hir_id: expr_hir_id,
kind: hir::ExprKind::Closure(hir::Closure { fn_decl: closure_fn_decl, .. }),
..
})) = self.tcx.hir().find(param_parent) else {
return None;
};
let expr_parent = self.tcx.hir().parent_id(*expr_hir_id);
let hir = self.tcx.hir().find(expr_parent);
let closure_params_len = closure_fn_decl.inputs.len();
let (
Some(Node::Expr(hir::Expr {
kind: hir::ExprKind::MethodCall(method_path, receiver, ..),
..
})),
1,
) = (hir, closure_params_len) else {
return None;
};
let self_ty = self.typeck_results.borrow().expr_ty(receiver);
let name = method_path.ident.name;
let is_as_ref_able = match self_ty.peel_refs().kind() {
ty::Adt(def, _) => {
(self.tcx.is_diagnostic_item(sym::Option, def.did())
|| self.tcx.is_diagnostic_item(sym::Result, def.did()))
&& (name == sym::map || name == sym::and_then)
}
_ => false,
};
match (is_as_ref_able, self.sess().source_map().span_to_snippet(method_path.ident.span)) {
(true, Ok(src)) => {
let suggestion = format!("as_ref().{}", src);
Some((method_path.ident.span, "consider using `as_ref` instead", suggestion))
}
_ => None,
}
}
pub(crate) fn maybe_get_struct_pattern_shorthand_field(
&self,
expr: &hir::Expr<'_>,
) -> Option<Symbol> {
let hir = self.tcx.hir();
let local = match expr {
hir::Expr {
kind:
hir::ExprKind::Path(hir::QPath::Resolved(
None,
hir::Path {
res: hir::def::Res::Local(_),
segments: [hir::PathSegment { ident, .. }],
..
},
)),
..
} => Some(ident),
_ => None,
}?;
match hir.find_parent(expr.hir_id)? {
Node::ExprField(field) => {
if field.ident.name == local.name && field.is_shorthand {
return Some(local.name);
}
}
_ => {}
}
None
}
/// If the given `HirId` corresponds to a block with a trailing expression, return that expression
pub(crate) fn maybe_get_block_expr(
&self,
expr: &hir::Expr<'tcx>,
) -> Option<&'tcx hir::Expr<'tcx>> {
match expr {
hir::Expr { kind: hir::ExprKind::Block(block, ..), .. } => block.expr,
_ => None,
}
}
/// Returns whether the given expression is an `else if`.
pub(crate) fn is_else_if_block(&self, expr: &hir::Expr<'_>) -> bool {
if let hir::ExprKind::If(..) = expr.kind {
let parent_id = self.tcx.hir().parent_id(expr.hir_id);
if let Some(Node::Expr(hir::Expr {
kind: hir::ExprKind::If(_, _, Some(else_expr)),
..
})) = self.tcx.hir().find(parent_id)
{
return else_expr.hir_id == expr.hir_id;
}
}
false
}
/// This function is used to determine potential "simple" improvements or users' errors and
/// provide them useful help. For example:
///
/// ```compile_fail,E0308
/// fn some_fn(s: &str) {}
///
/// let x = "hey!".to_owned();
/// some_fn(x); // error
/// ```
///
/// No need to find every potential function which could make a coercion to transform a
/// `String` into a `&str` since a `&` would do the trick!
