blob: cc114e5e58bf599fc905b4e62136193d7ae39a5b [file] [log] [blame]
/* buffers.h -- Version 1.11 */
/* The following abbreviations are used at start of parameter names
* to indicate the type of data:
* s string (char * or WCHAR *) [PV]
* sw wide string (WCHAR *) [PV]
* p pointer (usually to some structure) [PV]
* a array (packed array as in C) (usually of some structure) [PV]
* called a "vector" or "vect" in some places.
* n generic number [IV, UV, or NV]
* iv signed integral value [IV]
* u unsigned integral value [UV]
* d floating-point number (double) [NV]
* b boolean (bool) [IV]
* c count of items [UV]
* l length (in bytes) [UV]
* lw length in WCHARs [UV]
* h a handle [IV]
* r record (structure) [PV]
* sv Perl scalar (s, i, u, d, n, or rv) [SV]
* rv Perl reference (usually to scalar) [RV]
* hv reference to Perl hash [HV]
* av reference to Perl array [AV]
* cv Perl code reference [PVCV]
*
* Unusual combined types:
* pp single pointer (to non-Perl data) packed into string [PV]
* pap vector of pointers (to non-Perl data) packed into string [PV]
*
* Whether a parameter is for input data, output data, or both is usually
* not reflected by the data type prefix. In cases where this is not
* obvious nor reflected in the variable name proper, you can use
* the following in front of the data type prefix:
* i an input parameter given to API (usually omitted)
* o an Output parameter taken from API
* io Input given to API then overwritten with Output taken from API
*/
/* Buffer arguments are usually followed by an argument (or two) specifying
* their size and/or returning the size of data written. The size can be
* measured in bytes ["lSize"] or in characters [for (char *) buffers such as
* for *A() routines, these sizes are also called "lSize", but are called
* "lwSize" for (WCHAR *) buffers, UNICODE strings, such as for *W() routines].
*
* Before calling the actual C function, you must make sure the Perl variable
* actually has a big enough buffer allocated, and, if the user didn't want
* to specify a buffer size, set the buffer size to be correct. This is what
* the grow_*() macros are for. They also handle special meanings of the
* buffer size argument [described below].
*
* Once the actual C function returns, you must set the Perl variable to know
* the size of the written data. This is what the trunc_*() macros are for.
*
* The size sometimes does and sometimes doesn't include the trailing '\0'
* [or L'\0'], so we always add or subtract 1 in the appropriate places so
* we don't care about this detail.
*
* A call may 1) request a pointer to the buffer size which means that
* the buffer size will be overwritten with the size of the data written;
* 2) have an extra argument which is a pointer to the place to write the
* size of the written data; 3) provide the size of the written data in
* the function's return value; 4) format the data so that the length
* can be determined by examining the data [such as with '\0'-terminated
* strings]; or 5) write fixed-length data [usually sizeof(STRUCT)].
* This obviously determines what you should use in the trunc_*() macro
# to specify the size of the output value.
*
* The user can pass in an empty list reference, C<[]>, to indicate C<NULL>
* for the pointer to the buffer which means that they don't want that data.
*
* The user can pass in C<[]> or C<0> to indicate that they don't care about
* the buffer size [we aren't programming in C here, after all] and just try
* to get the data. This will work if either the buffer already allocated for
* the SV [scalar value] is large enough to hold the data or the API provides
* an easy way to determine the required size [and the XS code uses it].
*
* If the user passes in a numeric value for a buffer size, then the XS
* code makes sure that the buffer is at least large enough to hold a value
* of that size and then passes in how large the buffer is. So the buffer
* size passed to the API call is the larger of the size requested by the
* user and the size of the buffer aleady allocated to the SV.
*
* The user can also pass in a string consisting of a leading "=" followed
* by digits for a buffer size. This means just use the size specified after
* the equals sign, even if the allocated buffer is larger. The XS code will
* still allocate a large enough buffer before the first call.
