blob: 82a9fe26c773975887231c7c28699f88c4e4aa02 [file] [log] [blame]
/* Builtin function expansion for GNU Make.
Copyright (C) 1988-2024 Free Software Foundation, Inc.
This file is part of GNU Make.
GNU Make is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.
GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>. */
#include "makeint.h"
#include "filedef.h"
#include "variable.h"
#include "dep.h"
#include "job.h"
#include "os.h"
#include "commands.h"
#include "debug.h"
struct function_table_entry
{
union {
char *(*func_ptr) (char *output, char **argv, const char *fname);
gmk_func_ptr alloc_func_ptr;
} fptr;
const char *name;
unsigned char len;
unsigned char minimum_args;
unsigned char maximum_args;
unsigned int expand_args:1;
unsigned int alloc_fn:1;
unsigned int adds_command:1;
};
static unsigned long
function_table_entry_hash_1 (const void *keyv)
{
const struct function_table_entry *key = keyv;
return_STRING_N_HASH_1 (key->name, key->len);
}
static unsigned long
function_table_entry_hash_2 (const void *keyv)
{
const struct function_table_entry *key = keyv;
return_STRING_N_HASH_2 (key->name, key->len);
}
static int
function_table_entry_hash_cmp (const void *xv, const void *yv)
{
const struct function_table_entry *x = xv;
const struct function_table_entry *y = yv;
int result = x->len - y->len;
if (result)
return result;
return_STRING_N_COMPARE (x->name, y->name, x->len);
}
static struct hash_table function_table;
/* Store into VARIABLE_BUFFER at O the result of scanning TEXT and replacing
each occurrence of SUBST with REPLACE. TEXT is null-terminated. SLEN is
the length of SUBST and RLEN is the length of REPLACE. If BY_WORD is
nonzero, substitutions are done only on matches which are complete
whitespace-delimited words. */
char *
subst_expand (char *o, const char *text, const char *subst, const char *replace,
size_t slen, size_t rlen, int by_word)
{
const char *t = text;
const char *p;
if (slen == 0 && !by_word)
{
/* The first occurrence of "" in any string is its end. */
o = variable_buffer_output (o, t, strlen (t));
if (rlen > 0)
o = variable_buffer_output (o, replace, rlen);
return o;
}
do
{
if (by_word && slen == 0)
/* When matching by words, the empty string should match
the end of each word, rather than the end of the whole text. */
p = end_of_token (next_token (t));
else
{
p = strstr (t, subst);
if (p == 0)
{
/* No more matches. Output everything left on the end. */
o = variable_buffer_output (o, t, strlen (t));
return o;
}
}
/* Output everything before this occurrence of the string to replace. */
if (p > t)
o = variable_buffer_output (o, t, p - t);
/* If we're substituting only by fully matched words,
or only at the ends of words, check that this case qualifies. */
if (by_word
&& ((p > text && !ISSPACE (p[-1]))
|| ! STOP_SET (p[slen], MAP_SPACE|MAP_NUL)))
/* Struck out. Output the rest of the string that is
no longer to be replaced. */
o = variable_buffer_output (o, subst, slen);
else if (rlen > 0)
/* Output the replacement string. */
o = variable_buffer_output (o, replace, rlen);
/* Advance T past the string to be replaced. */
t = p + slen;
} while (*t != '\0');
return o;
}
/* Store into VARIABLE_BUFFER at O the result of scanning TEXT
and replacing strings matching PATTERN with REPLACE.
If PATTERN_PERCENT is not nil, PATTERN has already been
run through find_percent, and PATTERN_PERCENT is the result.
If REPLACE_PERCENT is not nil, REPLACE has already been
run through find_percent, and REPLACE_PERCENT is the result.
Note that we expect PATTERN_PERCENT and REPLACE_PERCENT to point to the
character _AFTER_ the %, not to the % itself.
*/
char *
patsubst_expand_pat (char *o, const char *text,
const char *pattern, const char *replace,
const char *pattern_percent, const char *replace_percent)
{
size_t pattern_prepercent_len, pattern_postpercent_len;
size_t replace_prepercent_len, replace_postpercent_len;
const char *t;
size_t len;
int doneany = 0;
/* Record the length of REPLACE before and after the % so we don't have to
compute these lengths more than once. */
if (replace_percent)
{
replace_prepercent_len = replace_percent - replace - 1;
replace_postpercent_len = strlen (replace_percent);
}
else
{
replace_prepercent_len = strlen (replace);
replace_postpercent_len = 0;
}
if (!pattern_percent)
/* With no % in the pattern, this is just a simple substitution. */
return subst_expand (o, text, pattern, replace,
strlen (pattern), strlen (replace), 1);
/* Record the length of PATTERN before and after the %
so we don't have to compute it more than once. */
pattern_prepercent_len = pattern_percent - pattern - 1;
pattern_postpercent_len = strlen (pattern_percent);
while ((t = find_next_token (&text, &len)) != 0)
{
int fail = 0;
/* Is it big enough to match? */
if (len < pattern_prepercent_len + pattern_postpercent_len)
fail = 1;
/* Does the prefix match? */
if (!fail && pattern_prepercent_len > 0
&& (*t != *pattern
|| t[pattern_prepercent_len - 1] != pattern_percent[-2]
|| !strneq (t + 1, pattern + 1, pattern_prepercent_len - 1)))
fail = 1;
/* Does the suffix match? */
if (!fail && pattern_postpercent_len > 0
&& (t[len - 1] != pattern_percent[pattern_postpercent_len - 1]
|| t[len - pattern_postpercent_len] != *pattern_percent
|| !strneq (&t[len - pattern_postpercent_len],
pattern_percent, pattern_postpercent_len - 1)))
fail = 1;
if (fail)
/* It didn't match. Output the string. */
o = variable_buffer_output (o, t, len);
else
{
/* It matched. Output the replacement. */
/* Output the part of the replacement before the %. */
o = variable_buffer_output (o, replace, replace_prepercent_len);
if (replace_percent != 0)
{
/* Output the part of the matched string that
matched the % in the pattern. */
o = variable_buffer_output (o, t + pattern_prepercent_len,
len - (pattern_prepercent_len
+ pattern_postpercent_len));
/* Output the part of the replacement after the %. */
o = variable_buffer_output (o, replace_percent,
replace_postpercent_len);
}
}
/* Output a space, but not if the replacement is "". */
if (fail || replace_prepercent_len > 0
|| (replace_percent != 0 && len + replace_postpercent_len > 0))
{
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
}
if (doneany)
/* Kill the last space. */
--o;
return o;
}
/* Store into VARIABLE_BUFFER at O the result of scanning TEXT
and replacing strings matching PATTERN with REPLACE.
If PATTERN_PERCENT is not nil, PATTERN has already been
run through find_percent, and PATTERN_PERCENT is the result.
If REPLACE_PERCENT is not nil, REPLACE has already been
run through find_percent, and REPLACE_PERCENT is the result.
Note that we expect PATTERN_PERCENT and REPLACE_PERCENT to point to the
character _AFTER_ the %, not to the % itself.