///
/// In addition of this check, it also checks between references mutability state. If the
/// expected is mutable but the provided isn't, maybe we could just say "Hey, try with
/// `&mut`!".
pub fn check_ref(
&self,
expr: &hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected: Ty<'tcx>,
) -> Option<(
Span,
String,
String,
Applicability,
bool, /* verbose */
bool, /* suggest `&` or `&mut` type annotation */
)> {
let sess = self.sess();
let sp = expr.span;
// If the span is from an external macro, there's no suggestion we can make.
if in_external_macro(sess, sp) {
return None;
}
let sm = sess.source_map();
let replace_prefix = |s: &str, old: &str, new: &str| {
s.strip_prefix(old).map(|stripped| new.to_string() + stripped)
};
// `ExprKind::DropTemps` is semantically irrelevant for these suggestions.
let expr = expr.peel_drop_temps();
match (&expr.kind, expected.kind(), checked_ty.kind()) {
(_, &ty::Ref(_, exp, _), &ty::Ref(_, check, _)) => match (exp.kind(), check.kind()) {
(&ty::Str, &ty::Array(arr, _) | &ty::Slice(arr)) if arr == self.tcx.types.u8 => {
if let hir::ExprKind::Lit(_) = expr.kind
&& let Ok(src) = sm.span_to_snippet(sp)
&& replace_prefix(&src, "b\"", "\"").is_some()
{
let pos = sp.lo() + BytePos(1);
return Some((
sp.with_hi(pos),
"consider removing the leading `b`".to_string(),
String::new(),
Applicability::MachineApplicable,
true,
false,
));
}
}
(&ty::Array(arr, _) | &ty::Slice(arr), &ty::Str) if arr == self.tcx.types.u8 => {
if let hir::ExprKind::Lit(_) = expr.kind
&& let Ok(src) = sm.span_to_snippet(sp)
&& replace_prefix(&src, "\"", "b\"").is_some()
{
return Some((
sp.shrink_to_lo(),
"consider adding a leading `b`".to_string(),
"b".to_string(),
Applicability::MachineApplicable,
true,
false,
));
}
}
_ => {}
},
(_, &ty::Ref(_, _, mutability), _) => {
// Check if it can work when put into a ref. For example:
//
// ```
// fn bar(x: &mut i32) {}
//
// let x = 0u32;
// bar(&x); // error, expected &mut
// ```
let ref_ty = match mutability {
hir::Mutability::Mut => {
self.tcx.mk_mut_ref(self.tcx.lifetimes.re_static, checked_ty)
}
hir::Mutability::Not => {
self.tcx.mk_imm_ref(self.tcx.lifetimes.re_static, checked_ty)
}
};
if self.can_coerce(ref_ty, expected) {
let mut sugg_sp = sp;
if let hir::ExprKind::MethodCall(ref segment, receiver, args, _) = expr.kind {
let clone_trait =
self.tcx.require_lang_item(LangItem::Clone, Some(segment.ident.span));
if args.is_empty()
&& self.typeck_results.borrow().type_dependent_def_id(expr.hir_id).map(
|did| {
let ai = self.tcx.associated_item(did);
ai.trait_container(self.tcx) == Some(clone_trait)
},
) == Some(true)
&& segment.ident.name == sym::clone
{
// If this expression had a clone call when suggesting borrowing
// we want to suggest removing it because it'd now be unnecessary.
sugg_sp = receiver.span;
}
}
if let hir::ExprKind::Unary(hir::UnOp::Deref, ref inner) = expr.kind
&& let Some(1) = self.deref_steps(expected, checked_ty) {
// We have `*&T`, check if what was expected was `&T`.
// If so, we may want to suggest removing a `*`.
sugg_sp = sugg_sp.with_hi(inner.span.lo());
return Some((
sugg_sp,
"consider removing deref here".to_string(),
"".to_string(),
Applicability::MachineApplicable,
true,
false,
));
}
if let Ok(src) = sm.span_to_snippet(sugg_sp) {
let needs_parens = match expr.kind {
// parenthesize if needed (Issue #46756)
hir::ExprKind::Cast(_, _) | hir::ExprKind::Binary(_, _, _) => true,
// parenthesize borrows of range literals (Issue #54505)
_ if is_range_literal(expr) => true,
_ => false,
};
if let Some(sugg) = self.can_use_as_ref(expr) {
return Some((
sugg.0,
sugg.1.to_string(),
sugg.2,
Applicability::MachineApplicable,
false,
false,
));
}
let prefix = match self.maybe_get_struct_pattern_shorthand_field(expr) {
Some(ident) => format!("{ident}: "),
None => String::new(),
};
if let Some(hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Assign(..),
..
