blob: ead78a42853e2598fd85abd2b0c3cedb4848e767 [file] [log] [blame]
/* Copyright (c) 2015-2016 The Khronos Group Inc.
* Copyright (c) 2015-2016 Valve Corporation
* Copyright (c) 2015-2016 LunarG, Inc.
* Copyright (C) 2015-2016 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tobin Ehlis <tobine@google.com>
*/
#include "vk_loader_platform.h"
#include "vulkan/vulkan.h"
#include <cinttypes>
#include <memory>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unordered_map>
#include <vector>
#include <mutex>
#include "vulkan/vk_layer.h"
#include "vk_layer_config.h"
#include "vk_layer_table.h"
#include "vk_layer_data.h"
#include "vk_layer_logging.h"
#include "vk_layer_extension_utils.h"
#include "vk_safe_struct.h"
#include "vk_layer_utils.h"
namespace unique_objects {
// The display-server-specific WSI extensions are handled explicitly
static const char *kUniqueObjectsSupportedInstanceExtensions =
#ifdef VK_USE_PLATFORM_XLIB_KHR
VK_KHR_XLIB_SURFACE_EXTENSION_NAME
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
VK_KHR_XCB_SURFACE_EXTENSION_NAME
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME
#endif
#ifdef VK_USE_PLATFORM_MIR_KHR
VK_KHR_MIR_SURFACE_EXTENSION_NAME
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VK_KHR_ANDROID_SURFACE_EXTENSION_NAME
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
VK_KHR_WIN32_SURFACE_EXTENSION_NAME
#endif
VK_EXT_DEBUG_MARKER_EXTENSION_NAME
VK_EXT_DEBUG_REPORT_EXTENSION_NAME
VK_KHR_DISPLAY_EXTENSION_NAME
VK_KHR_SURFACE_EXTENSION_NAME;
static const char *kUniqueObjectsSupportedDeviceExtensions =
VK_AMD_RASTERIZATION_ORDER_EXTENSION_NAME
VK_AMD_SHADER_TRINARY_MINMAX_EXTENSION_NAME
VK_AMD_SHADER_EXPLICIT_VERTEX_PARAMETER_EXTENSION_NAME
VK_AMD_GCN_SHADER_EXTENSION_NAME
VK_IMG_FILTER_CUBIC_EXTENSION_NAME
VK_IMG_FORMAT_PVRTC_EXTENSION_NAME
VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME
VK_KHR_SWAPCHAIN_EXTENSION_NAME
VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME
VK_NV_DEDICATED_ALLOCATION_EXTENSION_NAME
VK_NV_GLSL_SHADER_EXTENSION_NAME;
// All increments must be guarded by global_lock
static uint64_t global_unique_id = 1;
struct layer_data {
VkInstance instance;
debug_report_data *report_data;
std::vector<VkDebugReportCallbackEXT> logging_callback;
// The following are for keeping track of the temporary callbacks that can
// be used in vkCreateInstance and vkDestroyInstance:
uint32_t num_tmp_callbacks;
VkDebugReportCallbackCreateInfoEXT *tmp_dbg_create_infos;
VkDebugReportCallbackEXT *tmp_callbacks;
bool wsi_enabled;
std::unordered_map<uint64_t, uint64_t> unique_id_mapping; // Map uniqueID to actual object handle
VkPhysicalDevice gpu;
layer_data() : wsi_enabled(false), gpu(VK_NULL_HANDLE){};
};
struct instance_extension_enables {
bool wsi_enabled;
bool xlib_enabled;
bool xcb_enabled;
bool wayland_enabled;
bool mir_enabled;
bool android_enabled;
bool win32_enabled;
bool display_enabled;
};
static std::unordered_map<void *, struct instance_extension_enables> instanceExtMap;
static std::unordered_map<void *, layer_data *> layer_data_map;
static device_table_map unique_objects_device_table_map;
static instance_table_map unique_objects_instance_table_map;
static std::mutex global_lock; // Protect map accesses and unique_id increments
struct GenericHeader {
VkStructureType sType;
void *pNext;
};
template <typename T> bool ContainsExtStruct(const T *target, VkStructureType ext_type) {
assert(target != nullptr);
const GenericHeader *ext_struct = reinterpret_cast<const GenericHeader *>(target->pNext);
while (ext_struct != nullptr) {
if (ext_struct->sType == ext_type) {
return true;
}
ext_struct = reinterpret_cast<const GenericHeader *>(ext_struct->pNext);
}
return false;
}
static void init_unique_objects(layer_data *my_data, const VkAllocationCallbacks *pAllocator) {
layer_debug_actions(my_data->report_data, my_data->logging_callback, pAllocator, "google_unique_objects");
}
// Handle CreateInstance
static void checkInstanceRegisterExtensions(const VkInstanceCreateInfo *pCreateInfo, VkInstance instance) {
uint32_t i;
