blob: e792461dc9f21ac3eb54e49d73038ad18a1f4597 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref core
/// @file glm/core/func_integer.inl
/// @date 2010-03-17 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "type_vec2.hpp"
#include "type_vec3.hpp"
#include "type_vec4.hpp"
#include "type_int.hpp"
#include "_vectorize.hpp"
#if(GLM_ARCH != GLM_ARCH_PURE)
#if(GLM_COMPILER & GLM_COMPILER_VC)
# include <intrin.h>
# pragma intrinsic(_BitScanReverse)
#endif//(GLM_COMPILER & GLM_COMPILER_VC)
#endif//(GLM_ARCH != GLM_ARCH_PURE)
#include <limits>
namespace glm
{
// uaddCarry
template <>
GLM_FUNC_QUALIFIER uint uaddCarry
(
uint const & x,
uint const & y,
uint & Carry
)
{
uint64 Value64 = static_cast<uint64>(x) + static_cast<uint64>(y);
uint32 Result = static_cast<uint32>(Value64 % (static_cast<uint64>(1) << static_cast<uint64>(32)));
Carry = (Value64 % (static_cast<uint64>(1) << static_cast<uint64>(32))) > 1 ? static_cast<uint32>(1) : static_cast<uint32>(0);
return Result;
}
template <>
GLM_FUNC_QUALIFIER uvec2 uaddCarry
(
uvec2 const & x,
uvec2 const & y,
uvec2 & Carry
)
{
return uvec2(
uaddCarry(x[0], y[0], Carry[0]),
uaddCarry(x[1], y[1], Carry[1]));
}
template <>
GLM_FUNC_QUALIFIER uvec3 uaddCarry
(
uvec3 const & x,
uvec3 const & y,
uvec3 & Carry
)
{
return uvec3(
uaddCarry(x[0], y[0], Carry[0]),
uaddCarry(x[1], y[1], Carry[1]),
uaddCarry(x[2], y[2], Carry[2]));
}
template <>
GLM_FUNC_QUALIFIER uvec4 uaddCarry
(
uvec4 const & x,
uvec4 const & y,
uvec4 & Carry
)
{
return uvec4(
uaddCarry(x[0], y[0], Carry[0]),
uaddCarry(x[1], y[1], Carry[1]),
uaddCarry(x[2], y[2], Carry[2]),
uaddCarry(x[3], y[3], Carry[3]));
}
// usubBorrow
template <>
GLM_FUNC_QUALIFIER uint usubBorrow
(
uint const & x,
uint const & y,
uint & Borrow
)
{
GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch");
Borrow = x >= y ? static_cast<uint32>(0) : static_cast<uint32>(1);
if(y >= x)
return y - x;
else
return static_cast<uint32>((static_cast<int64>(1) << static_cast<int64>(32)) + (static_cast<int64>(y) - static_cast<int64>(x)));
}
template <>
GLM_FUNC_QUALIFIER uvec2 usubBorrow
(
uvec2 const & x,
uvec2 const & y,
uvec2 & Borrow
)
{
return uvec2(
usubBorrow(x[0], y[0], Borrow[0]),
usubBorrow(x[1], y[1], Borrow[1]));
}
template <>
GLM_FUNC_QUALIFIER uvec3 usubBorrow
(
uvec3 const & x,
uvec3 const & y,
uvec3 & Borrow
)
{
return uvec3(
usubBorrow(x[0], y[0], Borrow[0]),
usubBorrow(x[1], y[1], Borrow[1]),
usubBorrow(x[2], y[2], Borrow[2]));
}
template <>
GLM_FUNC_QUALIFIER uvec4 usubBorrow
(
uvec4 const & x,
uvec4 const & y,
uvec4 & Borrow
)
{
return uvec4(
usubBorrow(x[0], y[0], Borrow[0]),
usubBorrow(x[1], y[1], Borrow[1]),
usubBorrow(x[2], y[2], Borrow[2]),
usubBorrow(x[3], y[3], Borrow[3]));
}
// umulExtended
template <>
GLM_FUNC_QUALIFIER void umulExtended
(
uint const & x,
uint const & y,
uint & msb,
uint & lsb
)
{
GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch");
uint64 Value64 = static_cast<uint64>(x) * static_cast<uint64>(y);
uint32* PointerMSB = (reinterpret_cast<uint32*>(&Value64) + 1);
msb = *PointerMSB;
uint32* PointerLSB = (reinterpret_cast<uint32*>(&Value64) + 0);
lsb = *PointerLSB;
}
template <>
GLM_FUNC_QUALIFIER void umulExtended
(
uvec2 const & x,
uvec2 const & y,
uvec2 & msb,
uvec2 & lsb
)
{
umulExtended(x[0], y[0], msb[0], lsb[0]);
umulExtended(x[1], y[1], msb[1], lsb[1]);
}
template <>
GLM_FUNC_QUALIFIER void umulExtended
(
uvec3 const & x,
uvec3 const & y,
uvec3 & msb,
uvec3 & lsb
)
{
umulExtended(x[0], y[0], msb[0], lsb[0]);
umulExtended(x[1], y[1], msb[1], lsb[1]);
umulExtended(x[2], y[2], msb[2], lsb[2]);
}
template <>
GLM_FUNC_QUALIFIER void umulExtended
(
uvec4 const & x,
uvec4 const & y,
uvec4 & msb,
uvec4 & lsb
)
{
umulExtended(x[0], y[0], msb[0], lsb[0]);
umulExtended(x[1], y[1], msb[1], lsb[1]);
umulExtended(x[2], y[2], msb[2], lsb[2]);
umulExtended(x[3], y[3], msb[3], lsb[3]);
}
// imulExtended
template <>
GLM_FUNC_QUALIFIER void imulExtended
(
int const & x,
int const & y,
int & msb,
int & lsb
)
{
GLM_STATIC_ASSERT(sizeof(int) == sizeof(int32), "int and int32 size mismatch");
int64 Value64 = static_cast<int64>(x) * static_cast<int64>(y);
int32* PointerMSB = (reinterpret_cast<int32*>(&Value64) + 1);
msb = *PointerMSB;