})) = self.tcx.hir().find_parent(expr.hir_id)
{
if mutability.is_mut() {
// Suppressing this diagnostic, we'll properly print it in `check_expr_assign`
return None;
}
}
let sugg_expr = if needs_parens { format!("({src})") } else { src };
return Some((
sp,
format!("consider {}borrowing here", mutability.mutably_str()),
format!("{prefix}{}{sugg_expr}", mutability.ref_prefix_str()),
Applicability::MachineApplicable,
false,
false,
));
}
}
}
(
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, _, ref expr),
_,
&ty::Ref(_, checked, _),
) if self.can_sub(self.param_env, checked, expected) => {
// We have `&T`, check if what was expected was `T`. If so,
// we may want to suggest removing a `&`.
if sm.is_imported(expr.span) {
// Go through the spans from which this span was expanded,
// and find the one that's pointing inside `sp`.
//
// E.g. for `&format!("")`, where we want the span to the
// `format!()` invocation instead of its expansion.
if let Some(call_span) =
iter::successors(Some(expr.span), |s| s.parent_callsite())
.find(|&s| sp.contains(s))
&& sm.is_span_accessible(call_span)
{
return Some((
sp.with_hi(call_span.lo()),
"consider removing the borrow".to_string(),
String::new(),
Applicability::MachineApplicable,
true,
true
));
}
return None;
}
if sp.contains(expr.span)
&& sm.is_span_accessible(expr.span)
{
return Some((
sp.with_hi(expr.span.lo()),
"consider removing the borrow".to_string(),
String::new(),
Applicability::MachineApplicable,
true,
true,
));
}
}
(
_,
&ty::RawPtr(TypeAndMut { ty: ty_b, mutbl: mutbl_b }),
&ty::Ref(_, ty_a, mutbl_a),
) => {
if let Some(steps) = self.deref_steps(ty_a, ty_b)
// Only suggest valid if dereferencing needed.
&& steps > 0
// The pointer type implements `Copy` trait so the suggestion is always valid.
&& let Ok(src) = sm.span_to_snippet(sp)
{
let derefs = "*".repeat(steps);
let old_prefix = mutbl_a.ref_prefix_str();
let new_prefix = mutbl_b.ref_prefix_str().to_owned() + &derefs;
let suggestion = replace_prefix(&src, old_prefix, &new_prefix).map(|_| {
// skip `&` or `&mut ` if both mutabilities are mutable
let lo = sp.lo() + BytePos(min(old_prefix.len(), mutbl_b.ref_prefix_str().len()) as _);
// skip `&` or `&mut `
let hi = sp.lo() + BytePos(old_prefix.len() as _);
let sp = sp.with_lo(lo).with_hi(hi);
(
sp,
format!("{}{derefs}", if mutbl_a != mutbl_b { mutbl_b.prefix_str() } else { "" }),
if mutbl_b <= mutbl_a { Applicability::MachineApplicable } else { Applicability::MaybeIncorrect }
)
});
if let Some((span, src, applicability)) = suggestion {
return Some((
span,
"consider dereferencing".to_string(),
src,
applicability,
true,
false,
));
}
}
}
_ if sp == expr.span => {
if let Some(mut steps) = self.deref_steps(checked_ty, expected) {
let mut expr = expr.peel_blocks();
let mut prefix_span = expr.span.shrink_to_lo();
let mut remove = String::new();
// Try peeling off any existing `&` and `&mut` to reach our target type
while steps > 0 {
if let hir::ExprKind::AddrOf(_, mutbl, inner) = expr.kind {
// If the expression has `&`, removing it would fix the error
prefix_span = prefix_span.with_hi(inner.span.lo());
expr = inner;
remove.push_str(mutbl.ref_prefix_str());
steps -= 1;
} else {
break;
}
}
// If we've reached our target type with just removing `&`, then just print now.
