blob: 7a14459399c436640c9c2b08fbdea01d820e90c4 [file] [log] [blame]
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
//! types until we arrive at the leaves, with custom handling for primitive types.
use rustc_middle::mir::interpret::InterpResult;
use rustc_middle::ty;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_target::abi::{FieldsShape, VariantIdx, Variants};
use std::num::NonZeroUsize;
use super::{InterpCx, MPlaceTy, Machine, OpTy, PlaceTy};
/// A thing that we can project into, and that has a layout.
/// This wouldn't have to depend on `Machine` but with the current type inference,
/// that's just more convenient to work with (avoids repeating all the `Machine` bounds).
pub trait Value<'mir, 'tcx, M: Machine<'mir, 'tcx>>: Sized {
/// Gets this value's layout.
fn layout(&self) -> TyAndLayout<'tcx>;
/// Makes this into an `OpTy`, in a cheap way that is good for reading.
fn to_op_for_read(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>>;
/// Makes this into an `OpTy`, in a potentially more expensive way that is good for projections.
fn to_op_for_proj(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
self.to_op_for_read(ecx)
}
/// Creates this from an `OpTy`.
///
/// If `to_op_for_proj` only ever produces `Indirect` operands, then this one is definitely `Indirect`.
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self;
/// Projects to the given enum variant.
fn project_downcast(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self>;
/// Projects to the n-th field.
fn project_field(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self>;
}
/// A thing that we can project into given *mutable* access to `ecx`, and that has a layout.
/// This wouldn't have to depend on `Machine` but with the current type inference,
/// that's just more convenient to work with (avoids repeating all the `Machine` bounds).
pub trait ValueMut<'mir, 'tcx, M: Machine<'mir, 'tcx>>: Sized {
/// Gets this value's layout.
fn layout(&self) -> TyAndLayout<'tcx>;
/// Makes this into an `OpTy`, in a cheap way that is good for reading.
fn to_op_for_read(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>>;
/// Makes this into an `OpTy`, in a potentially more expensive way that is good for projections.
fn to_op_for_proj(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>>;
/// Creates this from an `OpTy`.
///
/// If `to_op_for_proj` only ever produces `Indirect` operands, then this one is definitely `Indirect`.
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self;
/// Projects to the given enum variant.
fn project_downcast(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self>;
/// Projects to the n-th field.
fn project_field(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self>;
}
// We cannot have a general impl which shows that Value implies ValueMut. (When we do, it says we
// cannot `impl ValueMut for PlaceTy` because some downstream crate could `impl Value for PlaceTy`.)
// So we have some copy-paste here. (We could have a macro but since we only have 2 types with this
// double-impl, that would barely make the code shorter, if at all.)
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M> for OpTy<'tcx, M::Provenance> {
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op_for_read(
&self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.clone())
}
#[inline(always)]
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self {
op.clone()
}
#[inline(always)]
fn project_downcast(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.operand_downcast(self, variant)
}
#[inline(always)]
fn project_field(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.operand_field(self, field)
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueMut<'mir, 'tcx, M>
for OpTy<'tcx, M::Provenance>
{
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op_for_read(
&self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.clone())
}
#[inline(always)]
fn to_op_for_proj(
&self,
_ecx: &mut InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.clone())
}
#[inline(always)]
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self {
op.clone()
}
#[inline(always)]
fn project_downcast(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.operand_downcast(self, variant)
}
#[inline(always)]
fn project_field(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.operand_field(self, field)
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M>
for MPlaceTy<'tcx, M::Provenance>
{
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op_for_read(
&self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.into())
}
#[inline(always)]
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self {
// assert is justified because our `to_op_for_read` only ever produces `Indirect` operands.
op.assert_mem_place()
}
#[inline(always)]
fn project_downcast(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.mplace_downcast(self, variant)
}
#[inline(always)]
fn project_field(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.mplace_field(self, field)
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueMut<'mir, 'tcx, M>
for MPlaceTy<'tcx, M::Provenance>
{
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op_for_read(
&self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.into())
}
#[inline(always)]
fn to_op_for_proj(
&self,
_ecx: &mut InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
Ok(self.into())
}
#[inline(always)]
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self {
// assert is justified because our `to_op_for_proj` only ever produces `Indirect` operands.
op.assert_mem_place()
}
#[inline(always)]
fn project_downcast(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.mplace_downcast(self, variant)
}
#[inline(always)]
fn project_field(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.mplace_field(self, field)
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> ValueMut<'mir, 'tcx, M>
for PlaceTy<'tcx, M::Provenance>
{
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op_for_read(
&self,
ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
// No need for `force_allocation` since we are just going to read from this.
ecx.place_to_op(self)
}
#[inline(always)]
fn to_op_for_proj(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
// We `force_allocation` here so that `from_op` below can work.