VkLayerInstanceDispatchTable *pDisp = get_dispatch_table(unique_objects_instance_table_map, instance);
instanceExtMap[pDisp] = {};
for (i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].wsi_enabled = true;
}
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_DISPLAY_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].display_enabled = true;
}
#ifdef VK_USE_PLATFORM_XLIB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XLIB_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].xlib_enabled = true;
}
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_XCB_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].xcb_enabled = true;
}
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].wayland_enabled = true;
}
#endif
#ifdef VK_USE_PLATFORM_MIR_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_MIR_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].mir_enabled = true;
}
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_ANDROID_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].android_enabled = true;
}
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_WIN32_SURFACE_EXTENSION_NAME) == 0) {
instanceExtMap[pDisp].win32_enabled = true;
}
#endif
// Check for recognized instance extensions
layer_data *instance_data = get_my_data_ptr(get_dispatch_key(instance), layer_data_map);
if (!white_list(pCreateInfo->ppEnabledExtensionNames[i], kUniqueObjectsSupportedInstanceExtensions)) {
log_msg(instance_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, __LINE__,
0, "UniqueObjects",
"Instance Extension %s is not supported by this layer. Using this extension may adversely affect "
"validation results and/or produce undefined behavior.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
}
}
VkResult explicit_CreateInstance(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkInstance *pInstance) {
VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance");
if (fpCreateInstance == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance);
if (result != VK_SUCCESS) {
return result;
}
layer_data *my_data = get_my_data_ptr(get_dispatch_key(*pInstance), layer_data_map);
my_data->instance = *pInstance;
VkLayerInstanceDispatchTable *pTable = initInstanceTable(*pInstance, fpGetInstanceProcAddr, unique_objects_instance_table_map);
my_data->instance = *pInstance;
my_data->report_data = debug_report_create_instance(pTable, *pInstance, pCreateInfo->enabledExtensionCount,
pCreateInfo->ppEnabledExtensionNames);
// Set up temporary debug callbacks to output messages at CreateInstance-time
if (!layer_copy_tmp_callbacks(pCreateInfo->pNext, &my_data->num_tmp_callbacks, &my_data->tmp_dbg_create_infos,
&my_data->tmp_callbacks)) {
if (my_data->num_tmp_callbacks > 0) {
if (layer_enable_tmp_callbacks(my_data->report_data, my_data->num_tmp_callbacks, my_data->tmp_dbg_create_infos,
my_data->tmp_callbacks)) {
layer_free_tmp_callbacks(my_data->tmp_dbg_create_infos, my_data->tmp_callbacks);
my_data->num_tmp_callbacks = 0;
}
}
}
init_unique_objects(my_data, pAllocator);
checkInstanceRegisterExtensions(pCreateInfo, *pInstance);
// Disable and free tmp callbacks, no longer necessary
if (my_data->num_tmp_callbacks > 0) {
layer_disable_tmp_callbacks(my_data->report_data, my_data->num_tmp_callbacks, my_data->tmp_callbacks);
layer_free_tmp_callbacks(my_data->tmp_dbg_create_infos, my_data->tmp_callbacks);
my_data->num_tmp_callbacks = 0;
}
return result;
}
void explicit_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
dispatch_key key = get_dispatch_key(instance);
layer_data *my_data = get_my_data_ptr(key, layer_data_map);
VkLayerInstanceDispatchTable *pDisp = get_dispatch_table(unique_objects_instance_table_map, instance);
instanceExtMap.erase(pDisp);
pDisp->DestroyInstance(instance, pAllocator);
// Clean up logging callback, if any
while (my_data->logging_callback.size() > 0) {
VkDebugReportCallbackEXT callback = my_data->logging_callback.back();
layer_destroy_msg_callback(my_data->report_data, callback, pAllocator);
my_data->logging_callback.pop_back();
}
layer_debug_report_destroy_instance(my_data->report_data);