*
* If the function is nice enough to tell us that a buffer was too small
* [usually via ERROR_MORE_DATA] _and_ how large the buffer needs to be,
* then the XS code should enlarge the buffer(s) and repeat the call [once].
* This resizing is _not_ done for buffers whose size was specified with a
* leading "=".
*
* Only grow_buf() and perhaps trunc_buf() can be used in a typemap file.
* The other macros would be used in the parameter declarations or INPUT:
* section [grow_*()], the INIT: section [init_*()], or the OUTPUT: section
* [trunc_*()].
*
* Buffer arguments should be initialised with C<= NO_INIT> [or C<= NULL;>].
*
* See also the F<typemap> file. C<oDWORD>, for example, is for an output-
* only parameter of type C<DWORD> and you should simply C<#define> it to be
* C<DWORD>. In F<typemap>, C<oDWORD> is treated differently than C<DWORD>
* in two ways.
*
* First, if C<undef> is passed in, a C<DWORD> could generate a warning
* when it gets converted to 0 while C<oDWORD> will never generate such a
* warning for C<undef>. This first difference doesn't apply if specific
* initialization is specified for the variable, as in C<= init_buf_l($var);>.
* In particular, the init_*() macros also convert C<undef> to 0 without
* ever producing a warning.
*
* Second, passing in a read-only SV for a C<oDWORD> parameter will generate
* a fatal error on output when we try to update the SV. For C<DWORD>, we
* won't update a read-only SV since passing in a literal constant for a
* buffer size is a useful thing to do even though it prevents us from
* returning the size of data written via that SV. Since we should use a
* trunc_*() macro to output the actual data, the user should be able to
* determine the size of data written based on the size of the scalar we
* output anyway.
*
* This second difference doesn't apply unless the parameter is listed in
* the OUTPUT: section without specific output instructions. We define
* no macros for outputting buffer length parameters so be careful to use
* C<oDWORD> [for example] for them if and only if they are output-only.
*
* Note that C<oDWORD> is the same as C<DWORD> in that, if a defined value
* is passed in, it is used [and can generate a warning if the value is
* "not numeric"]. So although C<oDWORD> is for output-only parameters,
* we still initialize the C variable before calling the API. This is good
* in case the parameter isn't always strictly output-only due to upgrades,
* bugs, etc.
*
* Here is a made-up example that shows several cases:
*
* # Actual GetDataW() returns length of data written to ioswName, not bool.
* bool
* GetDataW( ioswName, ilwName, oswText, iolwText, opJunk, opRec, ilRec, olRec )
* WCHAR * ioswName = NO_INIT
* DWORD ilwName = NO_INIT
* WCHAR * oswText = NO_INIT
* DWORD &iolwText = init_buf_l($arg);
* void * opJunk = NO_INIT
* BYTE * opRec = NO_INIT
* DWORD ilRec = init_buf_l($arg);
* oDWORD &olRec
* PREINIT:
* DWORD olwName;
* INIT:
* grow_buf_lw( ioswName,ST(0), ilwName,ST(1) );
* grow_buf_lw( oswText,ST(2), iolwText,ST(3) );
* grow_buf_typ( opJunk,ST(4),void *, LONG_STRUCT_TYPEDEF );
* grow_buf_l( opRec,ST(5),BYTE *, ilRec,ST(6) );
* CODE:
* olwName= GetDataW( ioswName, ilwName, oswText, &iolwText,
* (LONG_STRUCT_TYPEDEF *)opJunk, opRec, &iolRec );