if steps == 0 && !remove.trim().is_empty() {
return Some((
prefix_span,
format!("consider removing the `{}`", remove.trim()),
String::new(),
// Do not remove `&&` to get to bool, because it might be something like
// { a } && b, which we have a separate fixup suggestion that is more
// likely correct...
if remove.trim() == "&&" && expected == self.tcx.types.bool {
Applicability::MaybeIncorrect
} else {
Applicability::MachineApplicable
},
true,
false,
));
}
// For this suggestion to make sense, the type would need to be `Copy`,
// or we have to be moving out of a `Box<T>`
if self.type_is_copy_modulo_regions(self.param_env, expected, sp)
// FIXME(compiler-errors): We can actually do this if the checked_ty is
// `steps` layers of boxes, not just one, but this is easier and most likely.
|| (checked_ty.is_box() && steps == 1)
{
let deref_kind = if checked_ty.is_box() {
"unboxing the value"
} else if checked_ty.is_region_ptr() {
"dereferencing the borrow"
} else {
"dereferencing the type"
};
// Suggest removing `&` if we have removed any, otherwise suggest just
// dereferencing the remaining number of steps.
let message = if remove.is_empty() {
format!("consider {deref_kind}")
} else {
format!(
"consider removing the `{}` and {} instead",
remove.trim(),
deref_kind
)
};
let prefix = match self.maybe_get_struct_pattern_shorthand_field(expr) {
Some(ident) => format!("{ident}: "),
None => String::new(),
};
let (span, suggestion) = if self.is_else_if_block(expr) {
// Don't suggest nonsense like `else *if`
return None;
} else if let Some(expr) = self.maybe_get_block_expr(expr) {
// prefix should be empty here..
(expr.span.shrink_to_lo(), "*".to_string())
} else {
(prefix_span, format!("{}{}", prefix, "*".repeat(steps)))
};
if suggestion.trim().is_empty() {
return None;
}
return Some((
span,
message,
suggestion,
Applicability::MachineApplicable,
true,
false,
));
}
}
}
_ => {}
}
None
}
pub fn check_for_cast(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
) -> bool {
if self.tcx.sess.source_map().is_imported(expr.span) {
// Ignore if span is from within a macro.
return false;
}
let Ok(src) = self.tcx.sess.source_map().span_to_snippet(expr.span) else {
return false;
};
// If casting this expression to a given numeric type would be appropriate in case of a type
// mismatch.
//
// We want to minimize the amount of casting operations that are suggested, as it can be a
// lossy operation with potentially bad side effects, so we only suggest when encountering
// an expression that indicates that the original type couldn't be directly changed.
//
// For now, don't suggest casting with `as`.
let can_cast = false;
let mut sugg = vec![];
if let Some(hir::Node::ExprField(field)) = self.tcx.hir().find_parent(expr.hir_id) {
// `expr` is a literal field for a struct, only suggest if appropriate
if field.is_shorthand {
// This is a field literal
sugg.push((field.ident.span.shrink_to_lo(), format!("{}: ", field.ident)));
} else {
// Likely a field was meant, but this field wasn't found. Do not suggest anything.
return false;
}
};
if let hir::ExprKind::Call(path, args) = &expr.kind
&& let (hir::ExprKind::Path(hir::QPath::TypeRelative(base_ty, path_segment)), 1) =
(&path.kind, args.len())
// `expr` is a conversion like `u32::from(val)`, do not suggest anything (#63697).