Ok(ecx.force_allocation(self)?.into())
}
#[inline(always)]
fn from_op(op: &OpTy<'tcx, M::Provenance>) -> Self {
// assert is justified because our `to_op` only ever produces `Indirect` operands.
op.assert_mem_place().into()
}
#[inline(always)]
fn project_downcast(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.place_downcast(self, variant)
}
#[inline(always)]
fn project_field(
&self,
ecx: &mut InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.place_field(self, field)
}
}
macro_rules! make_value_visitor {
($visitor_trait:ident, $value_trait:ident, $($mutability:ident)?) => {
/// How to traverse a value and what to do when we are at the leaves.
pub trait $visitor_trait<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>>: Sized {
type V: $value_trait<'mir, 'tcx, M>;
/// The visitor must have an `InterpCx` in it.
fn ecx(&$($mutability)? self)
-> &$($mutability)? InterpCx<'mir, 'tcx, M>;
/// `read_discriminant` can be hooked for better error messages.
#[inline(always)]
fn read_discriminant(
&mut self,
op: &OpTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, VariantIdx> {
Ok(self.ecx().read_discriminant(op)?.1)
}
// Recursive actions, ready to be overloaded.
/// Visits the given value, dispatching as appropriate to more specialized visitors.
#[inline(always)]
fn visit_value(&mut self, v: &Self::V) -> InterpResult<'tcx>
{
self.walk_value(v)
}
/// Visits the given value as a union. No automatic recursion can happen here.
#[inline(always)]
fn visit_union(&mut self, _v: &Self::V, _fields: NonZeroUsize) -> InterpResult<'tcx>
{
Ok(())
}
/// Visits the given value as the pointer of a `Box`. There is nothing to recurse into.
/// The type of `v` will be a raw pointer, but this is a field of `Box<T>` and the
/// pointee type is the actual `T`.
#[inline(always)]
fn visit_box(&mut self, _v: &Self::V) -> InterpResult<'tcx>
{
Ok(())
}
/// Visits this value as an aggregate, you are getting an iterator yielding
/// all the fields (still in an `InterpResult`, you have to do error handling yourself).
/// Recurses into the fields.
#[inline(always)]
fn visit_aggregate(
&mut self,
v: &Self::V,
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
self.walk_aggregate(v, fields)
}
/// Called each time we recurse down to a field of a "product-like" aggregate
/// (structs, tuples, arrays and the like, but not enums), passing in old (outer)
/// and new (inner) value.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_field(
&mut self,
_old_val: &Self::V,
_field: usize,
new_val: &Self::V,
) -> InterpResult<'tcx> {
self.visit_value(new_val)
}
/// Called when recursing into an enum variant.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_variant(
&mut self,
_old_val: &Self::V,
_variant: VariantIdx,
new_val: &Self::V,
) -> InterpResult<'tcx> {
self.visit_value(new_val)
}
// Default recursors. Not meant to be overloaded.
fn walk_aggregate(
&mut self,
v: &Self::V,
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
// Now iterate over it.
for (idx, field_val) in fields.enumerate() {
self.visit_field(v, idx, &field_val?)?;
}
Ok(())
}
fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx>
{
let ty = v.layout().ty;
trace!("walk_value: type: {ty}");
// Special treatment for special types, where the (static) layout is not sufficient.
match *ty.kind() {
// If it is a trait object, switch to the real type that was used to create it.
ty::Dynamic(_, _, ty::Dyn) => {
// Dyn types. This is unsized, and the actual dynamic type of the data is given by the
// vtable stored in the place metadata.
// unsized values are never immediate, so we can assert_mem_place
let op = v.to_op_for_read(self.ecx())?;
let dest = op.assert_mem_place();
let inner_mplace = self.ecx().unpack_dyn_trait(&dest)?.0;
trace!("walk_value: dyn object layout: {:#?}", inner_mplace.layout);
// recurse with the inner type
return self.visit_field(&v, 0, &$value_trait::from_op(&inner_mplace.into()));
},
ty::Dynamic(_, _, ty::DynStar) => {
// DynStar types. Very different from a dyn type (but strangely part of the
// same variant in `TyKind`): These are pairs where the 2nd component is the
// vtable, and the first component is the data (which must be ptr-sized).
let op = v.to_op_for_proj(self.ecx())?;
let data = self.ecx().unpack_dyn_star(&op)?.0;
return self.visit_field(&v, 0, &$value_trait::from_op(&data));
}
// Slices do not need special handling here: they have `Array` field
// placement with length 0, so we enter the `Array` case below which
// indirectly uses the metadata to determine the actual length.