* if( 0 == olwName && ERROR_MORE_DATA == GetLastError()
* && ( autosize(ST(1)) || autosize(ST(3)) || autosize(ST(6)) ) ) {
* if( autosize(ST(1)) )
* grow_buf_lw( ioswName,ST(0), ilwName,ST(1) );
* if( autosize(ST(3)) )
* grow_buf_lw( oswText,ST(2), iolwText,ST(3) );
* if( autosize(ST(6)) )
* grow_buf_l( opRec,ST(5),BYTE *, iolRec,ST(6) );
* olwName= GetDataW( ioswName, ilwName, oswText, &iolwText,
* (LONG_STRUCT_TYPEDEF *)opJunk, opRec, &iolRec );
* }
* RETVAL= 0 != olwName;
* OUTPUT:
* RETVAL
* ioswName trunc_buf_lw( RETVAL, ioswName,ST(0), olwName );
* oswText trunc_buf_lw( RETVAL, oswText,ST(2), iolwText );
* iolwText
* opJunk trunc_buf_typ(RETVAL,opJunk,ST(4),LONG_STRUCT_TYPEDEF);
* opRec trunc_buf_l( RETVAL, opRec,ST(5), olRec );
* olRec
*
* The above example would be more complex and less efficient if we used
* C<DWORD * iolwText> in place of C<DWORD &iolwText>. The only possible
* advantage would be that C<NULL> would be passed in for C<iolwText> if
* _both_ C<$oswText> and C<$iolwText> were specified as C<[]>. The *_pl*()
* macros are defined [and C<DWORD *> specified in F<typemap>] so we can
* handle those cases but it is usually better to use the *_l*() macros
* instead by specifying C<&> instead of C<*>. Using C<&> instead of C<*>
* is usually better when dealing with scalars, even if they aren't buffer
* sizes. But you must use C<*> if it is important for that parameter to
* be able to pass C<NULL> to the underlying API.
*
* In Win32API::, we try to use C<*> for buffer sizes of optional buffers
* and C<&> for buffer sizes of required buffers.
*
* For parameters that are pointers to things other than buffers or buffer
* sizes, we use C<*> for "important" parameters [so that using C<[]>
* generates an error rather than fetching the value and just throwing it
* away], and for optional parameters [in case specifying C<NULL> is or
* becomes important]. Otherwise we use C<&> [for "unimportant" but
* required parameters] so the user can specify C<[]> if they don't care
* about it. The output handle of an "open" routine is "important".
*/
#ifndef Debug
# define Debug(list) /*Nothing*/
#endif
/*#ifndef CAST
*# ifdef __cplusplus
*# define CAST(type,expr) static_cast<type>(expr)
*# else*/
# define CAST(type,expr) (type)(expr)
/*# endif
*#endif*/
/* Is an argument C<[]>, meaning we should pass C<NULL>? */
#define null_arg(sv) ( SvROK(sv) && SVt_PVAV == SvTYPE(SvRV(sv)) \
&& -1 == av_len((AV*)SvRV(sv)) )
#define PV_or_null(sv) ( null_arg(sv) ? NULL : SvPV_nolen(sv) )
/* Minimum buffer size to use when no buffer existed: */
#define MIN_GROW_SIZE 128
#ifdef Debug
/* Used in Debug() messages to show which macro call is involved: */
#define string(arg) #arg
#endif
/* Simplify using SvGROW() for byte-sized buffers: */
#define lSvGROW(sv,n) SvGROW( sv, 0==(n) ? MIN_GROW_SIZE : (n)+1 )
/* Simplify using SvGROW() for WCHAR-sized buffers: */
#define lwSvGROW(sv,n) CAST( WCHAR *, \
SvGROW( sv, sizeof(WCHAR)*( 0==(n) ? MIN_GROW_SIZE : (n)+1 ) ) )
/* Whether the buffer size we got lets us change what buffer size we use: */
#define autosize(sv) (!( SvOK(sv) && ! SvROK(sv) \
&& SvPV_nolen(sv) && '=' == *SvPV_nolen(sv) ))
/* Get the IV/UV for a parameter that might be C<[]> or C<undef>: */