*/
char *
patsubst_expand (char *o, const char *text, char *pattern, char *replace)
{
const char *pattern_percent = find_percent (pattern);
const char *replace_percent = find_percent (replace);
/* If there's a percent in the pattern or replacement skip it. */
if (replace_percent)
++replace_percent;
if (pattern_percent)
++pattern_percent;
return patsubst_expand_pat (o, text, pattern, replace,
pattern_percent, replace_percent);
}
/* Look up a function by name. */
static const struct function_table_entry *
lookup_function (const char *s)
{
struct function_table_entry function_table_entry_key;
const char *e = s;
while (STOP_SET (*e, MAP_USERFUNC))
e++;
if (e == s || !STOP_SET(*e, MAP_NUL|MAP_SPACE))
return NULL;
function_table_entry_key.name = s;
function_table_entry_key.len = (unsigned char) (e - s);
return hash_find_item (&function_table, &function_table_entry_key);
}
/* Return 1 if PATTERN matches STR, 0 if not. */
int
pattern_matches (const char *pattern, const char *percent, const char *str)
{
size_t sfxlen, strlength;
if (percent == 0)
{
size_t len = strlen (pattern) + 1;
char *new_chars = alloca (len);
memcpy (new_chars, pattern, len);
percent = find_percent (new_chars);
if (percent == 0)
return streq (new_chars, str);
pattern = new_chars;
}
sfxlen = strlen (percent + 1);
strlength = strlen (str);
if (strlength < (percent - pattern) + sfxlen
|| !strneq (pattern, str, percent - pattern))
return 0;
return !strcmp (percent + 1, str + (strlength - sfxlen));
}
/* Find the next comma or ENDPAREN (counting nested STARTPAREN and
ENDPARENtheses), starting at PTR before END. Return a pointer to
next character.
If no next argument is found, return NULL.
*/
static char *
find_next_argument (char startparen, char endparen,
const char *ptr, const char *end)
{
int count = 0;
for (; ptr < end; ++ptr)
if (!STOP_SET (*ptr, MAP_VARSEP|MAP_COMMA))
continue;
else if (*ptr == startparen)
++count;
else if (*ptr == endparen)
{
--count;
if (count < 0)
return NULL;
}
else if (*ptr == ',' && !count)
return (char *)ptr;
/* We didn't find anything. */
return NULL;
}
/* Glob-expand LINE. The returned pointer is
only good until the next call to string_glob. */
static char *
string_glob (char *line)
{
static char *result = 0;
static size_t length;
struct nameseq *chain;
size_t idx;
chain = PARSE_FILE_SEQ (&line, struct nameseq, MAP_NUL, NULL,
/* We do not want parse_file_seq to strip './'s.
That would break examples like:
$(patsubst ./%.c,obj/%.o,$(wildcard ./?*.c)). */
PARSEFS_NOSTRIP|PARSEFS_NOCACHE|PARSEFS_EXISTS);
if (result == 0)
{
length = 100;
result = xmalloc (100);
}
idx = 0;
while (chain != 0)
{
struct nameseq *next = chain->next;
size_t len = strlen (chain->name);
if (idx + len + 1 > length)
{
length += (len + 1) * 2;
result = xrealloc (result, length);
}
memcpy (&result[idx], chain->name, len);
idx += len;
result[idx++] = ' ';
/* Because we used PARSEFS_NOCACHE above, we have to free() NAME. */
free ((char *)chain->name);
free (chain);
chain = next;
}
/* Kill the last space and terminate the string. */
if (idx == 0)
result[0] = '\0';
else
result[idx - 1] = '\0';
return result;
}
/*
Builtin functions
*/
static char *
func_patsubst (char *o, char **argv, const char *funcname UNUSED)
{
o = patsubst_expand (o, argv[2], argv[0], argv[1]);
return o;
}
static char *
func_join (char *o, char **argv, const char *funcname UNUSED)
{
int doneany = 0;
/* Write each word of the first argument directly followed
by the corresponding word of the second argument.
If the two arguments have a different number of words,
the excess words are just output separated by blanks. */
const char *tp;
const char *pp;
const char *list1_iterator = argv[0];
const char *list2_iterator = argv[1];
do
{
size_t len1, len2;
tp = find_next_token (&list1_iterator, &len1);
if (tp != 0)
o = variable_buffer_output (o, tp, len1);
pp = find_next_token (&list2_iterator, &len2);
if (pp != 0)
o = variable_buffer_output (o, pp, len2);
if (tp != 0 || pp != 0)
{
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
}
while (tp != 0 || pp != 0);
if (doneany)
/* Kill the last blank. */
--o;
return o;
}
static char *
func_origin (char *o, char **argv, const char *funcname UNUSED)
{
/* Expand the argument. */
struct variable *v = lookup_variable (argv[0], strlen (argv[0]));
if (v == 0)
o = variable_buffer_output (o, "undefined", 9);
else
switch (v->origin)
{
case o_invalid:
abort ();
break;
case o_default:
o = variable_buffer_output (o, "default", 7);
break;
case o_env:
o = variable_buffer_output (o, "environment", 11);
break;
case o_file:
o = variable_buffer_output (o, "file", 4);
break;
case o_env_override:
o = variable_buffer_output (o, "environment override", 20);
break;
case o_command:
o = variable_buffer_output (o, "command line", 12);
break;
case o_override:
o = variable_buffer_output (o, "override", 8);
break;
case o_automatic:
o = variable_buffer_output (o, "automatic", 9);
break;
}
return o;
}
static char *
func_flavor (char *o, char **argv, const char *funcname UNUSED)
{
struct variable *v = lookup_variable (argv[0], strlen (argv[0]));
if (v == 0)
o = variable_buffer_output (o, "undefined", 9);
else
if (v->recursive)
o = variable_buffer_output (o, "recursive", 9);
else
o = variable_buffer_output (o, "simple", 6);
return o;
}
static char *
func_notdir_suffix (char *o, char **argv, const char *funcname)
{
/* Expand the argument. */
const char *list_iterator = argv[0];
const char *p2;
int doneany =0;
size_t len=0;
int is_suffix = funcname[0] == 's';
int is_notdir = !is_suffix;
int stop = MAP_DIRSEP | (is_suffix ? MAP_DOT : 0);
#if MK_OS_VMS
/* For VMS list_iterator points to a comma separated list. To use the common
[find_]next_token, create a local copy and replace the commas with
spaces. Obviously, there is a problem if there is a ',' in the VMS filename
(can only happen on ODS5), the same problem as with spaces in filenames,
which seems to be present in make on all platforms. */
char *vms_list_iterator = alloca(strlen(list_iterator) + 1);
int i;
for (i = 0; list_iterator[i]; i++)
if (list_iterator[i] == ',')
vms_list_iterator[i] = ' ';
else
vms_list_iterator[i] = list_iterator[i];
vms_list_iterator[i] = list_iterator[i];
while ((p2 = find_next_token((const char**) &vms_list_iterator, &len)) != 0)
#else
while ((p2 = find_next_token (&list_iterator, &len)) != 0)
#endif
{
const char *p = p2 + len - 1;
while (p >= p2 && ! STOP_SET (*p, stop))
--p;
if (p >= p2)
{
if (is_notdir)
++p;
else if (*p != '.')
continue;
o = variable_buffer_output (o, p, len - (p - p2));
}
#ifdef HAVE_DOS_PATHS
/* Handle the case of "d:foo/bar". */
else if (is_notdir && p2[0] && p2[1] == ':')
{
p = p2 + 2;
o = variable_buffer_output (o, p, len - (p - p2));
}
#endif
else if (is_notdir)
o = variable_buffer_output (o, p2, len);
if (is_notdir || p >= p2)
{
#if MK_OS_VMS
if (vms_comma_separator)
o = variable_buffer_output (o, ",", 1);
else
#endif
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
}
if (doneany)
/* Kill last space. */
--o;
return o;
}
static char *
func_basename_dir (char *o, char **argv, const char *funcname)
{
/* Expand the argument. */
const char *p3 = argv[0];
const char *p2;
int doneany = 0;
size_t len = 0;
int is_basename = funcname[0] == 'b';
int is_dir = !is_basename;
int stop = MAP_DIRSEP | (is_basename ? MAP_DOT : 0) | MAP_NUL;
#if MK_OS_VMS
/* As in func_notdir_suffix ... */
char *vms_p3 = alloca (strlen(p3) + 1);
int i;
for (i = 0; p3[i]; i++)
if (p3[i] == ',')
vms_p3[i] = ' ';
else
vms_p3[i] = p3[i];
vms_p3[i] = p3[i];
while ((p2 = find_next_token((const char**) &vms_p3, &len)) != 0)
#else
while ((p2 = find_next_token (&p3, &len)) != 0)
#endif
{
const char *p = p2 + len - 1;
while (p >= p2 && ! STOP_SET (*p, stop))
--p;
if (p >= p2 && (is_dir))
o = variable_buffer_output (o, p2, ++p - p2);
else if (p >= p2 && (*p == '.'))