layer_data_map.erase(key);
}
// Handle CreateDevice
static void createDeviceRegisterExtensions(const VkDeviceCreateInfo *pCreateInfo, VkDevice device) {
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
VkLayerDispatchTable *pDisp = get_dispatch_table(unique_objects_device_table_map, device);
PFN_vkGetDeviceProcAddr gpa = pDisp->GetDeviceProcAddr;
pDisp->CreateSwapchainKHR = (PFN_vkCreateSwapchainKHR)gpa(device, "vkCreateSwapchainKHR");
pDisp->DestroySwapchainKHR = (PFN_vkDestroySwapchainKHR)gpa(device, "vkDestroySwapchainKHR");
pDisp->GetSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)gpa(device, "vkGetSwapchainImagesKHR");
pDisp->AcquireNextImageKHR = (PFN_vkAcquireNextImageKHR)gpa(device, "vkAcquireNextImageKHR");
pDisp->QueuePresentKHR = (PFN_vkQueuePresentKHR)gpa(device, "vkQueuePresentKHR");
my_device_data->wsi_enabled = false;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME) == 0) {
my_device_data->wsi_enabled = true;
}
// Check for recognized device extensions
if (!white_list(pCreateInfo->ppEnabledExtensionNames[i], kUniqueObjectsSupportedDeviceExtensions)) {
log_msg(my_device_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0,
__LINE__, 0, "UniqueObjects",
"Device Extension %s is not supported by this layer. Using this extension may adversely affect "
"validation results and/or produce undefined behavior.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
}
}
VkResult explicit_CreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkDevice *pDevice) {
layer_data *my_instance_data = get_my_data_ptr(get_dispatch_key(gpu), layer_data_map);
VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO);
assert(chain_info->u.pLayerInfo);
PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr;
PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(my_instance_data->instance, "vkCreateDevice");
if (fpCreateDevice == NULL) {
return VK_ERROR_INITIALIZATION_FAILED;
}
// Advance the link info for the next element on the chain
chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext;
VkResult result = fpCreateDevice(gpu, pCreateInfo, pAllocator, pDevice);
if (result != VK_SUCCESS) {
return result;
}
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(*pDevice), layer_data_map);
my_device_data->report_data = layer_debug_report_create_device(my_instance_data->report_data, *pDevice);
// Setup layer's device dispatch table
initDeviceTable(*pDevice, fpGetDeviceProcAddr, unique_objects_device_table_map);
createDeviceRegisterExtensions(pCreateInfo, *pDevice);
// Set gpu for this device in order to get at any objects mapped at instance level
my_device_data->gpu = gpu;
return result;
}
void explicit_DestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
dispatch_key key = get_dispatch_key(device);
layer_debug_report_destroy_device(device);
get_dispatch_table(unique_objects_device_table_map, device)->DestroyDevice(device, pAllocator);
layer_data_map.erase(key);
}
VkResult explicit_AllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
const VkMemoryAllocateInfo *input_allocate_info = pAllocateInfo;
std::unique_ptr<safe_VkMemoryAllocateInfo> safe_allocate_info;
std::unique_ptr<safe_VkDedicatedAllocationMemoryAllocateInfoNV> safe_dedicated_allocate_info;
layer_data *my_map_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
if ((pAllocateInfo != nullptr) &&
ContainsExtStruct(pAllocateInfo, VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV)) {
// Assuming there is only one extension struct of this type in the list for now
safe_dedicated_allocate_info =
std::unique_ptr<safe_VkDedicatedAllocationMemoryAllocateInfoNV>(new safe_VkDedicatedAllocationMemoryAllocateInfoNV);
safe_allocate_info = std::unique_ptr<safe_VkMemoryAllocateInfo>(new safe_VkMemoryAllocateInfo);
safe_allocate_info->initialize(pAllocateInfo);
input_allocate_info = reinterpret_cast<const VkMemoryAllocateInfo *>(safe_allocate_info.get());
const GenericHeader *orig_pnext = reinterpret_cast<const GenericHeader *>(pAllocateInfo->pNext);
GenericHeader *input_pnext = reinterpret_cast<GenericHeader *>(safe_allocate_info.get());
