blob: bc4e47340c69bb98cc635adbab9026a35b1d8961 [file] [log] [blame]
use crate::utils::{
get_trait_def_id, implements_trait, snippet_opt, span_lint_and_then, trait_ref_of_method, SpanlessEq,
};
use crate::utils::{higher, sugg};
use if_chain::if_chain;
use rustc::hir::map::Map;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::intravisit::{walk_expr, NestedVisitorMap, Visitor};
use rustc_lint::{LateContext, LateLintPass};
use rustc_session::{declare_lint_pass, declare_tool_lint};
declare_clippy_lint! {
/// **What it does:** Checks for `a = a op b` or `a = b commutative_op a`
/// patterns.
///
/// **Why is this bad?** These can be written as the shorter `a op= b`.
///
/// **Known problems:** While forbidden by the spec, `OpAssign` traits may have
/// implementations that differ from the regular `Op` impl.
///
/// **Example:**
/// ```rust
/// let mut a = 5;
/// let b = 0;
/// // ...
/// a = a + b;
/// ```
pub ASSIGN_OP_PATTERN,
style,
"assigning the result of an operation on a variable to that same variable"
}
declare_clippy_lint! {
/// **What it does:** Checks for `a op= a op b` or `a op= b op a` patterns.
///
/// **Why is this bad?** Most likely these are bugs where one meant to write `a
/// op= b`.
///
/// **Known problems:** Clippy cannot know for sure if `a op= a op b` should have
/// been `a = a op a op b` or `a = a op b`/`a op= b`. Therefore, it suggests both.
/// If `a op= a op b` is really the correct behaviour it should be
/// written as `a = a op a op b` as it's less confusing.
///
/// **Example:**
/// ```rust
/// let mut a = 5;
/// let b = 2;
/// // ...
/// a += a + b;
/// ```
pub MISREFACTORED_ASSIGN_OP,
complexity,
"having a variable on both sides of an assign op"
}
declare_lint_pass!(AssignOps => [ASSIGN_OP_PATTERN, MISREFACTORED_ASSIGN_OP]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for AssignOps {
#[allow(clippy::too_many_lines)]
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr<'_>) {
match &expr.kind {
hir::ExprKind::AssignOp(op, lhs, rhs) => {
if let hir::ExprKind::Binary(binop, l, r) = &rhs.kind {
if op.node != binop.node {
return;
}
// lhs op= l op r
if SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, l) {
lint_misrefactored_assign_op(cx, expr, *op, rhs, lhs, r);
}
// lhs op= l commutative_op r
if is_commutative(op.node) && SpanlessEq::new(cx).ignore_fn().eq_expr(lhs, r) {
lint_misrefactored_assign_op(cx, expr, *op, rhs, lhs, l);
}
}
},
hir::ExprKind::Assign(assignee, e, _) => {
if let hir::ExprKind::Binary(op, l, r) = &e.kind {
#[allow(clippy::cognitive_complexity)]
let lint = |assignee: &hir::Expr<'_>, rhs: &hir::Expr<'_>| {
let ty = cx.tables.expr_ty(assignee);
let rty = cx.tables.expr_ty(rhs);
macro_rules! ops {
($op:expr,
$cx:expr,
$ty:expr,
$rty:expr,
$($trait_name:ident),+) => {
match $op {
$(hir::BinOpKind::$trait_name => {
let [krate, module] = crate::utils::paths::OPS_MODULE;
let path: [&str; 3] = [krate, module, concat!(stringify!($trait_name), "Assign")];
let trait_id = if let Some(trait_id) = get_trait_def_id($cx, &path) {
trait_id
} else {
return; // useless if the trait doesn't exist
};
// check that we are not inside an `impl AssignOp` of this exact operation
let parent_fn = cx.tcx.hir().get_parent_item(e.hir_id);
if_chain! {
if let Some(trait_ref) = trait_ref_of_method(cx, parent_fn);
if trait_ref.path.res.def_id() == trait_id;
then { return; }
}
implements_trait($cx, $ty, trait_id, &[$rty])
},)*
_ => false,
}
}
}
if ops!(
op.node,
cx,
ty,
rty.into(),
Add,
Sub,
Mul,
Div,
Rem,
And,
Or,
BitAnd,
BitOr,
BitXor,
Shr,
Shl
) {
span_lint_and_then(
cx,
ASSIGN_OP_PATTERN,
expr.span,
"manual implementation of an assign operation",
|db| {
if let (Some(snip_a), Some(snip_r)) =
(snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span))
{
db.span_suggestion(
expr.span,
"replace it with",
format!("{} {}= {}", snip_a, op.node.as_str(), snip_r),
Applicability::MachineApplicable,
);
}
},
);
}
};
let mut visitor = ExprVisitor {
assignee,
counter: 0,
cx,
};
walk_expr(&mut visitor, e);
if visitor.counter == 1 {
// a = a op b
if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, l) {
lint(assignee, r);
}
// a = b commutative_op a
// Limited to primitive type as these ops are know to be commutative
if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, r)
&& cx.tables.expr_ty(assignee).is_primitive_ty()
{
match op.node {
hir::BinOpKind::Add
| hir::BinOpKind::Mul
| hir::BinOpKind::And
| hir::BinOpKind::Or
| hir::BinOpKind::BitXor
| hir::BinOpKind::BitAnd
| hir::BinOpKind::BitOr => {
lint(assignee, l);
},
_ => {},
}
}
}
}
},
_ => {},
}
}
}
fn lint_misrefactored_assign_op(
cx: &LateContext<'_, '_>,
expr: &hir::Expr<'_>,
op: hir::BinOp,
rhs: &hir::Expr<'_>,
assignee: &hir::Expr<'_>,
rhs_other: &hir::Expr<'_>,
) {
span_lint_and_then(
cx,
MISREFACTORED_ASSIGN_OP,
expr.span,
"variable appears on both sides of an assignment operation",
|db| {
if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs_other.span)) {
let a = &sugg::Sugg::hir(cx, assignee, "..");
let r = &sugg::Sugg::hir(cx, rhs, "..");
let long = format!("{} = {}", snip_a, sugg::make_binop(higher::binop(op.node), a, r));
db.span_suggestion(
expr.span,
&format!(
"Did you mean `{} = {} {} {}` or `{}`? Consider replacing it with",
snip_a,
snip_a,
op.node.as_str(),
snip_r,
long
),
format!("{} {}= {}", snip_a, op.node.as_str(), snip_r),
Applicability::MaybeIncorrect,
);
db.span_suggestion(
expr.span,
"or",
long,
Applicability::MaybeIncorrect, // snippet
);
}
},
);
}
#[must_use]
fn is_commutative(op: hir::BinOpKind) -> bool {
use rustc_hir::BinOpKind::{
Add, And, BitAnd, BitOr, BitXor, Div, Eq, Ge, Gt, Le, Lt, Mul, Ne, Or, Rem, Shl, Shr, Sub,
};
match op {
Add | Mul | And | Or | BitXor | BitAnd | BitOr | Eq | Ne => true,
Sub | Div | Rem | Shl | Shr | Lt | Le | Ge | Gt => false,
}
}
struct ExprVisitor<'a, 'tcx> {
assignee: &'a hir::Expr<'a>,
counter: u8,
cx: &'a LateContext<'a, 'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for ExprVisitor<'a, 'tcx> {
type Map = Map<'tcx>;
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'_>) {
if SpanlessEq::new(self.cx).ignore_fn().eq_expr(self.assignee, expr) {
self.counter += 1;
}
walk_expr(self, expr);
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
NestedVisitorMap::None
}
}