#define optIV(sv) ( null_arg(sv) ? 0 : !SvOK(sv) ? 0 : SvIV(sv) )
#define optUV(sv) ( null_arg(sv) ? 0 : !SvOK(sv) ? 0 : SvUV(sv) )
/* Allocate temporary storage that will automatically be freed later: */
#ifndef TempAlloc /* Can be C<#define>d to be C<_alloca>, for example */
# define TempAlloc( size ) sv_grow( sv_newmortal(), size )
#endif
/* Initialize a buffer size argument of type (DWORD *): */
#define init_buf_pl( plSize, svSize, tpSize ) STMT_START { \
if( null_arg(svSize) ) \
plSize= NULL; \
else { \
STRLEN n_a; \
*( plSize= CAST( tpSize, TempAlloc(sizeof(*plSize)) ) )= \
autosize(svSize) ? optUV(svSize) \
: strtoul( 1+SvPV(svSize,n_a), NULL, 10 ); \
} } STMT_END
/* In INPUT section put ": init_buf_pl($var,$arg,$type);" after var name. */
/* Initialize a buffer size argument of type DWORD: */
#define init_buf_l( svSize ) \
( null_arg(svSize) ? 0 : autosize(svSize) ? optUV(svSize) \
: strtoul( 1+SvPV_nolen(svSize), NULL, 10 ) )
/* In INPUT section put "= init_buf_l($arg);" after variable name. */
/* Lengths in WCHARs are initialized the same as lengths in bytes: */
#define init_buf_plw init_buf_pl
#define init_buf_lw init_buf_l
/* grow_buf_pl() and grow_buf_plw() are included so you can define
* parameters of type C<DWORD *>, for example. In practice, it is
* usually better to define such parameters as "DWORD &". */
/* Grow a buffer where we have a pointer to its size in bytes: */
#define grow_buf_pl( sBuf,svBuf,tpBuf, plSize,svSize,tpSize ) STMT_START { \
Debug(("grow_buf_pl( %s==0x%lX,[%s:%ld/%ld, %s==0x%lX:%ld,[%s )\n",\
string(sBuf),sBuf,strchr(string(svBuf),'('),SvPOK(svBuf)? \
SvCUR(svBuf):-1,SvPOK(svBuf)?SvLEN(svBuf):-1,string(plSize), \
plSize,plSize?*plSize:-1,strchr(string(svSize),'('))); \
if( null_arg(svBuf) ) { \
sBuf= NULL; \
} else { \
STRLEN n_a; \
if( NULL == plSize ) \
*( plSize= CAST(tpSize,TempAlloc(sizeof(*plSize))) )= 0;\
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
sBuf= CAST( tpBuf, lSvGROW( svBuf, *plSize ) ); \
if( autosize(svSize) ) *plSize= SvLEN(svBuf) - 1; \
Debug(("more buf_pl( %s==0x%lX,[%s:%ld/%ld, %s==0x%lX:%ld,[%s )\n",\
string(sBuf),sBuf,strchr(string(svBuf),'('),SvPOK(svBuf)? \
SvCUR(svBuf):-1,SvPOK(svBuf)?SvLEN(svBuf):-1,string(plSize),\
plSize,plSize?*plSize:-1,strchr(string(svSize),'('))); \
} } STMT_END
/* Grow a buffer where we have a pointer to its size in WCHARs: */
#define grow_buf_plw( sBuf,svBuf, plwSize,svSize,tpSize ) STMT_START { \
if( null_arg(svBuf) ) { \
sBuf= NULL; \
} else { \
STRLEN n_a; \
if( NULL == plwSize ) \
*( plwSize= CAST(tpSize,TempAlloc(sizeof(*plwSize))) )= 0;\
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
sBuf= lwSvGROW( svBuf, *plwSize ); \
if( autosize(svSize) ) \
*plwSize= SvLEN(svBuf)/sizeof(WCHAR) - 1; \
} } STMT_END
/* Grow a buffer where we have its size in bytes: */
#define grow_buf_l( sBuf,svBuf,tpBuf, lSize,svSize ) STMT_START { \
if( null_arg(svBuf) ) { \
sBuf= NULL; \
} else { \
STRLEN n_a; \
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
sBuf= CAST( tpBuf, lSvGROW( svBuf, lSize ) ); \
if( autosize(svSize) ) lSize= SvLEN(svBuf) - 1; \
} } STMT_END
/* Grow a buffer where we have its size in WCHARs: */
#define grow_buf_lw( swBuf,svBuf, lwSize,svSize ) STMT_START { \
if( null_arg(svBuf) ) { \
swBuf= NULL; \