int32* PointerLSB = (reinterpret_cast<int32*>(&Value64));
lsb = *PointerLSB;
}
template <>
GLM_FUNC_QUALIFIER void imulExtended
(
ivec2 const & x,
ivec2 const & y,
ivec2 & msb,
ivec2 & lsb
)
{
imulExtended(x[0], y[0], msb[0], lsb[0]),
imulExtended(x[1], y[1], msb[1], lsb[1]);
}
template <>
GLM_FUNC_QUALIFIER void imulExtended
(
ivec3 const & x,
ivec3 const & y,
ivec3 & msb,
ivec3 & lsb
)
{
imulExtended(x[0], y[0], msb[0], lsb[0]),
imulExtended(x[1], y[1], msb[1], lsb[1]);
imulExtended(x[2], y[2], msb[2], lsb[2]);
}
template <>
GLM_FUNC_QUALIFIER void imulExtended
(
ivec4 const & x,
ivec4 const & y,
ivec4 & msb,
ivec4 & lsb
)
{
imulExtended(x[0], y[0], msb[0], lsb[0]),
imulExtended(x[1], y[1], msb[1], lsb[1]);
imulExtended(x[2], y[2], msb[2], lsb[2]);
imulExtended(x[3], y[3], msb[3], lsb[3]);
}
// bitfieldExtract
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldExtract
(
genIUType const & Value,
int const & Offset,
int const & Bits
)
{
int GenSize = int(sizeof(genIUType)) << int(3);
assert(Offset + Bits <= GenSize);
genIUType ShiftLeft = Bits ? Value << (GenSize - (Bits + Offset)) : genIUType(0);
genIUType ShiftBack = ShiftLeft >> genIUType(GenSize - Bits);
return ShiftBack;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitfieldExtract
(
detail::tvec2<T, P> const & Value,
int const & Offset,
int const & Bits
)
{
return detail::tvec2<T, P>(
bitfieldExtract(Value[0], Offset, Bits),
bitfieldExtract(Value[1], Offset, Bits));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitfieldExtract
(
detail::tvec3<T, P> const & Value,
int const & Offset,
int const & Bits
)
{
return detail::tvec3<T, P>(
bitfieldExtract(Value[0], Offset, Bits),
bitfieldExtract(Value[1], Offset, Bits),
bitfieldExtract(Value[2], Offset, Bits));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitfieldExtract
(
detail::tvec4<T, P> const & Value,
int const & Offset,
int const & Bits
)
{
return detail::tvec4<T, P>(
bitfieldExtract(Value[0], Offset, Bits),
bitfieldExtract(Value[1], Offset, Bits),
bitfieldExtract(Value[2], Offset, Bits),
bitfieldExtract(Value[3], Offset, Bits));
}
// bitfieldInsert
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldInsert
(
genIUType const & Base,
genIUType const & Insert,
int const & Offset,
int const & Bits
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitfieldInsert' only accept integer values");
assert(Offset + Bits <= sizeof(genIUType));
if(Bits == 0)
return Base;
genIUType Mask = 0;
for(int Bit = Offset; Bit < Offset + Bits; ++Bit)
Mask |= (1 << Bit);
return (Base & ~Mask) | (Insert & Mask);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitfieldInsert
(
detail::tvec2<T, P> const & Base,
detail::tvec2<T, P> const & Insert,
int const & Offset,
int const & Bits
)
{
return detail::tvec2<T, P>(
bitfieldInsert(Base[0], Insert[0], Offset, Bits),
bitfieldInsert(Base[1], Insert[1], Offset, Bits));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitfieldInsert
(
detail::tvec3<T, P> const & Base,
detail::tvec3<T, P> const & Insert,
int const & Offset,
int const & Bits
)
{
return detail::tvec3<T, P>(
bitfieldInsert(Base[0], Insert[0], Offset, Bits),
bitfieldInsert(Base[1], Insert[1], Offset, Bits),
bitfieldInsert(Base[2], Insert[2], Offset, Bits));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitfieldInsert
(
detail::tvec4<T, P> const & Base,
detail::tvec4<T, P> const & Insert,
int const & Offset,
int const & Bits
)
{
return detail::tvec4<T, P>(
bitfieldInsert(Base[0], Insert[0], Offset, Bits),
bitfieldInsert(Base[1], Insert[1], Offset, Bits),
bitfieldInsert(Base[2], Insert[2], Offset, Bits),
bitfieldInsert(Base[3], Insert[3], Offset, Bits));
}
// bitfieldReverse
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldReverse(genIUType const & Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitfieldReverse' only accept integer values");
genIUType Out = 0;
std::size_t BitSize = sizeof(genIUType) * 8;
for(std::size_t i = 0; i < BitSize; ++i)
if(Value & (genIUType(1) << i))
Out |= genIUType(1) << (BitSize - 1 - i);
return Out;
}
VECTORIZE_VEC(bitfieldReverse)
// bitCount
template <typename genIUType>
GLM_FUNC_QUALIFIER int bitCount(genIUType const & Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitCount' only accept integer values");