o = variable_buffer_output (o, p2, p - p2);
#ifdef HAVE_DOS_PATHS
/* Handle the "d:foobar" case */
else if (p2[0] && p2[1] == ':' && is_dir)
o = variable_buffer_output (o, p2, 2);
#endif
else if (is_dir)
#if MK_OS_VMS
{
extern int vms_report_unix_paths;
if (vms_report_unix_paths)
o = variable_buffer_output (o, "./", 2);
else
o = variable_buffer_output (o, "[]", 2);
}
#else
o = variable_buffer_output (o, "./", 2);
#endif /* !MK_OS_VMS */
else
/* The entire name is the basename. */
o = variable_buffer_output (o, p2, len);
#if MK_OS_VMS
if (vms_comma_separator)
o = variable_buffer_output (o, ",", 1);
else
#endif
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
if (doneany)
/* Kill last space. */
--o;
return o;
}
static char *
func_addsuffix_addprefix (char *o, char **argv, const char *funcname)
{
size_t fixlen = strlen (argv[0]);
const char *list_iterator = argv[1];
int is_addprefix = funcname[3] == 'p';
int is_addsuffix = !is_addprefix;
int doneany = 0;
const char *p;
size_t len;
while ((p = find_next_token (&list_iterator, &len)) != 0)
{
if (is_addprefix)
o = variable_buffer_output (o, argv[0], fixlen);
o = variable_buffer_output (o, p, len);
if (is_addsuffix)
o = variable_buffer_output (o, argv[0], fixlen);
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
if (doneany)
/* Kill last space. */
--o;
return o;
}
static char *
func_subst (char *o, char **argv, const char *funcname UNUSED)
{
o = subst_expand (o, argv[2], argv[0], argv[1], strlen (argv[0]),
strlen (argv[1]), 0);
return o;
}
static char *
func_firstword (char *o, char **argv, const char *funcname UNUSED)
{
size_t i;
const char *words = argv[0]; /* Use a temp variable for find_next_token */
const char *p = find_next_token (&words, &i);
if (p != 0)
o = variable_buffer_output (o, p, i);
return o;
}
static char *
func_lastword (char *o, char **argv, const char *funcname UNUSED)
{
size_t i;
const char *words = argv[0]; /* Use a temp variable for find_next_token */
const char *p = NULL;
const char *t;
while ((t = find_next_token (&words, &i)) != NULL)
p = t;
if (p != 0)
o = variable_buffer_output (o, p, i);
return o;
}
static char *
func_words (char *o, char **argv, const char *funcname UNUSED)
{
unsigned int i = 0;
const char *word_iterator = argv[0];
char buf[INTSTR_LENGTH];
while (find_next_token (&word_iterator, NULL) != 0)
++i;
sprintf (buf, "%u", i);
o = variable_buffer_output (o, buf, strlen (buf));
return o;
}
/* Set begpp to point to the first non-whitespace character of the string,
* and endpp to point to the last non-whitespace character of the string.
* If the string is empty or contains nothing but whitespace, endpp will be
* begpp-1.
*/
char *
strip_whitespace (const char **begpp, const char **endpp)
{
while (*begpp <= *endpp && ISSPACE (**begpp))
(*begpp) ++;
while (*endpp >= *begpp && ISSPACE (**endpp))
(*endpp) --;
return (char *)*begpp;
}
static long long
parse_numeric (const char *s, const char *msg)
{
const char *beg = s;
const char *end = s + strlen (s) - 1;
char *endp;
long long num;
strip_whitespace (&beg, &end);
if (beg > end)
OS (fatal, *expanding_var, _("%s: empty value"), msg);
errno = 0;
num = strtoll (beg, &endp, 10);
if (errno == ERANGE)
OSS (fatal, *expanding_var, _("%s: '%s' out of range"), msg, s);
else if (endp == beg || endp <= end)
/* Empty or non-numeric input */
OSS (fatal, *expanding_var, "%s: '%s'", msg, s);
return num;
}
static char *
func_word (char *o, char **argv, const char *funcname UNUSED)
{
const char *end_p;
const char *p;
long long i;
i = parse_numeric (argv[0],
_("invalid first argument to 'word' function"));
if (i < 1)
O (fatal, *expanding_var,
_("first argument to 'word' function must be greater than 0"));
end_p = argv[1];
while ((p = find_next_token (&end_p, 0)) != 0)
if (--i == 0)
break;
if (i == 0)
o = variable_buffer_output (o, p, end_p - p);
return o;
}
static char *
func_wordlist (char *o, char **argv, const char *funcname UNUSED)
{
char buf[INTSTR_LENGTH + 1];
long long start, stop, count;
const char* badfirst = _("invalid first argument to 'wordlist' function");
const char* badsecond = _("invalid second argument to 'wordlist' function");
start = parse_numeric (argv[0], badfirst);
if (start < 1)
OSS (fatal, *expanding_var, "%s: '%s'", badfirst, make_lltoa (start, buf));
stop = parse_numeric (argv[1], badsecond);
if (stop < 0)
OSS (fatal, *expanding_var, "%s: '%s'", badsecond, make_lltoa (stop, buf));
count = stop - start + 1;
if (count > 0)
{
const char *p;
const char *end_p = argv[2];
/* Find the beginning of the "start"th word. */
while (((p = find_next_token (&end_p, 0)) != 0) && --start)
;
if (p)
{
/* Find the end of the "count"th word from start. */
while (--count && (find_next_token (&end_p, 0) != 0))
;
/* Return the stuff in the middle. */
o = variable_buffer_output (o, p, end_p - p);
}
}
return o;
}
static char *
func_findstring (char *o, char **argv, const char *funcname UNUSED)
{
/* Find the first occurrence of the first string in the second. */
if (strstr (argv[1], argv[0]) != 0)
o = variable_buffer_output (o, argv[0], strlen (argv[0]));
return o;
}
static char *
func_foreach (char *o, char **argv, const char *funcname UNUSED)
{
/* expand only the first two. */
char *varname = expand_argument (argv[0], NULL);
char *list = expand_argument (argv[1], NULL);
const char *body = argv[2];
int doneany = 0;
const char *list_iterator = list;
const char *p;
size_t len;
struct variable *var;
/* Clean up the variable name by removing whitespace. */
char *vp = next_token (varname);
end_of_token (vp)[0] = '\0';
push_new_variable_scope ();
var = define_variable (vp, strlen (vp), "", o_automatic, 0);
/* loop through LIST, put the value in VAR and expand BODY */
while ((p = find_next_token (&list_iterator, &len)) != 0)
{
char *result = 0;
free (var->value);
var->value = xstrndup (p, len);
result = allocated_expand_string (body);
o = variable_buffer_output (o, result, strlen (result));
o = variable_buffer_output (o, " ", 1);
doneany = 1;
free (result);
}
if (doneany)
/* Kill the last space. */
--o;
pop_variable_scope ();
free (varname);
free (list);
return o;
}
static char *
func_let (char *o, char **argv, const char *funcname UNUSED)
{
/* expand only the first two. */
char *varnames = expand_argument (argv[0], NULL);
char *list = expand_argument (argv[1], NULL);
const char *body = argv[2];
const char *vp;
const char *vp_next = varnames;
