blob: 88fb41d55ecba320b2da21577edd33225e2d042e [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef SUPPORT_TEST_MEMORY_RESOURCE_HPP
#define SUPPORT_TEST_MEMORY_RESOURCE_HPP
#include <experimental/memory_resource>
#include <memory>
#include <type_traits>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include "test_macros.h"
struct AllocController;
// 'AllocController' is a concrete type that instruments and controls the
// behavior of of test allocators.
template <class T>
class CountingAllocator;
// 'CountingAllocator' is an basic implementation of the 'Allocator'
// requirements that use the 'AllocController' interface.
template <class T>
class MinAlignAllocator;
// 'MinAlignAllocator' is an instrumented test type which implements the
// 'Allocator' requirements. 'MinAlignAllocator' ensures that it *never*
// returns a pointer to over-aligned storage. For example
// 'MinAlignPointer<char>{}.allocate(...)' will never a 2-byte aligned
// pointer.
template <class T>
class NullAllocator;
// 'NullAllocator' is an instrumented test type which implements the
// 'Allocator' requirements except that 'allocator' and 'deallocate' are
// nops.
#define DISALLOW_COPY(Type) \
Type(Type const&) = delete; \
Type& operator=(Type const&) = delete
constexpr std::size_t MaxAlignV = alignof(std::max_align_t);
struct TestException {};
struct AllocController {
int copy_constructed = 0;
int move_constructed = 0;
int alive = 0;
int alloc_count = 0;
int dealloc_count = 0;
int is_equal_count = 0;
std::size_t alive_size;
std::size_t allocated_size;
std::size_t deallocated_size;
std::size_t last_size = 0;
std::size_t last_align = 0;
void * last_pointer = 0;
std::size_t last_alloc_size = 0;
std::size_t last_alloc_align = 0;
void * last_alloc_pointer = nullptr;
std::size_t last_dealloc_size = 0;
std::size_t last_dealloc_align = 0;
void * last_dealloc_pointer = nullptr;
bool throw_on_alloc = false;
AllocController() = default;
void countAlloc(void* p, size_t s, size_t a) {
++alive;
++alloc_count;
alive_size += s;
allocated_size += s;
last_pointer = last_alloc_pointer = p;
last_size = last_alloc_size = s;
last_align = last_alloc_align = a;
}
void countDealloc(void* p, size_t s, size_t a) {
--alive;
++dealloc_count;
alive_size -= s;
deallocated_size += s;
last_pointer = last_dealloc_pointer = p;
last_size = last_dealloc_size = s;
last_align = last_dealloc_align = a;
}
void reset() { std::memset(this, 0, sizeof(*this)); }
public:
bool checkAlloc(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s == last_alloc_size &&
a == last_alloc_align;
}
bool checkAlloc(void* p, size_t s) const {
return p == last_alloc_pointer &&
s == last_alloc_size;
}
bool checkAllocAtLeast(void* p, size_t s, size_t a) const {
return p == last_alloc_pointer &&
s <= last_alloc_size &&
a <= last_alloc_align;
}
bool checkAllocAtLeast(void* p, size_t s) const {
return p == last_alloc_pointer &&
s <= last_alloc_size;
}
bool checkDealloc(void* p, size_t s, size_t a) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size &&
a == last_dealloc_align;
}
bool checkDealloc(void* p, size_t s) const {
return p == last_dealloc_pointer &&
s == last_dealloc_size;
}
bool checkDeallocMatchesAlloc() const {
return last_dealloc_pointer == last_alloc_pointer &&
last_dealloc_size == last_alloc_size &&
last_dealloc_align == last_alloc_align;
}
void countIsEqual() {
++is_equal_count;
}
bool checkIsEqualCalledEq(int n) const {
return is_equal_count == n;
}
private:
DISALLOW_COPY(AllocController);
};
template <class T>
class CountingAllocator
{
public:
typedef T value_type;