&& let (hir::TyKind::Path(hir::QPath::Resolved(None, base_ty_path)), sym::from) =
(&base_ty.kind, path_segment.ident.name)
{
if let Some(ident) = &base_ty_path.segments.iter().map(|s| s.ident).next() {
match ident.name {
sym::i128
| sym::i64
| sym::i32
| sym::i16
| sym::i8
| sym::u128
| sym::u64
| sym::u32
| sym::u16
| sym::u8
| sym::isize
| sym::usize
if base_ty_path.segments.len() == 1 =>
{
return false;
}
_ => {}
}
}
}
let msg = format!(
"you can convert {} `{}` to {} `{}`",
checked_ty.kind().article(),
checked_ty,
expected_ty.kind().article(),
expected_ty,
);
let cast_msg = format!(
"you can cast {} `{}` to {} `{}`",
checked_ty.kind().article(),
checked_ty,
expected_ty.kind().article(),
expected_ty,
);
let lit_msg = format!(
"change the type of the numeric literal from `{checked_ty}` to `{expected_ty}`",
);
let close_paren = if expr.precedence().order() < PREC_POSTFIX {
sugg.push((expr.span.shrink_to_lo(), "(".to_string()));
")"
} else {
""
};
let mut cast_suggestion = sugg.clone();
cast_suggestion.push((expr.span.shrink_to_hi(), format!("{close_paren} as {expected_ty}")));
let mut into_suggestion = sugg.clone();
into_suggestion.push((expr.span.shrink_to_hi(), format!("{close_paren}.into()")));
let mut suffix_suggestion = sugg.clone();
suffix_suggestion.push((
if matches!(
(&expected_ty.kind(), &checked_ty.kind()),
(ty::Int(_) | ty::Uint(_), ty::Float(_))
) {
// Remove fractional part from literal, for example `42.0f32` into `42`
let src = src.trim_end_matches(&checked_ty.to_string());
let len = src.split('.').next().unwrap().len();
expr.span.with_lo(expr.span.lo() + BytePos(len as u32))
} else {
let len = src.trim_end_matches(&checked_ty.to_string()).len();
expr.span.with_lo(expr.span.lo() + BytePos(len as u32))
},
if expr.precedence().order() < PREC_POSTFIX {
// Readd `)`
format!("{expected_ty})")
} else {
expected_ty.to_string()
},
));
let literal_is_ty_suffixed = |expr: &hir::Expr<'_>| {
if let hir::ExprKind::Lit(lit) = &expr.kind { lit.node.is_suffixed() } else { false }
};
let is_negative_int =
|expr: &hir::Expr<'_>| matches!(expr.kind, hir::ExprKind::Unary(hir::UnOp::Neg, ..));
let is_uint = |ty: Ty<'_>| matches!(ty.kind(), ty::Uint(..));
let in_const_context = self.tcx.hir().is_inside_const_context(expr.hir_id);
let suggest_fallible_into_or_lhs_from =
|err: &mut Diagnostic, exp_to_found_is_fallible: bool| {
// If we know the expression the expected type is derived from, we might be able
// to suggest a widening conversion rather than a narrowing one (which may
// panic). For example, given x: u8 and y: u32, if we know the span of "x",
// x > y
// can be given the suggestion "u32::from(x) > y" rather than
// "x > y.try_into().unwrap()".
let lhs_expr_and_src = expected_ty_expr.and_then(|expr| {
self.tcx
.sess
.source_map()
.span_to_snippet(expr.span)
.ok()
.map(|src| (expr, src))
});
let (msg, suggestion) = if let (Some((lhs_expr, lhs_src)), false) =
(lhs_expr_and_src, exp_to_found_is_fallible)
{
let msg = format!(
"you can convert `{lhs_src}` from `{expected_ty}` to `{checked_ty}`, matching the type of `{src}`",
);
let suggestion = vec![
(lhs_expr.span.shrink_to_lo(), format!("{checked_ty}::from(")),
(lhs_expr.span.shrink_to_hi(), ")".to_string()),
];
(msg, suggestion)
} else {
let msg = format!("{msg} and panic if the converted value doesn't fit");
let mut suggestion = sugg.clone();
suggestion.push((
expr.span.shrink_to_hi(),
format!("{close_paren}.try_into().unwrap()"),
));
(msg, suggestion)
};
err.multipart_suggestion_verbose(
&msg,
suggestion,
Applicability::MachineApplicable,
);
};
let suggest_to_change_suffix_or_into =
|err: &mut Diagnostic,
found_to_exp_is_fallible: bool,
exp_to_found_is_fallible: bool| {
let exp_is_lhs =
expected_ty_expr.map(|e| self.tcx.hir().is_lhs(e.hir_id)).unwrap_or(false);
if exp_is_lhs {
return;
}
let always_fallible = found_to_exp_is_fallible
&& (exp_to_found_is_fallible || expected_ty_expr.is_none());
let msg = if literal_is_ty_suffixed(expr) {
&lit_msg
} else if always_fallible && (is_negative_int(expr) && is_uint(expected_ty)) {
// We now know that converting either the lhs or rhs is fallible. Before we
// suggest a fallible conversion, check if the value can never fit in the
// expected type.