const char *list_iterator = list;
size_t vlen;
push_new_variable_scope ();
/* loop through LIST for all but the last VARNAME */
vp = find_next_token (&vp_next, &vlen);
NEXT_TOKEN (vp_next);
while (*vp_next != '\0')
{
size_t len;
char *p = find_next_token (&list_iterator, &len);
if (p && *list_iterator != '\0')
{
++list_iterator;
p[len] = '\0';
}
define_variable (vp, vlen, p ? p : "", o_automatic, 0);
vp = find_next_token (&vp_next, &vlen);
NEXT_TOKEN (vp_next);
}
/* set the last VARNAME to the remainder of LIST */
if (vp)
define_variable (vp, vlen, next_token (list_iterator), o_automatic, 0);
/* Expand the body in the context of the arguments, adding the result to
the variable buffer. */
o = expand_string_buf (o, body, SIZE_MAX);
pop_variable_scope ();
free (varnames);
free (list);
return o + strlen (o);
}
struct a_word
{
struct a_word *chain;
char *str;
size_t length;
int matched;
};
static unsigned long
a_word_hash_1 (const void *key)
{
return_STRING_HASH_1 (((struct a_word const *) key)->str);
}
static unsigned long
a_word_hash_2 (const void *key)
{
return_STRING_HASH_2 (((struct a_word const *) key)->str);
}
static int
a_word_hash_cmp (const void *x, const void *y)
{
const struct a_word *ax = x;
const struct a_word *ay = y;
if (ax->length != ay->length)
return ax->length > ay->length ? 1 : -1;
return_STRING_N_COMPARE (ax->str, ay->str, ax->length);
}
struct a_pattern
{
char *str;
char *percent;
size_t length;
};
static char *
func_filter_filterout (char *o, char **argv, const char *funcname)
{
struct a_word *words;
struct a_word *word_end;
struct a_word *wp;
struct a_pattern *patterns;
struct a_pattern *pat_end;
struct a_pattern *pp;
unsigned long pat_count = 0, word_count = 0;
struct hash_table a_word_table;
int is_filter = funcname[CSTRLEN ("filter")] == '\0';
const char *cp;
int literals = 0;
int hashing = 0;
char *p;
size_t len;
int doneany = 0;
/* Find the number of words and get memory for them. */
cp = argv[1];
while ((p = find_next_token (&cp, NULL)) != 0)
++word_count;
if (!word_count)
return o;
words = xcalloc (word_count * sizeof (struct a_word));
word_end = words + word_count;
/* Find the number of patterns and get memory for them. */
cp = argv[0];
while ((p = find_next_token (&cp, NULL)) != 0)
++pat_count;
patterns = xcalloc (pat_count * sizeof (struct a_pattern));
pat_end = patterns + pat_count;
/* Chop argv[0] up into patterns to match against the words. */
cp = argv[0];
pp = patterns;
while ((p = find_next_token (&cp, &len)) != 0)
{
if (*cp != '\0')
++cp;
p[len] = '\0';
pp->str = p;
pp->percent = find_percent (p);
if (pp->percent == 0)
literals++;
/* find_percent() might shorten the string so LEN is wrong. */
pp->length = strlen (pp->str);
++pp;
}
/* Chop ARGV[1] up into words to match against the patterns. */
cp = argv[1];
wp = words;
while ((p = find_next_token (&cp, &len)) != 0)
{
if (*cp != '\0')
++cp;
p[len] = '\0';
wp->str = p;
wp->length = len;
++wp;
}
/* Only use a hash table if arg list lengths justifies the cost. */
hashing = (literals > 1 && (literals * word_count) >= 10);
if (hashing)
{
hash_init (&a_word_table, word_count, a_word_hash_1, a_word_hash_2,
a_word_hash_cmp);
for (wp = words; wp < word_end; ++wp)
{
struct a_word *owp = hash_insert (&a_word_table, wp);
if (owp)
wp->chain = owp;
}
}
/* Run each pattern through the words, killing words. */
for (pp = patterns; pp < pat_end; ++pp)
{
if (pp->percent)
for (wp = words; wp < word_end; ++wp)
wp->matched |= pattern_matches (pp->str, pp->percent, wp->str);
else if (hashing)
{
struct a_word a_word_key;
a_word_key.str = pp->str;
a_word_key.length = pp->length;
wp = hash_find_item (&a_word_table, &a_word_key);
while (wp)
{
wp->matched |= 1;
wp = wp->chain;
}
}
else
for (wp = words; wp < word_end; ++wp)
wp->matched |= (wp->length == pp->length
&& memcmp (pp->str, wp->str, wp->length) == 0);
}
/* Output the words that matched (or didn't, for filter-out). */
for (wp = words; wp < word_end; ++wp)
if (is_filter ? wp->matched : !wp->matched)
{
o = variable_buffer_output (o, wp->str, strlen (wp->str));
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
if (doneany)
/* Kill the last space. */
--o;
if (hashing)
hash_free (&a_word_table, 0);
free (patterns);
free (words);
return o;
}
static char *
func_strip (char *o, char **argv, const char *funcname UNUSED)
{
const char *p = argv[0];
int doneany = 0;
while (*p != '\0')
{
int i=0;
const char *word_start;
NEXT_TOKEN (p);
word_start = p;
for (i=0; *p != '\0' && !ISSPACE (*p); ++p, ++i)
{}
if (!i)
break;
o = variable_buffer_output (o, word_start, i);
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
if (doneany)
/* Kill the last space. */
--o;
return o;
}
/*
Print a warning or fatal message.
*/
static char *
func_error (char *o, char **argv, const char *funcname)
{
switch (*funcname)
{
case 'e':
OS (fatal, reading_file, "%s", argv[0]);
case 'w':
OS (error, reading_file, "%s", argv[0]);
break;
case 'i':
{
size_t len = strlen (argv[0]);
char *msg = xmalloc (len + 2);
memcpy (msg, argv[0], len);
msg[len] = '\n';
msg[len + 1] = '\0';
outputs (0, msg);
free (msg);
break;
}
default:
OS (fatal, *expanding_var, "INTERNAL: func_error: '%s'", funcname);
}
/* The warning function expands to the empty string. */
return o;
}
/*
chop argv[0] into words, and sort them.
*/
static char *
func_sort (char *o, char **argv, const char *funcname UNUSED)
{
const char *t;
char **words;
int wordi;
char *p;
size_t len;
/* Find the maximum number of words we'll have. */
t = argv[0];
wordi = 0;
while ((p = find_next_token (&t, NULL)) != 0)
{
++t;
++wordi;
}
words = xmalloc ((wordi == 0 ? 1 : wordi) * sizeof (char *));
/* Now assign pointers to each string in the array. */
t = argv[0];
wordi = 0;
while ((p = find_next_token (&t, &len)) != 0)
{
++t;
p[len] = '\0';
words[wordi++] = p;
}
if (wordi)
{
int i;
/* Now sort the list of words. */
qsort (words, wordi, sizeof (char *), alpha_compare);
/* Now write the sorted list, uniquified. */
for (i = 0; i < wordi; ++i)
{
len = strlen (words[i]);
if (i == wordi - 1 || strlen (words[i + 1]) != len
|| memcmp (words[i], words[i + 1], len))
{
o = variable_buffer_output (o, words[i], len);
o = variable_buffer_output (o, " ", 1);
}
}
/* Kill the last space. */
--o;
}
free (words);
return o;
}
/*
Traverse NUMBER consisting of optional leading white space, optional
sign, digits, and optional trailing white space.
