blob: 5d5c8ca604a04f77ccd0c02286d751b4f9f93720 [file] [log] [blame]
//! Module for inferring the variance of type and lifetime parameters. See the [rustc dev guide]
//! chapter for more info.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/variance.html
use rustc_arena::DroplessArena;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, CrateVariancesMap, SubstsRef, Ty, TyCtxt};
use rustc_middle::ty::{DefIdTree, TypeSuperVisitable, TypeVisitable};
use std::ops::ControlFlow;
/// Defines the `TermsContext` basically houses an arena where we can
/// allocate terms.
mod terms;
/// Code to gather up constraints.
mod constraints;
/// Code to solve constraints and write out the results.
mod solve;
/// Code to write unit tests of variance.
pub mod test;
/// Code for transforming variances.
mod xform;
pub fn provide(providers: &mut Providers) {
*providers = Providers { variances_of, crate_variances, ..*providers };
}
fn crate_variances(tcx: TyCtxt<'_>, (): ()) -> CrateVariancesMap<'_> {
let arena = DroplessArena::default();
let terms_cx = terms::determine_parameters_to_be_inferred(tcx, &arena);
let constraints_cx = constraints::add_constraints_from_crate(terms_cx);
solve::solve_constraints(constraints_cx)
}
fn variances_of(tcx: TyCtxt<'_>, item_def_id: DefId) -> &[ty::Variance] {
// Skip items with no generics - there's nothing to infer in them.
if tcx.generics_of(item_def_id).count() == 0 {
return &[];
}
match tcx.def_kind(item_def_id) {
DefKind::Fn
| DefKind::AssocFn
| DefKind::Enum
| DefKind::Struct
| DefKind::Union
| DefKind::Variant
| DefKind::Ctor(..) => {}
DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder => {
return variance_of_opaque(tcx, item_def_id.expect_local());
}
_ => {
// Variance not relevant.
span_bug!(tcx.def_span(item_def_id), "asked to compute variance for wrong kind of item")
}
}
// Everything else must be inferred.
let crate_map = tcx.crate_variances(());
crate_map.variances.get(&item_def_id).copied().unwrap_or(&[])
}
#[instrument(level = "trace", skip(tcx), ret)]
fn variance_of_opaque(tcx: TyCtxt<'_>, item_def_id: LocalDefId) -> &[ty::Variance] {
let generics = tcx.generics_of(item_def_id);
// Opaque types may only use regions that are bound. So for
// ```rust
// type Foo<'a, 'b, 'c> = impl Trait<'a> + 'b;
// ```
// we may not use `'c` in the hidden type.
struct OpaqueTypeLifetimeCollector<'tcx> {
tcx: TyCtxt<'tcx>,
root_def_id: DefId,
variances: Vec<ty::Variance>,
}
impl<'tcx> OpaqueTypeLifetimeCollector<'tcx> {
#[instrument(level = "trace", skip(self), ret)]
fn visit_opaque(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> ControlFlow<!> {
if def_id != self.root_def_id && self.tcx.is_descendant_of(def_id, self.root_def_id) {
let child_variances = self.tcx.variances_of(def_id);
for (a, v) in substs.iter().zip(child_variances) {
if *v != ty::Bivariant {
a.visit_with(self)?;
}
}
ControlFlow::Continue(())
} else {
substs.visit_with(self)
}
}
}
impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for OpaqueTypeLifetimeCollector<'tcx> {
#[instrument(level = "trace", skip(self), ret)]
fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::RegionKind::ReEarlyBound(ebr) = r.kind() {
self.variances[ebr.index as usize] = ty::Invariant;
}
r.super_visit_with(self)
}
#[instrument(level = "trace", skip(self), ret)]
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
match t.kind() {
ty::Alias(_, ty::AliasTy { def_id, substs, .. })
if matches!(
self.tcx.def_kind(*def_id),
DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder
) =>
{
self.visit_opaque(*def_id, substs)
}
_ => t.super_visit_with(self),
}
}
}
// By default, RPIT are invariant wrt type and const generics, but they are bivariant wrt
// lifetime generics.
let mut variances: Vec<_> = std::iter::repeat(ty::Invariant).take(generics.count()).collect();
// Mark all lifetimes from parent generics as unused (Bivariant).
// This will be overridden later if required.
{
let mut generics = generics;
while let Some(def_id) = generics.parent {
generics = tcx.generics_of(def_id);
for param in &generics.params {
match param.kind {
ty::GenericParamDefKind::Lifetime => {
variances[param.index as usize] = ty::Bivariant;
}
ty::GenericParamDefKind::Type { .. }
| ty::GenericParamDefKind::Const { .. } => {}
}
}
}
}
let mut collector =
OpaqueTypeLifetimeCollector { tcx, root_def_id: item_def_id.to_def_id(), variances };
let id_substs = ty::InternalSubsts::identity_for_item(tcx, item_def_id.to_def_id());
for pred in tcx.bound_explicit_item_bounds(item_def_id.to_def_id()).transpose_iter() {
let pred = pred.map_bound(|(pred, _)| *pred).subst(tcx, id_substs);
debug!(?pred);
// We only ignore opaque type substs if the opaque type is the outermost type.
// The opaque type may be nested within itself via recursion in e.g.
// type Foo<'a> = impl PartialEq<Foo<'a>>;
// which thus mentions `'a` and should thus accept hidden types that borrow 'a
// instead of requiring an additional `+ 'a`.
match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate {
trait_ref: ty::TraitRef { def_id: _, substs, .. },
constness: _,
polarity: _,
})) => {
for subst in &substs[1..] {
subst.visit_with(&mut collector);
}
}
ty::PredicateKind::Clause(ty::Clause::Projection(ty::ProjectionPredicate {
projection_ty: ty::AliasTy { substs, .. },
term,
})) => {
for subst in &substs[1..] {
subst.visit_with(&mut collector);
}
term.visit_with(&mut collector);
}
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate(
_,
region,
))) => {
region.visit_with(&mut collector);
}
_ => {
pred.visit_with(&mut collector);
}
}
}
tcx.arena.alloc_from_iter(collector.variances.into_iter())
}