blob: 7d5e9bca63c456e720fb186f0945ff5a0b481bcf [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// libc++ cannot safely provide the auto_ptr constructor without rvalue
// references.
// REQUIRES: c++11 || c++14
// <memory>
// unique_ptr
// template <class U> unique_ptr(auto_ptr<U>&&) noexcept
#include <memory>
#include <utility>
#include <cassert>
#include "test_macros.h"
struct A {
static int count;
A() { ++count; }
A(const A&) { ++count; }
virtual ~A() { --count; }
};
int A::count = 0;
struct B : public A {
static int count;
B() { ++count; }
B(const B&) { ++count; }
virtual ~B() { --count; }
};
int B::count = 0;
struct C {};
struct Deleter {
void operator()(void*) {}
};
void test_sfinae() {
{
// the auto_ptr constructor should be disable with a non-default deleter.
using AP = std::auto_ptr<int>;
using U = std::unique_ptr<int, Deleter>;
static_assert(!std::is_constructible<U, AP&&>::value, "");
}
{
// the auto_ptr constructor should be disabled when the pointer types are incompatible.
using AP = std::auto_ptr<A>;
using U = std::unique_ptr<C>;
static_assert(!std::is_constructible<U, AP&&>::value, "");
}
}
int main() {
{
B* p = new B;
std::auto_ptr<B> ap(p);
std::unique_ptr<A> up(std::move(ap));
assert(up.get() == p);
assert(ap.get() == 0);
assert(A::count == 1);
assert(B::count == 1);
}
assert(A::count == 0);
assert(B::count == 0);
{
B* p = new B;
std::auto_ptr<B> ap(p);
std::unique_ptr<A> up;
up = std::move(ap);
assert(up.get() == p);
assert(ap.get() == 0);
assert(A::count == 1);
assert(B::count == 1);
}
assert(A::count == 0);
assert(B::count == 0);
#if TEST_STD_VER >= 11
{
static_assert(std::is_nothrow_constructible<std::unique_ptr<A>,
std::auto_ptr<B>&&>::value,
"");
}
#endif
test_sfinae();
}