If number is not of the proper form, diagnose with MSG. Otherwise,
return the address of of the first character after NUMBER, store
into *SIGN an integer consistent with the number's sign (-1, 0, or 1)
and store into *NUMSTART the address of NUMBER's first nonzero digit
(if NUMBER contains only zero digits, store the address of the first
character after NUMBER).
*/
static const char *
parse_textint (const char *number, const char *msg,
int *sign, const char **numstart)
{
const char *after_sign, *after_number;
const char *p = next_token (number);
int negative = *p == '-';
int nonzero;
if (*p == '\0')
OS (fatal, *expanding_var, _("%s: empty value"), msg);
p += negative || *p == '+';
after_sign = p;
while (*p == '0')
p++;
*numstart = p;
while (ISDIGIT (*p))
++p;
after_number = p;
nonzero = *numstart != after_number;
*sign = negative ? -nonzero : nonzero;
/* Check for extra non-whitespace stuff after the value. */
if (after_number == after_sign || *next_token (p) != '\0')
OSS (fatal, *expanding_var, "%s: '%s'", msg, number);
return after_number;
}
/*
$(intcmp lhs,rhs[,lt-part[,eq-part[,gt-part]]])
LHS and RHS must be integer values (leading/trailing whitespace is ignored).
If none of LT-PART, EQ-PART, or GT-PART are given then the function expands
to empty if LHS and RHS are not equal, or the numeric value if they are equal.
LT-PART is evaluated when LHS is strictly less than RHS, EQ-PART is evaluated
when LHS is equal to RHS, and GT-part is evaluated when LHS is strictly
greater than RHS.
If GT-PART is not provided, it defaults to EQ-PART. When neither EQ-PART
nor GT-PART are provided, the function expands to empty if LHS is not
strictly less than RHS.
*/
static char *
func_intcmp (char *o, char **argv, const char *funcname UNUSED)
{
int lsign, rsign;
const char *lnum, *rnum;
char *lhs_str = expand_argument (argv[0], NULL);
char *rhs_str = expand_argument (argv[1], NULL);
const char *llim = parse_textint (lhs_str, _("non-numeric first argument to 'intcmp' function"), &lsign, &lnum);
const char *rlim = parse_textint (rhs_str, _("non-numeric second argument to 'intcmp' function"), &rsign, &rnum);
ptrdiff_t llen = llim - lnum;
ptrdiff_t rlen = rlim - rnum;
int cmp = lsign - rsign;
if (cmp == 0)
{
cmp = (llen > rlen) - (llen < rlen);
if (cmp == 0)
cmp = memcmp (lnum, rnum, llen);
if (lsign < 0)
cmp *= -1;
}
argv += 2;
/* Handle the special case where there are only two arguments. */
if (!*argv && cmp == 0)
{
if (lsign < 0)
o = variable_buffer_output (o, "-", 1);
o = variable_buffer_output(o, lnum - !lsign, llen + !lsign);
}
free (lhs_str);
free (rhs_str);
if (*argv && cmp >= 0)
{
++argv;
if (cmp > 0 && *argv && *(argv + 1))
++argv;
}
if (*argv)
{
char *expansion = expand_argument (*argv, NULL);
o = variable_buffer_output (o, expansion, strlen (expansion));
free (expansion);
}
return o;
}
/*
$(if condition,true-part[,false-part])
CONDITION is false iff it evaluates to an empty string. White
space before and after condition are stripped before evaluation.
If CONDITION is true, then TRUE-PART is evaluated, otherwise FALSE-PART is
evaluated (if it exists). Because only one of the two PARTs is evaluated,
you can use $(if ...) to create side-effects (with $(shell ...), for
example).
*/
static char *
func_if (char *o, char **argv, const char *funcname UNUSED)
{
const char *begp = argv[0];
const char *endp = begp + strlen (argv[0]) - 1;
int result = 0;
/* Find the result of the condition: if we have a value, and it's not
empty, the condition is true. If we don't have a value, or it's the
empty string, then it's false. */
strip_whitespace (&begp, &endp);
if (begp <= endp)
{
char *expansion = expand_argument (begp, endp+1);
result = expansion[0] != '\0';
free (expansion);
}
/* If the result is true (1) we want to eval the first argument, and if
it's false (0) we want to eval the second. If the argument doesn't
exist we do nothing, otherwise expand it and add to the buffer. */
argv += 1 + !result;
if (*argv)
{
char *expansion = expand_argument (*argv, NULL);
o = variable_buffer_output (o, expansion, strlen (expansion));
free (expansion);
}
return o;
}
/*
$(or condition1[,condition2[,condition3[...]]])
A CONDITION is false iff it evaluates to an empty string. White
space before and after CONDITION are stripped before evaluation.
CONDITION1 is evaluated. If it's true, then this is the result of
expansion. If it's false, CONDITION2 is evaluated, and so on. If none of
the conditions are true, the expansion is the empty string.
Once a CONDITION is true no further conditions are evaluated
(short-circuiting).
*/
static char *
func_or (char *o, char **argv, const char *funcname UNUSED)
{
for ( ; *argv ; ++argv)
{
const char *begp = *argv;
const char *endp = begp + strlen (*argv) - 1;
char *expansion;
size_t result = 0;
/* Find the result of the condition: if it's false keep going. */
strip_whitespace (&begp, &endp);
if (begp > endp)
continue;
expansion = expand_argument (begp, endp+1);
result = strlen (expansion);
/* If the result is false keep going. */
if (!result)
{
free (expansion);
continue;
}
/* It's true! Keep this result and return. */
o = variable_buffer_output (o, expansion, result);
free (expansion);
break;
}
return o;
}
/*
$(and condition1[,condition2[,condition3[...]]])
A CONDITION is false iff it evaluates to an empty string. White
space before and after CONDITION are stripped before evaluation.
CONDITION1 is evaluated. If it's false, then this is the result of
expansion. If it's true, CONDITION2 is evaluated, and so on. If all of
the conditions are true, the expansion is the result of the last condition.
Once a CONDITION is false no further conditions are evaluated
(short-circuiting).
*/
static char *
func_and (char *o, char **argv, const char *funcname UNUSED)
{
char *expansion;
while (1)
{
const char *begp = *argv;
const char *endp = begp + strlen (*argv) - 1;
size_t result;
/* An empty condition is always false. */
strip_whitespace (&begp, &endp);
if (begp > endp)
return o;
expansion = expand_argument (begp, endp+1);
result = strlen (expansion);
/* If the result is false, stop here: we're done. */
if (!result)
break;
/* Otherwise the result is true. If this is the last one, keep this
result and quit. Otherwise go on to the next one! */
if (*(++argv))
free (expansion);
else
{
o = variable_buffer_output (o, expansion, result);
break;
}
}
free (expansion);
return o;
}
static char *
func_wildcard (char *o, char **argv, const char *funcname UNUSED)
{
char *p = string_glob (argv[0]);
o = variable_buffer_output (o, p, strlen (p));
return o;
}
/*
$(eval <makefile string>)
Always resolves to the empty string.
Treat the arguments as a segment of makefile, and parse them.