let msg = format!("`{src}` cannot fit into type `{expected_ty}`");
err.note(&msg);
return;
} else if in_const_context {
// Do not recommend `into` or `try_into` in const contexts.
return;
} else if found_to_exp_is_fallible {
return suggest_fallible_into_or_lhs_from(err, exp_to_found_is_fallible);
} else {
&msg
};
let suggestion = if literal_is_ty_suffixed(expr) {
suffix_suggestion.clone()
} else {
into_suggestion.clone()
};
err.multipart_suggestion_verbose(msg, suggestion, Applicability::MachineApplicable);
};
match (&expected_ty.kind(), &checked_ty.kind()) {
(ty::Int(exp), ty::Int(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if exp < found => (true, false),
(Some(exp), Some(found)) if exp > found => (false, true),
(None, Some(8 | 16)) => (false, true),
(Some(8 | 16), None) => (true, false),
(None, _) | (_, None) => (true, true),
_ => (false, false),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(ty::Uint(exp), ty::Uint(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if exp < found => (true, false),
(Some(exp), Some(found)) if exp > found => (false, true),
(None, Some(8 | 16)) => (false, true),
(Some(8 | 16), None) => (true, false),
(None, _) | (_, None) => (true, true),
_ => (false, false),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Int(exp), &ty::Uint(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if found < exp => (false, true),
(None, Some(8)) => (false, true),
_ => (true, true),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(&ty::Uint(exp), &ty::Int(found)) => {
let (f2e_is_fallible, e2f_is_fallible) = match (exp.bit_width(), found.bit_width())
{
(Some(exp), Some(found)) if found > exp => (true, false),
(Some(8), None) => (true, false),
_ => (true, true),
};
suggest_to_change_suffix_or_into(err, f2e_is_fallible, e2f_is_fallible);
true
}
(ty::Float(exp), ty::Float(found)) => {
if found.bit_width() < exp.bit_width() {
suggest_to_change_suffix_or_into(err, false, true);
} else if literal_is_ty_suffixed(expr) {
err.multipart_suggestion_verbose(
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else if can_cast {
// Missing try_into implementation for `f64` to `f32`
err.multipart_suggestion_verbose(
&format!("{cast_msg}, producing the closest possible value"),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(&ty::Uint(_) | &ty::Int(_), &ty::Float(_)) => {
if literal_is_ty_suffixed(expr) {
err.multipart_suggestion_verbose(
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else if can_cast {
// Missing try_into implementation for `{float}` to `{integer}`
err.multipart_suggestion_verbose(
&format!("{msg}, rounding the float towards zero"),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(ty::Float(exp), ty::Uint(found)) => {
// if `found` is `None` (meaning found is `usize`), don't suggest `.into()`
if exp.bit_width() > found.bit_width().unwrap_or(256) {
err.multipart_suggestion_verbose(
&format!(
"{msg}, producing the floating point representation of the integer",
),
into_suggestion,
Applicability::MachineApplicable,
);
} else if literal_is_ty_suffixed(expr) {
err.multipart_suggestion_verbose(
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else {
// Missing try_into implementation for `{integer}` to `{float}`
err.multipart_suggestion_verbose(