typedef T* pointer;
CountingAllocator() = delete;
explicit CountingAllocator(AllocController& PP) : P(&PP) {}
CountingAllocator(CountingAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
CountingAllocator(CountingAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
CountingAllocator(CountingAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
void* ret = ::operator new(n*sizeof(T));
P->countAlloc(ret, n*sizeof(T), alignof(T));
return static_cast<T*>(ret);
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
::operator delete(vp);
}
AllocController& getController() const { return *P; }
private:
template <class Tp> friend class CountingAllocator;
AllocController *P;
};
template <class T, class U>
inline bool operator==(CountingAllocator<T> const& x,
CountingAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(CountingAllocator<T> const& x,
CountingAllocator<U> const& y) {
return !(x == y);
}
template <class T>
class MinAlignedAllocator
{
public:
typedef T value_type;
typedef T* pointer;
MinAlignedAllocator() = delete;
explicit MinAlignedAllocator(AllocController& R) : P(&R) {}
MinAlignedAllocator(MinAlignedAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
MinAlignedAllocator(MinAlignedAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
MinAlignedAllocator(MinAlignedAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n) {
char* aligned_ptr = (char*)::operator new(alloc_size(n*sizeof(T)));
assert(is_max_aligned(aligned_ptr));
char* unaligned_ptr = aligned_ptr + alignof(T);
assert(is_min_aligned(unaligned_ptr));
P->countAlloc(unaligned_ptr, n * sizeof(T), alignof(T));
return ((T*)unaligned_ptr);
}
void deallocate(T* p, std::size_t n) {
assert(is_min_aligned(p));
char* aligned_ptr = ((char*)p) - alignof(T);
assert(is_max_aligned(aligned_ptr));
P->countDealloc(p, n*sizeof(T), alignof(T));
return ::operator delete(static_cast<void*>(aligned_ptr));
}
AllocController& getController() const { return *P; }
private:
static const std::size_t BlockSize = alignof(std::max_align_t);
static std::size_t alloc_size(std::size_t s) {
std::size_t bytes = (s + BlockSize - 1) & ~(BlockSize - 1);
bytes += BlockSize;
assert(bytes % BlockSize == 0);
return bytes / BlockSize;
}
static bool is_max_aligned(void* p) {
return reinterpret_cast<std::size_t>(p) % BlockSize == 0;
}
static bool is_min_aligned(void* p) {
if (alignof(T) == BlockSize) {
return is_max_aligned(p);
} else {
return reinterpret_cast<std::size_t>(p) % BlockSize == alignof(T);
}
}
template <class Tp> friend class MinAlignedAllocator;
mutable AllocController *P;
};
template <class T, class U>
inline bool operator==(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(MinAlignedAllocator<T> const& x,
MinAlignedAllocator<U> const& y) {
return !(x == y);
}
template <class T>
class NullAllocator
{
public:
typedef T value_type;
typedef T* pointer;
NullAllocator() = delete;
explicit NullAllocator(AllocController& PP) : P(&PP) {}
NullAllocator(NullAllocator const& other) : P(other.P) {
P->copy_constructed += 1;
}
NullAllocator(NullAllocator&& other) : P(other.P) {
P->move_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U> const& other) TEST_NOEXCEPT : P(other.P) {
P->copy_constructed += 1;
}
template <class U>
NullAllocator(NullAllocator<U>&& other) TEST_NOEXCEPT : P(other.P) {
P->move_constructed += 1;
}
T* allocate(std::size_t n)
{
P->countAlloc(nullptr, n*sizeof(T), alignof(T));
return nullptr;
}
void deallocate(T* p, std::size_t n)
{
void* vp = static_cast<void*>(p);
P->countDealloc(vp, n*sizeof(T), alignof(T));
}
AllocController& getController() const { return *P; }