*/
static char *
func_eval (char *o, char **argv, const char *funcname UNUSED)
{
char *buf;
size_t len;
/* Eval the buffer. Pop the current variable buffer setting so that the
eval'd code can use its own without conflicting. */
install_variable_buffer (&buf, &len);
eval_buffer (argv[0], NULL);
restore_variable_buffer (buf, len);
return o;
}
static char *
func_value (char *o, char **argv, const char *funcname UNUSED)
{
/* Look up the variable. */
struct variable *v = lookup_variable (argv[0], strlen (argv[0]));
/* Copy its value into the output buffer without expanding it. */
if (v)
o = variable_buffer_output (o, v->value, strlen (v->value));
return o;
}
/*
\r is replaced on UNIX as well. Is this desirable?
*/
static void
fold_newlines (char *buffer, size_t *length, int trim_newlines)
{
char *dst = buffer;
char *src = buffer;
char *last_nonnl = buffer - 1;
src[*length] = 0;
for (; *src != '\0'; ++src)
{
if (src[0] == '\r' && src[1] == '\n')
continue;
if (*src == '\n')
{
*dst++ = ' ';
}
else
{
last_nonnl = dst;
*dst++ = *src;
}
}
if (!trim_newlines && (last_nonnl < (dst - 2)))
last_nonnl = dst - 2;
*(++last_nonnl) = '\0';
*length = last_nonnl - buffer;
}
pid_t shell_function_pid = 0;
static int shell_function_completed;
void
shell_completed (int exit_code, int exit_sig)
{
char buf[INTSTR_LENGTH];
shell_function_pid = 0;
if (exit_sig == 0 && exit_code == 127)
shell_function_completed = -1;
else
shell_function_completed = 1;
if (exit_code == 0 && exit_sig > 0)
exit_code = 128 + exit_sig;
sprintf (buf, "%d", exit_code);
define_variable_cname (".SHELLSTATUS", buf, o_override, 0);
}
#if MK_OS_W32
/*untested*/
#include <windows.h>
#include <io.h>
#include "sub_proc.h"
int
windows32_openpipe (int *pipedes, int errfd, pid_t *pid_p, char **command_argv, char **envp)
{
SECURITY_ATTRIBUTES saAttr;
HANDLE hIn = INVALID_HANDLE_VALUE;
HANDLE hErr = INVALID_HANDLE_VALUE;
HANDLE hChildOutRd;
HANDLE hChildOutWr;
HANDLE hProcess, tmpIn, tmpErr;
DWORD e;
/* Set status for return. */
pipedes[0] = pipedes[1] = -1;
*pid_p = (pid_t)-1;
saAttr.nLength = sizeof (SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
saAttr.lpSecurityDescriptor = NULL;
/* Standard handles returned by GetStdHandle can be NULL or
INVALID_HANDLE_VALUE if the parent process closed them. If that
happens, we open the null device and pass its handle to
process_begin below as the corresponding handle to inherit. */
tmpIn = GetStdHandle (STD_INPUT_HANDLE);
if (DuplicateHandle (GetCurrentProcess (), tmpIn,
GetCurrentProcess (), &hIn,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE)
{
e = GetLastError ();
if (e == ERROR_INVALID_HANDLE)
{
tmpIn = CreateFile ("NUL", GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (tmpIn != INVALID_HANDLE_VALUE
&& DuplicateHandle (GetCurrentProcess (), tmpIn,
GetCurrentProcess (), &hIn,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE)
CloseHandle (tmpIn);
}
if (hIn == INVALID_HANDLE_VALUE)
{
ON (error, NILF,
_("windows32_openpipe: DuplicateHandle(In) failed (e=%lu)"), e);
return -1;
}
}
tmpErr = get_handle_for_fd (errfd);
if (DuplicateHandle (GetCurrentProcess (), tmpErr,
GetCurrentProcess (), &hErr,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE)
{
e = GetLastError ();
if (e == ERROR_INVALID_HANDLE)
{
tmpErr = CreateFile ("NUL", GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (tmpErr != INVALID_HANDLE_VALUE
&& DuplicateHandle (GetCurrentProcess (), tmpErr,
GetCurrentProcess (), &hErr,
0, TRUE, DUPLICATE_SAME_ACCESS) == FALSE)
CloseHandle (tmpErr);
}
if (hErr == INVALID_HANDLE_VALUE)
{
ON (error, NILF,
_("windows32_openpipe: DuplicateHandle(Err) failed (e=%lu)"), e);
return -1;
}
}
if (! CreatePipe (&hChildOutRd, &hChildOutWr, &saAttr, 0))
{
ON (error, NILF, _("CreatePipe() failed (e=%lu)"), GetLastError());
return -1;
}
hProcess = process_init_fd (hIn, hChildOutWr, hErr);
if (!hProcess)
{
O (error, NILF, _("windows32_openpipe(): process_init_fd() failed"));
return -1;
}
if (! process_begin (hProcess, command_argv, envp, command_argv[0], NULL))
{
/* register process for wait */
process_register (hProcess);
/* set the pid for returning to caller */
*pid_p = (pid_t) hProcess;
/* set up to read data from child */
pipedes[0] = _open_osfhandle ((intptr_t) hChildOutRd, O_RDONLY);
/* this will be closed almost right away */
pipedes[1] = _open_osfhandle ((intptr_t) hChildOutWr, O_APPEND);
return 0;
}
else
{
/* reap/cleanup the failed process */
process_cleanup (hProcess);
/* close handles which were duplicated, they weren't used */
if (hIn != INVALID_HANDLE_VALUE)
CloseHandle (hIn);
if (hErr != INVALID_HANDLE_VALUE)
CloseHandle (hErr);
/* close pipe handles, they won't be used */
CloseHandle (hChildOutRd);
CloseHandle (hChildOutWr);
return -1;
}
}
#endif
#if MK_OS_DOS
FILE *
msdos_openpipe (int* pipedes, int *pidp, char *text)
{
FILE *fpipe=0;
/* MSDOS can't fork, but it has 'popen'. */
struct variable *sh = lookup_variable ("SHELL", 5);
int e;
extern int dos_command_running, dos_status;
/* Make sure not to bother processing an empty line. */
NEXT_TOKEN (text);
if (*text == '\0')
return 0;
if (sh)
{
char buf[PATH_MAX + 7];
/* This makes sure $SHELL value is used by $(shell), even
though the target environment is not passed to it. */
sprintf (buf, "SHELL=%s", sh->value);
putenv (buf);
}
e = errno;
errno = 0;
dos_command_running = 1;
dos_status = 0;
/* If dos_status becomes non-zero, it means the child process
was interrupted by a signal, like SIGINT or SIGQUIT. See
fatal_error_signal in commands.c. */
fpipe = popen (text, "rt");
dos_command_running = 0;
if (!fpipe || dos_status)
{
pipedes[0] = -1;
*pidp = -1;
if (dos_status)
errno = EINTR;
else if (errno == 0)
errno = ENOMEM;
if (fpipe)
pclose (fpipe);
shell_completed (127, 0);
}
else
{
pipedes[0] = fileno (fpipe);
*pidp = 42; /* Yes, the Meaning of Life, the Universe, and Everything! */
errno = e;
}
return fpipe;
}
#endif
/*
Do shell spawning, with the naughty bits for different OSes.