&format!(
"{cast_msg}, producing the floating point representation of the integer, \
rounded if necessary",
),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(ty::Float(exp), ty::Int(found)) => {
// if `found` is `None` (meaning found is `isize`), don't suggest `.into()`
if exp.bit_width() > found.bit_width().unwrap_or(256) {
err.multipart_suggestion_verbose(
&format!(
"{}, producing the floating point representation of the integer",
&msg,
),
into_suggestion,
Applicability::MachineApplicable,
);
} else if literal_is_ty_suffixed(expr) {
err.multipart_suggestion_verbose(
&lit_msg,
suffix_suggestion,
Applicability::MachineApplicable,
);
} else {
// Missing try_into implementation for `{integer}` to `{float}`
err.multipart_suggestion_verbose(
&format!(
"{}, producing the floating point representation of the integer, \
rounded if necessary",
&msg,
),
cast_suggestion,
Applicability::MaybeIncorrect, // lossy conversion
);
}
true
}
(
&ty::Uint(ty::UintTy::U32 | ty::UintTy::U64 | ty::UintTy::U128)
| &ty::Int(ty::IntTy::I32 | ty::IntTy::I64 | ty::IntTy::I128),
&ty::Char,
) => {
err.multipart_suggestion_verbose(
&format!("{cast_msg}, since a `char` always occupies 4 bytes"),
cast_suggestion,
Applicability::MachineApplicable,
);
true
}
_ => false,
}
}
/// Identify when the user has written `foo..bar()` instead of `foo.bar()`.
pub fn check_for_range_as_method_call(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'tcx>,
checked_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
) {
if !hir::is_range_literal(expr) {
return;
}
let hir::ExprKind::Struct(
hir::QPath::LangItem(LangItem::Range, ..),
[start, end],
_,
) = expr.kind else { return; };
let parent = self.tcx.hir().parent_id(expr.hir_id);
if let Some(hir::Node::ExprField(_)) = self.tcx.hir().find(parent) {
// Ignore `Foo { field: a..Default::default() }`
return;
}
let mut expr = end.expr;
let mut expectation = Some(expected_ty);
while let hir::ExprKind::MethodCall(_, rcvr, ..) = expr.kind {
// Getting to the root receiver and asserting it is a fn call let's us ignore cases in
// `tests/ui/methods/issues/issue-90315.stderr`.
expr = rcvr;
// If we have more than one layer of calls, then the expected ty
// cannot guide the method probe.
expectation = None;
}
let hir::ExprKind::Call(method_name, _) = expr.kind else { return; };
let ty::Adt(adt, _) = checked_ty.kind() else { return; };
if self.tcx.lang_items().range_struct() != Some(adt.did()) {
return;
}
if let ty::Adt(adt, _) = expected_ty.kind()
&& self.tcx.lang_items().range_struct() == Some(adt.did())
{
return;
}
// Check if start has method named end.
let hir::ExprKind::Path(hir::QPath::Resolved(None, p)) = method_name.kind else { return; };
let [hir::PathSegment { ident, .. }] = p.segments else { return; };
let self_ty = self.typeck_results.borrow().expr_ty(start.expr);
let Ok(_pick) = self.lookup_probe_for_diagnostic(
*ident,
self_ty,
expr,
probe::ProbeScope::AllTraits,
expectation,
) else { return; };
let mut sugg = ".";
let mut span = start.expr.span.between(end.expr.span);
if span.lo() + BytePos(2) == span.hi() {
// There's no space between the start, the range op and the end, suggest removal which
// will be more noticeable than the replacement of `..` with `.`.