int Count = 0;
for(std::size_t i = 0; i < sizeof(genIUType) * std::size_t(8); ++i)
{
if(Value & (1 << i))
++Count;
}
return Count;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<int, P> bitCount
(
detail::tvec2<T, P> const & value
)
{
return detail::tvec2<int, P>(
bitCount(value[0]),
bitCount(value[1]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<int, P> bitCount
(
detail::tvec3<T, P> const & value
)
{
return detail::tvec3<int, P>(
bitCount(value[0]),
bitCount(value[1]),
bitCount(value[2]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<int, P> bitCount
(
detail::tvec4<T, P> const & value
)
{
return detail::tvec4<int, P>(
bitCount(value[0]),
bitCount(value[1]),
bitCount(value[2]),
bitCount(value[3]));
}
// findLSB
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB
(
genIUType const & Value
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
if(Value == 0)
return -1;
genIUType Bit;
for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){}
return Bit;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<int, P> findLSB
(
detail::tvec2<T, P> const & value
)
{
return detail::tvec2<int, P>(
findLSB(value[0]),
findLSB(value[1]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<int, P> findLSB
(
detail::tvec3<T, P> const & value
)
{
return detail::tvec3<int, P>(
findLSB(value[0]),
findLSB(value[1]),
findLSB(value[2]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<int, P> findLSB
(
detail::tvec4<T, P> const & value
)
{
return detail::tvec4<int, P>(
findLSB(value[0]),
findLSB(value[1]),
findLSB(value[2]),
findLSB(value[3]));
}
// findMSB
#if((GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_VC))
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB
(
genIUType const & Value
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == 0)
return -1;
unsigned long Result(0);
_BitScanReverse(&Result, Value);
return int(Result);
}
/*
// __builtin_clz seems to be buggy as it crasks for some values, from 0x00200000 to 80000000
#elif((GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC40))
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB
(
genIUType const & Value
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == 0)
return -1;
// clz returns the number or trailing 0-bits; see
// http://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Other-Builtins.html
//
// NoteBecause __builtin_clz only works for unsigned ints, this
// implementation will not work for 64-bit integers.
//
return 31 - __builtin_clzl(Value);
}
*/
#else
/* SSE implementation idea
__m128i const Zero = _mm_set_epi32( 0, 0, 0, 0);
__m128i const One = _mm_set_epi32( 1, 1, 1, 1);
__m128i Bit = _mm_set_epi32(-1, -1, -1, -1);
__m128i Tmp = _mm_set_epi32(Value, Value, Value, Value);
__m128i Mmi = Zero;
for(int i = 0; i < 32; ++i)
{
__m128i Shilt = _mm_and_si128(_mm_cmpgt_epi32(Tmp, One), One);
Tmp = _mm_srai_epi32(Tmp, One);
Bit = _mm_add_epi32(Bit, _mm_and_si128(Shilt, i));
Mmi = _mm_and_si128(Mmi, One);
}
return Bit;
*/
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB
(
genIUType const & Value
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
if(Value == genIUType(0) || Value == genIUType(-1))
return -1;
else if(Value > 0)
{
genIUType Bit = genIUType(-1);
for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){}
return Bit;
}
else //if(Value < 0)
{
int const BitCount(sizeof(genIUType) * 8);
int MostSignificantBit(-1);
for(int BitIndex(0); BitIndex < BitCount; ++BitIndex)
MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex;
assert(MostSignificantBit >= 0);
return MostSignificantBit;
}
}
#endif//(GLM_COMPILER)
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<int, P> findMSB
(
detail::tvec2<T, P> const & value
)
{
return detail::tvec2<int, P>(
findMSB(value[0]),
findMSB(value[1]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<int, P> findMSB
(
detail::tvec3<T, P> const & value
)
{
return detail::tvec3<int, P>(
findMSB(value[0]),
findMSB(value[1]),
findMSB(value[2]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<int, P> findMSB
(
detail::tvec4<T, P> const & value
)
{
return detail::tvec4<int, P>(
findMSB(value[0]),
findMSB(value[1]),
findMSB(value[2]),
findMSB(value[3]));
}
}//namespace glm