*/
#if MK_OS_VMS
/* VMS can't do $(shell ...) */
char *
func_shell_base (char *o, char **argv, int trim_newlines)
{
fprintf (stderr, "This platform does not support shell\n");
die (MAKE_TROUBLE);
return NULL;
}
#define func_shell 0
#else
char *
func_shell_base (char *o, char **argv, int trim_newlines)
{
struct childbase child = {0};
char *batch_filename = NULL;
int errfd;
#if MK_OS_DOS
FILE *fpipe;
#endif
char **command_argv = NULL;
int pipedes[2];
pid_t pid;
#if !MK_OS_DOS
#if MK_OS_W32
/* Reset just_print_flag. This is needed on Windows when batch files
are used to run the commands, because we normally refrain from
creating batch files under -n. */
int j_p_f = just_print_flag;
just_print_flag = 0;
#endif
/* Construct the argument list. */
command_argv = construct_command_argv (argv[0], NULL, NULL, 0,
&batch_filename);
if (command_argv == 0)
{
#if MK_OS_W32
just_print_flag = j_p_f;
#endif
return o;
}
#endif /* !MK_OS_DOS */
/* Set up the output in case the shell writes something. */
output_start ();
errfd = (output_context && output_context->err >= 0
? output_context->err : FD_STDERR);
child.environment = target_environment (NULL, 0);
#if MK_OS_DOS
fpipe = msdos_openpipe (pipedes, &pid, argv[0]);
if (pipedes[0] < 0)
{
OS (error, reading_file, "pipe: %s", strerror (errno));
pid = -1;
goto done;
}
#elif MK_OS_W32
windows32_openpipe (pipedes, errfd, &pid, command_argv, child.environment);
/* Restore the value of just_print_flag. */
just_print_flag = j_p_f;
if (pipedes[0] < 0)
{
/* Open of the pipe failed, mark as failed execution. */
shell_completed (127, 0);
OS (error, reading_file, "pipe: %s", strerror (errno));
pid = -1;
goto done;
}
#else
if (pipe (pipedes) < 0)
{
OS (error, reading_file, "pipe: %s", strerror (errno));
pid = -1;
goto done;
}
/* Close handles that are unnecessary for the child process. */
fd_noinherit (pipedes[1]);
fd_noinherit (pipedes[0]);
child.output.syncout = 1;
child.output.out = pipedes[1];
child.output.err = errfd;
pid = child_execute_job (&child, 1, command_argv);
if (pid < 0)
{
shell_completed (127, 0);
goto done;
}
#endif
{
char *buffer;
size_t maxlen, i;
int cc;
/* Record the PID for reap_children. */
shell_function_pid = pid;
#if !MK_OS_DOS
shell_function_completed = 0;
/* Close the write side of the pipe. We test for -1, since
pipedes[1] is -1 on MS-Windows, and some versions of MS
libraries barf when 'close' is called with -1. */
if (pipedes[1] >= 0)
close (pipedes[1]);
#endif
/* Set up and read from the pipe. */
maxlen = 200;
buffer = xmalloc (maxlen + 1);
/* Read from the pipe until it gets EOF. */
for (i = 0; ; i += cc)
{
if (i == maxlen)
{
maxlen += 512;
buffer = xrealloc (buffer, maxlen + 1);
}
EINTRLOOP (cc, read (pipedes[0], &buffer[i], maxlen - i));
if (cc <= 0)
break;
}
buffer[i] = '\0';
/* Close the read side of the pipe. */
#if MK_OS_DOS
if (fpipe)
{
int st = pclose (fpipe);
shell_completed (st, 0);
}
#else
(void) close (pipedes[0]);
#endif
/* Loop until child_handler or reap_children() sets
shell_function_completed to the status of our child shell. */
while (shell_function_completed == 0)
reap_children (1, 0);
if (batch_filename)
{
DB (DB_VERBOSE, (_("Cleaning up temporary batch file %s\n"),
batch_filename));
remove (batch_filename);
free (batch_filename);
}
shell_function_pid = 0;
/* Replace all newlines in the command's output with spaces, and put that
in the variable output buffer. */
fold_newlines (buffer, &i, trim_newlines);
o = variable_buffer_output (o, buffer, i);
free (buffer);
}
done:
if (command_argv)
{
/* Free the storage only the child needed. */
free (command_argv[0]);
free (command_argv);
}
free_childbase (&child);
return o;
}
static char *
func_shell (char *o, char **argv, const char *funcname UNUSED)
{
return func_shell_base (o, argv, 1);
}
#endif /* !MK_OS_VMS */
#ifdef EXPERIMENTAL
/*
equality. Return is string-boolean, i.e., the empty string is false.
*/
static char *
func_eq (char *o, char **argv, char *funcname UNUSED)
{
int result = ! strcmp (argv[0], argv[1]);
if (result)
o = variable_buffer_output (o, "1", 1);
return o;
}
/*
string-boolean not operator.
*/
static char *
func_not (char *o, char **argv, char *funcname UNUSED)
{
const char *s = argv[0];
int result = 0;
NEXT_TOKEN (s);
result = ! (*s);
if (result)
o = variable_buffer_output (o, "1", 1);
return o;
}
#endif
#ifdef HAVE_DOS_PATHS
# ifdef __CYGWIN__
# define IS_ABSOLUTE(n) ((n[0] && n[1] == ':') || ISDIRSEP (n[0]))
# else
# define IS_ABSOLUTE(n) (n[0] && n[1] == ':')
# endif
# define ROOT_LEN 3
#else
# define IS_ABSOLUTE(n) (n[0] == '/')
# define ROOT_LEN 1
#endif
/* Return the absolute name of file NAME which does not contain any '.',
'..' components nor any repeated path separators ('/'). */
static char *
abspath (const char *name, char *apath)
{
char *dest;
const char *start, *end, *apath_limit;
unsigned long root_len = ROOT_LEN;
if (name[0] == '\0')
return NULL;
apath_limit = apath + GET_PATH_MAX;
if (!IS_ABSOLUTE(name))
{
/* It is unlikely we would make it until here but just to make sure. */
if (!starting_directory)
return NULL;
strcpy (apath, starting_directory);
#ifdef HAVE_DOS_PATHS
if (ISDIRSEP (name[0]))
{
if (ISDIRSEP (name[1]))
{
/* A UNC. Don't prepend a drive letter. */
apath[0] = name[0];
apath[1] = name[1];
root_len = 2;
}
/* We have /foo, an absolute file name except for the drive
letter. Assume the missing drive letter is the current
drive, which we can get if we remove from starting_directory
everything past the root directory. */
apath[root_len] = '\0';
}
#endif
dest = strchr (apath, '\0');
}
else
{
#if defined(__CYGWIN__) && defined(HAVE_DOS_PATHS)
if (ISDIRSEP (name[0]))
root_len = 1;
#endif
memcpy (apath, name, root_len);
apath[root_len] = '\0';
dest = apath + root_len;
/* Get past the root, since we already copied it. */
name += root_len;
#ifdef HAVE_DOS_PATHS
if (! ISDIRSEP (apath[root_len - 1]))
{
/* Convert d:foo into d:./foo and increase root_len. */
apath[2] = '.';
apath[3] = '/';
dest++;
root_len++;
/* strncpy above copied one character too many. */
name--;
}
else
apath[root_len - 1] = '/'; /* make sure it's a forward slash */
#endif
}
for (start = end = name; *start != '\0'; start = end)
{
size_t len;
/* Skip sequence of multiple path-separators. */
while (ISDIRSEP (*start))
++start;
/* Find end of path component. */
for (end = start; ! STOP_SET (*end, MAP_DIRSEP|MAP_NUL); ++end)
;
len = end - start;
if (len == 0)
break;
else if (len == 1 && start[0] == '.')
/* nothing */;
else if (len == 2 && start[0] == '.' && start[1] == '.')