span = span.with_lo(span.lo() + BytePos(1));
sugg = "";
}
err.span_suggestion_verbose(
span,
"you likely meant to write a method call instead of a range",
sugg,
Applicability::MachineApplicable,
);
}
/// Identify when the type error is because `()` is found in a binding that was assigned a
/// block without a tail expression.
fn check_for_binding_assigned_block_without_tail_expression(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
expected_ty: Ty<'tcx>,
) {
if !checked_ty.is_unit() {
return;
}
let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = expr.kind else { return; };
let hir::def::Res::Local(hir_id) = path.res else { return; };
let Some(hir::Node::Pat(pat)) = self.tcx.hir().find(hir_id) else {
return;
};
let Some(hir::Node::Local(hir::Local {
ty: None,
init: Some(init),
..
})) = self.tcx.hir().find_parent(pat.hir_id) else { return; };
let hir::ExprKind::Block(block, None) = init.kind else { return; };
if block.expr.is_some() {
return;
}
let [.., stmt] = block.stmts else {
err.span_label(block.span, "this empty block is missing a tail expression");
return;
};
let hir::StmtKind::Semi(tail_expr) = stmt.kind else { return; };
let Some(ty) = self.node_ty_opt(tail_expr.hir_id) else { return; };
if self.can_eq(self.param_env, expected_ty, ty) {
err.span_suggestion_short(
stmt.span.with_lo(tail_expr.span.hi()),
"remove this semicolon",
"",
Applicability::MachineApplicable,
);
} else {
err.span_label(block.span, "this block is missing a tail expression");
}
}
fn check_wrong_return_type_due_to_generic_arg(
&self,
err: &mut Diagnostic,
expr: &hir::Expr<'_>,
checked_ty: Ty<'tcx>,
) {
let Some(hir::Node::Expr(parent_expr)) = self.tcx.hir().find_parent(expr.hir_id) else { return; };
enum CallableKind {
Function,
Method,
Constructor,
}
let mut maybe_emit_help = |def_id: hir::def_id::DefId,
callable: rustc_span::symbol::Ident,
args: &[hir::Expr<'_>],
kind: CallableKind| {
let arg_idx = args.iter().position(|a| a.hir_id == expr.hir_id).unwrap();
let fn_ty = self.tcx.type_of(def_id).skip_binder();
if !fn_ty.is_fn() {
return;
}
let fn_sig = fn_ty.fn_sig(self.tcx).skip_binder();
let Some(&arg) = fn_sig.inputs().get(arg_idx + if matches!(kind, CallableKind::Method) { 1 } else { 0 }) else { return; };
if matches!(arg.kind(), ty::Param(_))
&& fn_sig.output().contains(arg)
&& self.node_ty(args[arg_idx].hir_id) == checked_ty
{
let mut multi_span: MultiSpan = parent_expr.span.into();
multi_span.push_span_label(
args[arg_idx].span,
format!(
"this argument influences the {} of `{}`",
if matches!(kind, CallableKind::Constructor) {
"type"
} else {
"return type"
},
callable
),
);
err.span_help(
multi_span,
format!(
"the {} `{}` due to the type of the argument passed",
match kind {
CallableKind::Function => "return type of this call is",
CallableKind::Method => "return type of this call is",
CallableKind::Constructor => "type constructed contains",
},
checked_ty
),
);
}
};
match parent_expr.kind {
hir::ExprKind::Call(fun, args) => {
let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = fun.kind else { return; };
let hir::def::Res::Def(kind, def_id) = path.res else { return; };
let callable_kind = if matches!(kind, hir::def::DefKind::Ctor(_, _)) {
CallableKind::Constructor
} else {
CallableKind::Function
};
maybe_emit_help(def_id, path.segments[0].ident, args, callable_kind);
}
hir::ExprKind::MethodCall(method, _receiver, args, _span) => {
let Some(def_id) = self.typeck_results.borrow().type_dependent_def_id(parent_expr.hir_id) else { return; };
maybe_emit_help(def_id, method.ident, args, CallableKind::Method)
}
_ => return,
}
}
}