// However, `Box`... let's talk about `Box`.
ty::Adt(def, ..) if def.is_box() => {
// `Box` is a hybrid primitive-library-defined type that one the one hand is
// a dereferenceable pointer, on the other hand has *basically arbitrary
// user-defined layout* since the user controls the 'allocator' field. So it
// cannot be treated like a normal pointer, since it does not fit into an
// `Immediate`. Yeah, it is quite terrible. But many visitors want to do
// something with "all boxed pointers", so we handle this mess for them.
//
// When we hit a `Box`, we do not do the usual `visit_aggregate`; instead,
// we (a) call `visit_box` on the pointer value, and (b) recurse on the
// allocator field. We also assert tons of things to ensure we do not miss
// any other fields.
// `Box` has two fields: the pointer we care about, and the allocator.
assert_eq!(v.layout().fields.count(), 2, "`Box` must have exactly 2 fields");
let (unique_ptr, alloc) =
(v.project_field(self.ecx(), 0)?, v.project_field(self.ecx(), 1)?);
// Unfortunately there is some type junk in the way here: `unique_ptr` is a `Unique`...
// (which means another 2 fields, the second of which is a `PhantomData`)
assert_eq!(unique_ptr.layout().fields.count(), 2);
let (nonnull_ptr, phantom) = (
unique_ptr.project_field(self.ecx(), 0)?,
unique_ptr.project_field(self.ecx(), 1)?,
);
assert!(
phantom.layout().ty.ty_adt_def().is_some_and(|adt| adt.is_phantom_data()),
"2nd field of `Unique` should be PhantomData but is {:?}",
phantom.layout().ty,
);
// ... that contains a `NonNull`... (gladly, only a single field here)
assert_eq!(nonnull_ptr.layout().fields.count(), 1);
let raw_ptr = nonnull_ptr.project_field(self.ecx(), 0)?; // the actual raw ptr
// ... whose only field finally is a raw ptr we can dereference.
self.visit_box(&raw_ptr)?;
// The second `Box` field is the allocator, which we recursively check for validity
// like in regular structs.
self.visit_field(v, 1, &alloc)?;
// We visited all parts of this one.
return Ok(());
}
_ => {},
};
// Visit the fields of this value.
match &v.layout().fields {
FieldsShape::Primitive => {}
&FieldsShape::Union(fields) => {
self.visit_union(v, fields)?;
}
FieldsShape::Arbitrary { offsets, .. } => {
// FIXME: We collect in a vec because otherwise there are lifetime
// errors: Projecting to a field needs access to `ecx`.
let fields: Vec<InterpResult<'tcx, Self::V>> =
(0..offsets.len()).map(|i| {
v.project_field(self.ecx(), i)
})
.collect();
self.visit_aggregate(v, fields.into_iter())?;
}
FieldsShape::Array { .. } => {
// Let's get an mplace (or immediate) first.
// This might `force_allocate` if `v` is a `PlaceTy`, but `place_index` does that anyway.
let op = v.to_op_for_proj(self.ecx())?;
// Now we can go over all the fields.
// This uses the *run-time length*, i.e., if we are a slice,
// the dynamic info from the metadata is used.
let iter = self.ecx().operand_array_fields(&op)?
.map(|f| f.and_then(|f| {
Ok($value_trait::from_op(&f))
}));
self.visit_aggregate(v, iter)?;
}
}
match v.layout().variants {
// If this is a multi-variant layout, find the right variant and proceed
// with *its* fields.
Variants::Multiple { .. } => {
let op = v.to_op_for_read(self.ecx())?;
let idx = self.read_discriminant(&op)?;
let inner = v.project_downcast(self.ecx(), idx)?;
trace!("walk_value: variant layout: {:#?}", inner.layout());
// recurse with the inner type
self.visit_variant(v, idx, &inner)
}
// For single-variant layouts, we already did anything there is to do.
Variants::Single { .. } => Ok(())
}
}
}
}
}
make_value_visitor!(ValueVisitor, Value,);
make_value_visitor!(MutValueVisitor, ValueMut, mut);