|  | """Bisection algorithms.""" | 
|  |  | 
|  | def insort_right(a, x, lo=0, hi=None): | 
|  | """Insert item x in list a, and keep it sorted assuming a is sorted. | 
|  |  | 
|  | If x is already in a, insert it to the right of the rightmost x. | 
|  |  | 
|  | Optional args lo (default 0) and hi (default len(a)) bound the | 
|  | slice of a to be searched. | 
|  | """ | 
|  |  | 
|  | if lo < 0: | 
|  | raise ValueError('lo must be non-negative') | 
|  | if hi is None: | 
|  | hi = len(a) | 
|  | while lo < hi: | 
|  | mid = (lo+hi)//2 | 
|  | if x < a[mid]: hi = mid | 
|  | else: lo = mid+1 | 
|  | a.insert(lo, x) | 
|  |  | 
|  | insort = insort_right   # backward compatibility | 
|  |  | 
|  | def bisect_right(a, x, lo=0, hi=None): | 
|  | """Return the index where to insert item x in list a, assuming a is sorted. | 
|  |  | 
|  | The return value i is such that all e in a[:i] have e <= x, and all e in | 
|  | a[i:] have e > x.  So if x already appears in the list, a.insert(x) will | 
|  | insert just after the rightmost x already there. | 
|  |  | 
|  | Optional args lo (default 0) and hi (default len(a)) bound the | 
|  | slice of a to be searched. | 
|  | """ | 
|  |  | 
|  | if lo < 0: | 
|  | raise ValueError('lo must be non-negative') | 
|  | if hi is None: | 
|  | hi = len(a) | 
|  | while lo < hi: | 
|  | mid = (lo+hi)//2 | 
|  | if x < a[mid]: hi = mid | 
|  | else: lo = mid+1 | 
|  | return lo | 
|  |  | 
|  | bisect = bisect_right   # backward compatibility | 
|  |  | 
|  | def insort_left(a, x, lo=0, hi=None): | 
|  | """Insert item x in list a, and keep it sorted assuming a is sorted. | 
|  |  | 
|  | If x is already in a, insert it to the left of the leftmost x. | 
|  |  | 
|  | Optional args lo (default 0) and hi (default len(a)) bound the | 
|  | slice of a to be searched. | 
|  | """ | 
|  |  | 
|  | if lo < 0: | 
|  | raise ValueError('lo must be non-negative') | 
|  | if hi is None: | 
|  | hi = len(a) | 
|  | while lo < hi: | 
|  | mid = (lo+hi)//2 | 
|  | if a[mid] < x: lo = mid+1 | 
|  | else: hi = mid | 
|  | a.insert(lo, x) | 
|  |  | 
|  |  | 
|  | def bisect_left(a, x, lo=0, hi=None): | 
|  | """Return the index where to insert item x in list a, assuming a is sorted. | 
|  |  | 
|  | The return value i is such that all e in a[:i] have e < x, and all e in | 
|  | a[i:] have e >= x.  So if x already appears in the list, a.insert(x) will | 
|  | insert just before the leftmost x already there. | 
|  |  | 
|  | Optional args lo (default 0) and hi (default len(a)) bound the | 
|  | slice of a to be searched. | 
|  | """ | 
|  |  | 
|  | if lo < 0: | 
|  | raise ValueError('lo must be non-negative') | 
|  | if hi is None: | 
|  | hi = len(a) | 
|  | while lo < hi: | 
|  | mid = (lo+hi)//2 | 
|  | if a[mid] < x: lo = mid+1 | 
|  | else: hi = mid | 
|  | return lo | 
|  |  | 
|  | # Overwrite above definitions with a fast C implementation | 
|  | try: | 
|  | from _bisect import * | 
|  | except ImportError: | 
|  | pass |