while (orig_pnext != nullptr) {
if (orig_pnext->sType == VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV) {
safe_dedicated_allocate_info->initialize(
reinterpret_cast<const VkDedicatedAllocationMemoryAllocateInfoNV *>(orig_pnext));
std::unique_lock<std::mutex> lock(global_lock);
if (safe_dedicated_allocate_info->buffer != VK_NULL_HANDLE) {
uint64_t local_buffer = reinterpret_cast<uint64_t &>(safe_dedicated_allocate_info->buffer);
safe_dedicated_allocate_info->buffer =
reinterpret_cast<VkBuffer &>(my_map_data->unique_id_mapping[local_buffer]);
}
if (safe_dedicated_allocate_info->image != VK_NULL_HANDLE) {
uint64_t local_image = reinterpret_cast<uint64_t &>(safe_dedicated_allocate_info->image);
safe_dedicated_allocate_info->image = reinterpret_cast<VkImage &>(my_map_data->unique_id_mapping[local_image]);
}
lock.unlock();
input_pnext->pNext = reinterpret_cast<GenericHeader *>(safe_dedicated_allocate_info.get());
input_pnext = reinterpret_cast<GenericHeader *>(input_pnext->pNext);
} else {
// TODO: generic handling of pNext copies
}
orig_pnext = reinterpret_cast<const GenericHeader *>(orig_pnext->pNext);
}
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->AllocateMemory(device, input_allocate_info, pAllocator, pMemory);
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
uint64_t unique_id = global_unique_id++;
my_map_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(*pMemory);
*pMemory = reinterpret_cast<VkDeviceMemory &>(unique_id);
}
return result;
}
VkResult explicit_CreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
// STRUCT USES:{'pipelineCache': 'VkPipelineCache', 'pCreateInfos[createInfoCount]': {'stage': {'module': 'VkShaderModule'},
// 'layout': 'VkPipelineLayout', 'basePipelineHandle': 'VkPipeline'}}
// LOCAL DECLS:{'pCreateInfos': 'VkComputePipelineCreateInfo*'}
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
safe_VkComputePipelineCreateInfo *local_pCreateInfos = NULL;
if (pCreateInfos) {
std::lock_guard<std::mutex> lock(global_lock);
local_pCreateInfos = new safe_VkComputePipelineCreateInfo[createInfoCount];
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle =
(VkPipeline)my_device_data
->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].basePipelineHandle)];
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout =
(VkPipelineLayout)
my_device_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].layout)];
}
if (pCreateInfos[idx0].stage.module) {
local_pCreateInfos[idx0].stage.module =
(VkShaderModule)
my_device_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].stage.module)];
}
}
}
if (pipelineCache) {
std::lock_guard<std::mutex> lock(global_lock);
pipelineCache = (VkPipelineCache)my_device_data->unique_id_mapping[reinterpret_cast<uint64_t &>(pipelineCache)];
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->CreateComputePipelines(device, pipelineCache, createInfoCount,
(const VkComputePipelineCreateInfo *)local_pCreateInfos, pAllocator, pPipelines);
delete[] local_pCreateInfos;
if (VK_SUCCESS == result) {
uint64_t unique_id = 0;
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < createInfoCount; ++i) {
unique_id = global_unique_id++;
my_device_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(pPipelines[i]);
pPipelines[i] = reinterpret_cast<VkPipeline &>(unique_id);
}
}
return result;
}
VkResult explicit_CreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines) {
// STRUCT USES:{'pipelineCache': 'VkPipelineCache', 'pCreateInfos[createInfoCount]': {'layout': 'VkPipelineLayout',
// 'pStages[stageCount]': {'module': 'VkShaderModule'}, 'renderPass': 'VkRenderPass', 'basePipelineHandle': 'VkPipeline'}}
// LOCAL DECLS:{'pCreateInfos': 'VkGraphicsPipelineCreateInfo*'}
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
safe_VkGraphicsPipelineCreateInfo *local_pCreateInfos = NULL;
if (pCreateInfos) {
local_pCreateInfos = new safe_VkGraphicsPipelineCreateInfo[createInfoCount];
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle =
(VkPipeline)my_device_data
