blob: e80908d8fa09fba6fe985c4b58ae043f23a10420 [file] [log] [blame]
mod linux;
mod macos;
use crate::*;
use rustc::mir;
use rustc::ty::layout::{Align, LayoutOf, Size};
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
fn emulate_foreign_item_by_name(
&mut self,
link_name: &str,
args: &[OpTy<'tcx, Tag>],
dest: PlaceTy<'tcx, Tag>,
ret: mir::BasicBlock,
) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let tcx = &{ this.tcx.tcx };
match link_name {
// Environment related shims
"getenv" => {
let result = this.getenv(args[0])?;
this.write_scalar(result, dest)?;
}
"unsetenv" => {
let result = this.unsetenv(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"setenv" => {
let result = this.setenv(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"getcwd" => {
let result = this.getcwd(args[0], args[1])?;
this.write_scalar(result, dest)?;
}
"chdir" => {
let result = this.chdir(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
// File related shims
"open" | "open64" => {
let result = this.open(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"fcntl" => {
let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"read" => {
let result = this.read(args[0], args[1], args[2])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"write" => {
let fd = this.read_scalar(args[0])?.to_i32()?;
let buf = this.read_scalar(args[1])?.not_undef()?;
let n = this.read_scalar(args[2])?.to_machine_usize(tcx)?;
trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
let result = if fd == 1 || fd == 2 {
// stdout/stderr
use std::io::{self, Write};
let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(n))?;
// We need to flush to make sure this actually appears on the screen
let res = if fd == 1 {
// Stdout is buffered, flush to make sure it appears on the screen.
// This is the write() syscall of the interpreted program, we want it
// to correspond to a write() syscall on the host -- there is no good
// in adding extra buffering here.
let res = io::stdout().write(buf_cont);
io::stdout().flush().unwrap();
res
} else {
// No need to flush, stderr is not buffered.
io::stderr().write(buf_cont)
};
match res {
Ok(n) => n as i64,
Err(_) => -1,
}
} else {
this.write(args[0], args[1], args[2])?
};
// Now, `result` is the value we return back to the program.
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"unlink" => {
let result = this.unlink(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"symlink" => {
let result = this.symlink(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"rename" => {
let result = this.rename(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"mkdir" => {
let result = this.mkdir(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"rmdir" => {
let result = this.rmdir(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"closedir" => {
let result = this.closedir(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"lseek" | "lseek64" => {
let result = this.lseek64(args[0], args[1], args[2])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
// Other shims
"posix_memalign" => {
let ret = this.deref_operand(args[0])?;
let align = this.read_scalar(args[1])?.to_machine_usize(this)?;
let size = this.read_scalar(args[2])?.to_machine_usize(this)?;
// Align must be power of 2, and also at least ptr-sized (POSIX rules).
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
if align < this.pointer_size().bytes() {
throw_ub_format!(
"posix_memalign: alignment must be at least the size of a pointer, but is {}",
align,
);
}
if size == 0 {
this.write_null(ret.into())?;
} else {
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::C.into(),
);
this.write_scalar(ptr, ret.into())?;
}
this.write_null(dest)?;
}
"dlsym" => {
let _handle = this.read_scalar(args[0])?;
let symbol = this.read_scalar(args[1])?.not_undef()?;
let symbol_name = this.memory.read_c_str(symbol)?;
let err = format!("bad c unicode symbol: {:?}", symbol_name);
let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
let ptr = this.memory.create_fn_alloc(FnVal::Other(dlsym));
this.write_scalar(Scalar::from(ptr), dest)?;
} else {
this.write_null(dest)?;
}
}
// Hook pthread calls that go to the thread-local storage memory subsystem.
"pthread_key_create" => {
let key_place = this.deref_operand(args[0])?;
// Extract the function type out of the signature (that seems easier than constructing it ourselves).
let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
None => None,
};
// Figure out how large a pthread TLS key actually is.
// This is `libc::pthread_key_t`.
let key_type = args[0].layout.ty
.builtin_deref(true)
.ok_or_else(|| err_ub_format!(
"wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
))?