private:
template <class Tp> friend class NullAllocator;
AllocController *P;
};
template <class T, class U>
inline bool operator==(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return &x.getController() == &y.getController();
}
template <class T, class U>
inline bool operator!=(NullAllocator<T> const& x,
NullAllocator<U> const& y) {
return !(x == y);
}
template <class ProviderT, int = 0>
class TestResourceImp : public std::experimental::pmr::memory_resource
{
public:
static int resource_alive;
static int resource_constructed;
static int resource_destructed;
static void resetStatics() {
assert(resource_alive == 0);
resource_alive = 0;
resource_constructed = 0;
resource_destructed = 0;
}
using memory_resource = std::experimental::pmr::memory_resource;
using Provider = ProviderT;
int value;
explicit TestResourceImp(int val = 0) : value(val) {
++resource_alive;
++resource_constructed;
}
~TestResourceImp() noexcept {
--resource_alive;
++resource_destructed;
}
void reset() { C.reset(); P.reset(); }
AllocController& getController() { return C; }
bool checkAlloc(void* p, std::size_t s, std::size_t a) const
{ return C.checkAlloc(p, s, a); }
bool checkDealloc(void* p, std::size_t s, std::size_t a) const
{ return C.checkDealloc(p, s, a); }
bool checkIsEqualCalledEq(int n) const { return C.checkIsEqualCalledEq(n); }
protected:
virtual void * do_allocate(std::size_t s, std::size_t a) {
if (C.throw_on_alloc) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw TestException{};
#else
assert(false);
#endif
}
void* ret = P.allocate(s, a);
C.countAlloc(ret, s, a);
return ret;
}
virtual void do_deallocate(void * p, std::size_t s, std::size_t a) {
C.countDealloc(p, s, a);
P.deallocate(p, s, a);
}
virtual bool do_is_equal(memory_resource const & other) const noexcept {
C.countIsEqual();
TestResourceImp const * o = dynamic_cast<TestResourceImp const *>(&other);
return o && o->value == value;
}
private:
mutable AllocController C;
mutable Provider P;
DISALLOW_COPY(TestResourceImp);
};
template <class Provider, int N>
int TestResourceImp<Provider, N>::resource_alive = 0;
template <class Provider, int N>
int TestResourceImp<Provider, N>::resource_constructed = 0;
template <class Provider, int N>
int TestResourceImp<Provider, N>::resource_destructed = 0;
struct NullProvider {
NullProvider() {}
void* allocate(size_t, size_t) { return nullptr; }
void deallocate(void*, size_t, size_t) {}
void reset() {}
private:
DISALLOW_COPY(NullProvider);
};
struct NewDeleteProvider {
NewDeleteProvider() {}
void* allocate(size_t s, size_t) { return ::operator new(s); }
void deallocate(void* p, size_t, size_t) { ::operator delete(p); }
void reset() {}
private:
DISALLOW_COPY(NewDeleteProvider);
};
template <size_t Size = 4096 * 10> // 10 pages worth of memory.
struct BufferProvider {
char buffer[Size];
void* next = &buffer;
size_t space = Size;
BufferProvider() {}
void* allocate(size_t s, size_t a) {
void* ret = std::align(s, a, next, space);
if (ret == nullptr) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw std::bad_alloc();
#else
assert(false);
#endif
}
return ret;
}
void deallocate(void*, size_t, size_t) {}
void reset() {
next = &buffer;
space = Size;
}
private:
DISALLOW_COPY(BufferProvider);
};
using NullResource = TestResourceImp<NullProvider, 0>;
using NewDeleteResource = TestResourceImp<NewDeleteProvider, 0>;
using TestResource = TestResourceImp<BufferProvider<>, 0>;
using TestResource1 = TestResourceImp<BufferProvider<>, 1>;
using TestResource2 = TestResourceImp<BufferProvider<>, 2>;
#endif /* SUPPORT_TEST_MEMORY_RESOURCE_HPP */