->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].basePipelineHandle)];
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout =
(VkPipelineLayout)
my_device_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].layout)];
}
if (pCreateInfos[idx0].pStages) {
for (uint32_t idx1 = 0; idx1 < pCreateInfos[idx0].stageCount; ++idx1) {
if (pCreateInfos[idx0].pStages[idx1].module) {
local_pCreateInfos[idx0].pStages[idx1].module =
(VkShaderModule)my_device_data
->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].pStages[idx1].module)];
}
}
}
if (pCreateInfos[idx0].renderPass) {
local_pCreateInfos[idx0].renderPass =
(VkRenderPass)
my_device_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfos[idx0].renderPass)];
}
}
}
if (pipelineCache) {
std::lock_guard<std::mutex> lock(global_lock);
pipelineCache = (VkPipelineCache)my_device_data->unique_id_mapping[reinterpret_cast<uint64_t &>(pipelineCache)];
}
VkResult result =
get_dispatch_table(unique_objects_device_table_map, device)
->CreateGraphicsPipelines(device, pipelineCache, createInfoCount,
(const VkGraphicsPipelineCreateInfo *)local_pCreateInfos, pAllocator, pPipelines);
delete[] local_pCreateInfos;
if (VK_SUCCESS == result) {
uint64_t unique_id = 0;
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < createInfoCount; ++i) {
unique_id = global_unique_id++;
my_device_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(pPipelines[i]);
pPipelines[i] = reinterpret_cast<VkPipeline &>(unique_id);
}
}
return result;
}
VkResult explicit_CreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) {
layer_data *my_map_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
safe_VkSwapchainCreateInfoKHR *local_pCreateInfo = NULL;
if (pCreateInfo) {
std::lock_guard<std::mutex> lock(global_lock);
local_pCreateInfo = new safe_VkSwapchainCreateInfoKHR(pCreateInfo);
local_pCreateInfo->oldSwapchain =
(VkSwapchainKHR)my_map_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfo->oldSwapchain)];
// Need to pull surface mapping from the instance-level map
layer_data *instance_data = get_my_data_ptr(get_dispatch_key(my_map_data->gpu), layer_data_map);
local_pCreateInfo->surface =
(VkSurfaceKHR)instance_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pCreateInfo->surface)];
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->CreateSwapchainKHR(device, (const VkSwapchainCreateInfoKHR *)local_pCreateInfo, pAllocator, pSwapchain);
if (local_pCreateInfo)
delete local_pCreateInfo;
if (VK_SUCCESS == result) {
std::lock_guard<std::mutex> lock(global_lock);
uint64_t unique_id =global_unique_id++;
my_map_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(*pSwapchain);
*pSwapchain = reinterpret_cast<VkSwapchainKHR &>(unique_id);
}
return result;
}
VkResult explicit_GetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount,
VkImage *pSwapchainImages) {
// UNWRAP USES:
// 0 : swapchain,VkSwapchainKHR, pSwapchainImages,VkImage
layer_data *my_device_data = get_my_data_ptr(get_dispatch_key(device), layer_data_map);
if (VK_NULL_HANDLE != swapchain) {
std::lock_guard<std::mutex> lock(global_lock);
swapchain = (VkSwapchainKHR)my_device_data->unique_id_mapping[reinterpret_cast<uint64_t &>(swapchain)];
}
VkResult result = get_dispatch_table(unique_objects_device_table_map, device)
->GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages);
// TODO : Need to add corresponding code to delete these images
if (VK_SUCCESS == result) {
if ((*pSwapchainImageCount > 0) && pSwapchainImages) {
uint64_t unique_id = 0;
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < *pSwapchainImageCount; ++i) {
unique_id = global_unique_id++;
my_device_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(pSwapchainImages[i]);
pSwapchainImages[i] = reinterpret_cast<VkImage &>(unique_id);
}
}
}
return result;
}
#ifndef __ANDROID__
VkResult explicit_GetPhysicalDeviceDisplayPropertiesKHR(VkPhysicalDevice physicalDevice, uint32_t* pPropertyCount, VkDisplayPropertiesKHR* pProperties)
{
layer_data *my_map_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map);
