blob: 41b51bae73645bbcb6fe30a841d45e79586a18aa [file] [log] [blame]
use crate::util::check_builtin_macro_attribute;
use rustc_ast::expand::allocator::{
AllocatorKind, AllocatorMethod, AllocatorTy, ALLOCATOR_METHODS,
};
use rustc_ast::ptr::P;
use rustc_ast::{self as ast, AttrVec, Expr, FnHeader, FnSig, Generics, Param, StmtKind};
use rustc_ast::{Fn, ItemKind, Mutability, Stmt, Ty, TyKind, Unsafe};
use rustc_expand::base::{Annotatable, ExtCtxt};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::Span;
use thin_vec::{thin_vec, ThinVec};
pub fn expand(
ecx: &mut ExtCtxt<'_>,
_span: Span,
meta_item: &ast::MetaItem,
item: Annotatable,
) -> Vec<Annotatable> {
check_builtin_macro_attribute(ecx, meta_item, sym::global_allocator);
let orig_item = item.clone();
// Allow using `#[global_allocator]` on an item statement
// FIXME - if we get deref patterns, use them to reduce duplication here
let (item, is_stmt, ty_span) =
if let Annotatable::Item(item) = &item
&& let ItemKind::Static(ty, ..) = &item.kind
{
(item, false, ecx.with_def_site_ctxt(ty.span))
} else if let Annotatable::Stmt(stmt) = &item
&& let StmtKind::Item(item) = &stmt.kind
&& let ItemKind::Static(ty, ..) = &item.kind
{
(item, true, ecx.with_def_site_ctxt(ty.span))
} else {
ecx.sess.parse_sess.span_diagnostic.span_err(item.span(), "allocators must be statics");
return vec![orig_item];
};
// Generate a bunch of new items using the AllocFnFactory
let span = ecx.with_def_site_ctxt(item.span);
let f =
AllocFnFactory { span, ty_span, kind: AllocatorKind::Global, global: item.ident, cx: ecx };
// Generate item statements for the allocator methods.
let stmts = ALLOCATOR_METHODS.iter().map(|method| f.allocator_fn(method)).collect();
// Generate anonymous constant serving as container for the allocator methods.
let const_ty = ecx.ty(ty_span, TyKind::Tup(ThinVec::new()));
let const_body = ecx.expr_block(ecx.block(span, stmts));
let const_item = ecx.item_const(span, Ident::new(kw::Underscore, span), const_ty, const_body);
let const_item = if is_stmt {
Annotatable::Stmt(P(ecx.stmt_item(span, const_item)))
} else {
Annotatable::Item(const_item)
};
// Return the original item and the new methods.
vec![orig_item, const_item]
}
struct AllocFnFactory<'a, 'b> {
span: Span,
ty_span: Span,
kind: AllocatorKind,
global: Ident,
cx: &'b ExtCtxt<'a>,
}
impl AllocFnFactory<'_, '_> {
fn allocator_fn(&self, method: &AllocatorMethod) -> Stmt {
let mut abi_args = ThinVec::new();
let mut i = 0;
let mut mk = || {
let name = Ident::from_str_and_span(&format!("arg{}", i), self.span);
i += 1;
name
};
let args = method.inputs.iter().map(|ty| self.arg_ty(ty, &mut abi_args, &mut mk)).collect();
let result = self.call_allocator(method.name, args);
let (output_ty, output_expr) = self.ret_ty(&method.output, result);
let decl = self.cx.fn_decl(abi_args, ast::FnRetTy::Ty(output_ty));
let header = FnHeader { unsafety: Unsafe::Yes(self.span), ..FnHeader::default() };
let sig = FnSig { decl, header, span: self.span };
let body = Some(self.cx.block_expr(output_expr));
let kind = ItemKind::Fn(Box::new(Fn {
defaultness: ast::Defaultness::Final,
sig,
generics: Generics::default(),
body,
}));
let item = self.cx.item(
self.span,
Ident::from_str_and_span(&self.kind.fn_name(method.name), self.span),
self.attrs(),
kind,
);
self.cx.stmt_item(self.ty_span, item)
}
fn call_allocator(&self, method: Symbol, mut args: ThinVec<P<Expr>>) -> P<Expr> {
let method = self.cx.std_path(&[sym::alloc, sym::GlobalAlloc, method]);
let method = self.cx.expr_path(self.cx.path(self.ty_span, method));
let allocator = self.cx.path_ident(self.ty_span, self.global);
let allocator = self.cx.expr_path(allocator);
let allocator = self.cx.expr_addr_of(self.ty_span, allocator);
args.insert(0, allocator);
self.cx.expr_call(self.ty_span, method, args)
}
fn attrs(&self) -> AttrVec {
thin_vec![self.cx.attr_word(sym::rustc_std_internal_symbol, self.span)]
}
fn arg_ty(
&self,
ty: &AllocatorTy,
args: &mut ThinVec<Param>,
ident: &mut dyn FnMut() -> Ident,
) -> P<Expr> {
match *ty {
AllocatorTy::Layout => {
let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span));
let ty_usize = self.cx.ty_path(usize);
let size = ident();
let align = ident();
args.push(self.cx.param(self.span, size, ty_usize.clone()));
args.push(self.cx.param(self.span, align, ty_usize));
let layout_new =
self.cx.std_path(&[sym::alloc, sym::Layout, sym::from_size_align_unchecked]);
let layout_new = self.cx.expr_path(self.cx.path(self.span, layout_new));
let size = self.cx.expr_ident(self.span, size);
let align = self.cx.expr_ident(self.span, align);
let layout = self.cx.expr_call(self.span, layout_new, thin_vec![size, align]);
layout
}
AllocatorTy::Ptr => {
let ident = ident();
args.push(self.cx.param(self.span, ident, self.ptr_u8()));
let arg = self.cx.expr_ident(self.span, ident);
self.cx.expr_cast(self.span, arg, self.ptr_u8())
}
AllocatorTy::Usize => {
let ident = ident();
args.push(self.cx.param(self.span, ident, self.usize()));
self.cx.expr_ident(self.span, ident)
}
AllocatorTy::ResultPtr | AllocatorTy::Unit => {
panic!("can't convert AllocatorTy to an argument")
}
}
}
fn ret_ty(&self, ty: &AllocatorTy, expr: P<Expr>) -> (P<Ty>, P<Expr>) {
match *ty {
AllocatorTy::ResultPtr => {
// We're creating:
//
// #expr as *mut u8
let expr = self.cx.expr_cast(self.span, expr, self.ptr_u8());
(self.ptr_u8(), expr)
}
AllocatorTy::Unit => (self.cx.ty(self.span, TyKind::Tup(ThinVec::new())), expr),
AllocatorTy::Layout | AllocatorTy::Usize | AllocatorTy::Ptr => {
panic!("can't convert `AllocatorTy` to an output")
}
}
}
fn usize(&self) -> P<Ty> {
let usize = self.cx.path_ident(self.span, Ident::new(sym::usize, self.span));
self.cx.ty_path(usize)
}
fn ptr_u8(&self) -> P<Ty> {
let u8 = self.cx.path_ident(self.span, Ident::new(sym::u8, self.span));
let ty_u8 = self.cx.ty_path(u8);
self.cx.ty_ptr(self.span, ty_u8, Mutability::Mut)
}
}