} else { \
STRLEN n_a; \
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
swBuf= lwSvGROW( svBuf, lwSize ); \
if( autosize(svSize) ) \
lwSize= SvLEN(svBuf)/sizeof(WCHAR) - 1; \
} } STMT_END
/* Grow a buffer that contains the declared fixed data type: */
#define grow_buf( pBuf,svBuf, tpBuf ) STMT_START { \
if( null_arg(svBuf) ) { \
pBuf= NULL; \
} else { \
STRLEN n_a; \
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
pBuf= CAST( tpBuf, SvGROW( svBuf, sizeof(*pBuf) ) ); \
} } STMT_END
/* Grow a buffer that contains a fixed data type other than that declared: */
#define grow_buf_typ( pBuf,svBuf,tpBuf, Type ) STMT_START { \
if( null_arg(svBuf) ) { \
pBuf= NULL; \
} else { \
STRLEN n_a; \
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
pBuf= CAST( tpBuf, SvGROW( svBuf, sizeof(Type) ) ); \
} } STMT_END
/* Grow a buffer that contains a list of items of the declared data type: */
#define grow_vect( pBuf,svBuf,tpBuf, cItems ) STMT_START { \
if( null_arg(svBuf) ) { \
pBuf= NULL; \
} else { \
STRLEN n_a; \
if( ! SvOK(svBuf) ) sv_setpvn(svBuf,"",0); \
(void) SvPV_force( svBuf, n_a ); \
pBuf= CAST( tpBuf, SvGROW( svBuf, sizeof(*pBuf)*cItems ) ); \
} } STMT_END
/* If call succeeded, set data length to returned length (in bytes): */
#define trunc_buf_l( bOkay, sBuf,svBuf, lSize ) STMT_START { \
if( bOkay && NULL != sBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, lSize ); \
} } STMT_END
/* Same as above except we have a pointer to the returned length: */
#define trunc_buf_pl( bOkay, sBuf,svBuf, plSize ) \
trunc_buf_l( bOkay, sBuf,svBuf, *plSize )
/* If call succeeded, set data length to returned length (in WCHARs): */
#define trunc_buf_lw( bOkay, sBuf,svBuf, lwSize ) STMT_START { \
if( bOkay && NULL != sBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, (lwSize)*sizeof(WCHAR) ); \
} } STMT_END
/* Same as above except we have a pointer to the returned length: */
#define trunc_buf_plw( bOkay, swBuf,svBuf, plwSize ) \
trunc_buf_lw( bOkay, swBuf,svBuf, *plwSize )
/* Set data length for a buffer that contains the declared fixed data type: */
#define trunc_buf( bOkay, pBuf,svBuf ) STMT_START { \
if( bOkay && NULL != pBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, sizeof(*pBuf) ); \
} } STMT_END
/* Set data length for a buffer that contains some other fixed data type: */
#define trunc_buf_typ( bOkay, pBuf,svBuf, Type ) STMT_START { \
if( bOkay && NULL != pBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, sizeof(Type) ); \
} } STMT_END
/* Set length for buffer that contains list of items of the declared type: */
#define trunc_vect( bOkay, pBuf,svBuf, cItems ) STMT_START { \
if( bOkay && NULL != pBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, sizeof(*pBuf)*cItems ); \
} } STMT_END
/* Set data length for a buffer where a '\0'-terminate string was stored: */
#define trunc_buf_z( bOkay, sBuf,svBuf ) STMT_START { \
if( bOkay && NULL != sBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, strlen(sBuf) ); \
} } STMT_END
/* Set data length for a buffer where a L'\0'-terminate string was stored: */
#define trunc_buf_zw( bOkay, sBuf,svBuf ) STMT_START { \
if( bOkay && NULL != sBuf ) { \
SvPOK_only( svBuf ); \
SvCUR_set( svBuf, wcslen(sBuf)*sizeof(WCHAR) ); \
} } STMT_END