safe_VkDisplayPropertiesKHR* local_pProperties = NULL;
{
std::lock_guard<std::mutex> lock(global_lock);
if (pProperties) {
local_pProperties = new safe_VkDisplayPropertiesKHR[*pPropertyCount];
for (uint32_t idx0=0; idx0<*pPropertyCount; ++idx0) {
local_pProperties[idx0].initialize(&pProperties[idx0]);
if (pProperties[idx0].display) {
local_pProperties[idx0].display = (VkDisplayKHR)my_map_data->unique_id_mapping[reinterpret_cast<const uint64_t &>(pProperties[idx0].display)];
}
}
}
}
VkResult result = get_dispatch_table(unique_objects_instance_table_map, physicalDevice)->GetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, pPropertyCount, ( VkDisplayPropertiesKHR*)local_pProperties);
if (result == VK_SUCCESS && pProperties)
{
for (uint32_t idx0=0; idx0<*pPropertyCount; ++idx0) {
std::lock_guard<std::mutex> lock(global_lock);
uint64_t unique_id = global_unique_id++;
my_map_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(local_pProperties[idx0].display);
pProperties[idx0].display = reinterpret_cast<VkDisplayKHR&>(unique_id);
pProperties[idx0].displayName = local_pProperties[idx0].displayName;
pProperties[idx0].physicalDimensions = local_pProperties[idx0].physicalDimensions;
pProperties[idx0].physicalResolution = local_pProperties[idx0].physicalResolution;
pProperties[idx0].supportedTransforms = local_pProperties[idx0].supportedTransforms;
pProperties[idx0].planeReorderPossible = local_pProperties[idx0].planeReorderPossible;
pProperties[idx0].persistentContent = local_pProperties[idx0].persistentContent;
}
}
if (local_pProperties)
delete[] local_pProperties;
return result;
}
VkResult explicit_GetDisplayPlaneSupportedDisplaysKHR(VkPhysicalDevice physicalDevice, uint32_t planeIndex, uint32_t* pDisplayCount, VkDisplayKHR* pDisplays)
{
layer_data *my_map_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result = get_dispatch_table(unique_objects_instance_table_map, physicalDevice)->GetDisplayPlaneSupportedDisplaysKHR(physicalDevice, planeIndex, pDisplayCount, pDisplays);
if (VK_SUCCESS == result) {
if ((*pDisplayCount > 0) && pDisplays) {
std::lock_guard<std::mutex> lock(global_lock);
for (uint32_t i = 0; i < *pDisplayCount; i++) {
auto it = my_map_data->unique_id_mapping.find(reinterpret_cast<const uint64_t &> (pDisplays[i]));
assert (it != my_map_data->unique_id_mapping.end());
pDisplays[i] = reinterpret_cast<VkDisplayKHR&> (it->second);
}
}
}
return result;
}
VkResult explicit_GetDisplayModePropertiesKHR(VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t* pPropertyCount, VkDisplayModePropertiesKHR* pProperties)
{
layer_data *my_map_data = get_my_data_ptr(get_dispatch_key(physicalDevice), layer_data_map);
safe_VkDisplayModePropertiesKHR* local_pProperties = NULL;
{
std::lock_guard<std::mutex> lock(global_lock);
display = (VkDisplayKHR)my_map_data->unique_id_mapping[reinterpret_cast<uint64_t &>(display)];
if (pProperties) {
local_pProperties = new safe_VkDisplayModePropertiesKHR[*pPropertyCount];
for (uint32_t idx0=0; idx0<*pPropertyCount; ++idx0) {
local_pProperties[idx0].initialize(&pProperties[idx0]);
}
}
}
VkResult result = get_dispatch_table(unique_objects_instance_table_map, physicalDevice)->GetDisplayModePropertiesKHR(physicalDevice, display, pPropertyCount, ( VkDisplayModePropertiesKHR*)local_pProperties);
if (result == VK_SUCCESS && pProperties)
{
for (uint32_t idx0=0; idx0<*pPropertyCount; ++idx0) {
std::lock_guard<std::mutex> lock(global_lock);
uint64_t unique_id = global_unique_id++;
my_map_data->unique_id_mapping[unique_id] = reinterpret_cast<uint64_t &>(local_pProperties[idx0].displayMode);
pProperties[idx0].displayMode = reinterpret_cast<VkDisplayModeKHR&>(unique_id);
pProperties[idx0].parameters.visibleRegion.width = local_pProperties[idx0].parameters.visibleRegion.width;
pProperties[idx0].parameters.visibleRegion.height = local_pProperties[idx0].parameters.visibleRegion.height;
pProperties[idx0].parameters.refreshRate = local_pProperties[idx0].parameters.refreshRate;
}
}
if (local_pProperties)
delete[] local_pProperties;
return result;
}
#endif
} // namespace unique_objects