.ty;
let key_layout = this.layout_of(key_type)?;
// Create key and write it into the memory where `key_ptr` wants it.
let key = this.machine.tls.create_tls_key(dtor) as u128;
if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
{
throw_unsup!(OutOfTls);
}
this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
// Return success (`0`).
this.write_null(dest)?;
}
"pthread_key_delete" => {
let key = this.force_bits(this.read_scalar(args[0])?.not_undef()?, args[0].layout.size)?;
this.machine.tls.delete_tls_key(key)?;
// Return success (0)
this.write_null(dest)?;
}
"pthread_getspecific" => {
let key = this.force_bits(this.read_scalar(args[0])?.not_undef()?, args[0].layout.size)?;
let ptr = this.machine.tls.load_tls(key, tcx)?;
this.write_scalar(ptr, dest)?;
}
"pthread_setspecific" => {
let key = this.force_bits(this.read_scalar(args[0])?.not_undef()?, args[0].layout.size)?;
let new_ptr = this.read_scalar(args[1])?.not_undef()?;
this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
// Return success (`0`).
this.write_null(dest)?;
}
// Stack size/address stuff.
| "pthread_attr_init"
| "pthread_attr_destroy"
| "pthread_self"
| "pthread_attr_setstacksize" => {
this.write_null(dest)?;
}
"pthread_attr_getstack" => {
let addr_place = this.deref_operand(args[1])?;
let size_place = this.deref_operand(args[2])?;
this.write_scalar(
Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
addr_place.into(),
)?;
this.write_scalar(
Scalar::from_uint(STACK_SIZE, size_place.layout.size),
size_place.into(),
)?;
// Return success (`0`).
this.write_null(dest)?;
}
// We don't support threading.
"pthread_create" => {
throw_unsup_format!("Miri does not support threading");
}
// Stub out calls for condvar, mutex and rwlock, to just return `0`.
| "pthread_mutexattr_init"
| "pthread_mutexattr_settype"
| "pthread_mutex_init"
| "pthread_mutexattr_destroy"
| "pthread_mutex_lock"
| "pthread_mutex_unlock"
| "pthread_mutex_destroy"
| "pthread_rwlock_rdlock"
| "pthread_rwlock_unlock"
| "pthread_rwlock_wrlock"
| "pthread_rwlock_destroy"
| "pthread_condattr_init"
| "pthread_condattr_setclock"
| "pthread_cond_init"
| "pthread_condattr_destroy"
| "pthread_cond_destroy"
=> {
this.write_null(dest)?;
}
// We don't support fork so we don't have to do anything for atfork.
"pthread_atfork" => {
this.write_null(dest)?;
}
// Some things needed for `sys::thread` initialization to go through.
| "signal"
| "sigaction"
| "sigaltstack"
=> {
this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
}
"sysconf" => {
let name = this.read_scalar(args[0])?.to_i32()?;
trace!("sysconf() called with name {}", name);
// TODO: Cache the sysconf integers via Miri's global cache.
let paths = &[
(&["libc", "_SC_PAGESIZE"], Scalar::from_int(PAGE_SIZE, dest.layout.size)),
(&["libc", "_SC_GETPW_R_SIZE_MAX"], Scalar::from_int(-1, dest.layout.size)),
(
&["libc", "_SC_NPROCESSORS_ONLN"],
Scalar::from_int(NUM_CPUS, dest.layout.size),
),
];
let mut result = None;
for &(path, path_value) in paths {
if let Some(val) = this.eval_path_scalar(path)? {
let val = val.to_i32()?;
if val == name {
result = Some(path_value);
break;
}
}
}
if let Some(result) = result {
this.write_scalar(result, dest)?;
} else {
throw_unsup_format!("Unimplemented sysconf name: {}", name)
}
}
"isatty" => {
this.write_null(dest)?;
}
"posix_fadvise" => {
// fadvise is only informational, we can ignore it.
this.write_null(dest)?;
}
"mmap" => {
// This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
let addr = this.read_scalar(args[0])?.not_undef()?;
this.write_scalar(addr, dest)?;
}
"mprotect" => {
this.write_null(dest)?;
}
_ => {
match this.tcx.sess.target.target.target_os.as_str() {
"linux" => return linux::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
"macos" => return macos::EvalContextExt::emulate_foreign_item_by_name(this, link_name, args, dest, ret),
_ => unreachable!(),
}
}
};
Ok(true)
}
}