{
/* Back up to previous component, ignore if at root already. */
if (dest > apath + root_len)
for (--dest; ! ISDIRSEP (dest[-1]); --dest)
;
}
else
{
if (! ISDIRSEP (dest[-1]))
*dest++ = '/';
if (dest + len >= apath_limit)
return NULL;
dest = mempcpy (dest, start, len);
*dest = '\0';
}
}
/* Unless it is root strip trailing separator. */
if (dest > apath + root_len && ISDIRSEP (dest[-1]))
--dest;
*dest = '\0';
return apath;
}
static char *
func_realpath (char *o, char **argv, const char *funcname UNUSED)
{
/* Expand the argument. */
const char *p = argv[0];
const char *path = 0;
int doneany = 0;
size_t len = 0;
while ((path = find_next_token (&p, &len)) != 0)
{
if (len < GET_PATH_MAX)
{
char *rp;
struct stat st;
PATH_VAR (in);
PATH_VAR (out);
strncpy (in, path, len);
in[len] = '\0';
#ifdef HAVE_REALPATH
ENULLLOOP (rp, realpath (in, out));
# if defined _AIX
/* AIX realpath() doesn't remove trailing slashes correctly. */
if (rp)
{
char *ep = rp + strlen (rp) - 1;
while (ep > rp && ep[0] == '/')
*(ep--) = '\0';
}
# endif
#else
rp = abspath (in, out);
#endif
if (rp)
{
int r;
EINTRLOOP (r, stat (out, &st));
if (r == 0)
{
o = variable_buffer_output (o, out, strlen (out));
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
}
}
}
/* Kill last space. */
if (doneany)
--o;
return o;
}
static char *
func_file (char *o, char **argv, const char *funcname UNUSED)
{
char *fn = argv[0];
if (fn[0] == '>')
{
size_t len;
const char *end;
const char *start;
char *nm;
FILE *fp;
const char *mode = "w";
/* We are writing a file. */
++fn;
if (fn[0] == '>')
{
mode = "a";
++fn;
}
start = next_token (fn);
if (start[0] == '\0')
O (fatal, *expanding_var, _("file: missing filename"));
end = end_of_token (start);
len = end - start;
nm = alloca (len + 1);
memcpy (nm, start, len);
nm[len] = '\0';
ENULLLOOP (fp, fopen (nm, mode));
if (fp == NULL)
OSS (fatal, reading_file, _("open: %s: %s"), nm, strerror (errno));
/* We've changed the contents of a directory, possibly.
Another option would be to look up the directory we changed and reset
its counter to 0. */
++command_count;
if (argv[1])
{
size_t l = strlen (argv[1]);
int nl = l == 0 || argv[1][l-1] != '\n';
if (fputs (argv[1], fp) == EOF || (nl && fputc ('\n', fp) == EOF))
OSS (fatal, reading_file, _("write: %s: %s"), nm, strerror (errno));
}
if (fclose (fp))
OSS (fatal, reading_file, _("close: %s: %s"), nm, strerror (errno));
}
else if (fn[0] == '<')
{
size_t n = 0;
size_t len;
const char *end;
const char *start;
char *nm;
FILE *fp;
start = next_token (fn + 1);
if (start[0] == '\0')
O (fatal, *expanding_var, _("file: missing filename"));
if (argv[1])
O (fatal, *expanding_var, _("file: too many arguments"));
end = end_of_token (start);
len = end - start;
nm = alloca (len + 1);
memcpy (nm, start, len);
nm[len] = '\0';
ENULLLOOP (fp, fopen (nm, "r"));
if (fp == NULL)
{
if (errno == ENOENT)
{
DB (DB_VERBOSE, (_("file: Failed to open '%s': %s\n"),
nm, strerror (errno)));
return o;
}
OSS (fatal, reading_file, _("open: %s: %s"), nm, strerror (errno));
}
while (1)
{
char buf[1024];
size_t l = fread (buf, 1, sizeof (buf), fp);
if (l > 0)
{
o = variable_buffer_output (o, buf, l);
n += l;
}
if (ferror (fp))
if (errno != EINTR)
OSS (fatal, reading_file, _("read: %s: %s"), nm, strerror (errno));
if (feof (fp))
break;
}
if (fclose (fp))
OSS (fatal, reading_file, _("close: %s: %s"), nm, strerror (errno));
/* Remove trailing newline. */
if (n && o[-1] == '\n')
o -= 1 + (n > 1 && o[-2] == '\r');
}
else
OS (fatal, *expanding_var, _("file: invalid file operation: %s"), fn);
return o;
}
static char *
func_abspath (char *o, char **argv, const char *funcname UNUSED)
{
/* Expand the argument. */
const char *p = argv[0];
const char *path = 0;
int doneany = 0;
size_t len = 0;
while ((path = find_next_token (&p, &len)) != 0)
{
if (len < GET_PATH_MAX)
{
PATH_VAR (in);
PATH_VAR (out);
strncpy (in, path, len);
in[len] = '\0';
if (abspath (in, out))
{
o = variable_buffer_output (o, out, strlen (out));
o = variable_buffer_output (o, " ", 1);
doneany = 1;
}
}
}
/* Kill last space. */
if (doneany)
--o;
return o;
}
/* Lookup table for builtin functions.
This doesn't have to be sorted; we use a straight lookup. We might gain
some efficiency by moving most often used functions to the start of the
table.
If MAXIMUM_ARGS is 0, that means there is no maximum and all
comma-separated values are treated as arguments.
EXPAND_ARGS means that all arguments should be expanded before invocation.
Functions that do namespace tricks (foreach, let) don't automatically
expand. */
static char *func_call (char *o, char **argv, const char *funcname);
#define FT_ENTRY(_name, _min, _max, _exp, _func) \
{ { (_func) }, STRING_SIZE_TUPLE(_name), (_min), (_max), (_exp), 0, 0 }
static struct function_table_entry function_table_init[] =
{
/* Name MIN MAX EXP? Function */
FT_ENTRY ("abspath", 0, 1, 1, func_abspath),
FT_ENTRY ("addprefix", 2, 2, 1, func_addsuffix_addprefix),
FT_ENTRY ("addsuffix", 2, 2, 1, func_addsuffix_addprefix),
FT_ENTRY ("and", 1, 0, 0, func_and),
FT_ENTRY ("basename", 0, 1, 1, func_basename_dir),
FT_ENTRY ("call", 1, 0, 1, func_call),
FT_ENTRY ("dir", 0, 1, 1, func_basename_dir),
FT_ENTRY ("error", 0, 1, 1, func_error),
FT_ENTRY ("eval", 0, 1, 1, func_eval),
FT_ENTRY ("file", 1, 2, 1, func_file),
FT_ENTRY ("filter", 2, 2, 1, func_filter_filterout),
FT_ENTRY ("filter-out", 2, 2, 1, func_filter_filterout),
FT_ENTRY ("findstring", 2, 2, 1, func_findstring),
FT_ENTRY ("firstword", 0, 1, 1, func_firstword),
FT_ENTRY ("flavor", 0, 1, 1, func_flavor),
FT_ENTRY ("foreach", 3, 3, 0, func_foreach),
FT_ENTRY ("if", 2, 3, 0, func_if),
FT_ENTRY ("info", 0, 1, 1, func_error),
FT_ENTRY ("intcmp", 2, 5, 0, func_intcmp),
FT_ENTRY ("join", 2, 2, 1, func_join),
FT_ENTRY ("lastword", 0, 1, 1, func_lastword),
FT_ENTRY ("let", 3, 3, 0, func_let),
FT_ENTRY ("notdir", 0, 1, 1, func_notdir_suffix),
FT_ENTRY ("or", 1, 0, 0, func_or),
FT_ENTRY ("origin", 0, 1, 1, func_origin),
FT_ENTRY ("patsubst", 3, 3, 1, func_patsubst),
FT_ENTRY ("realpath", 0, 1, 1, func_realpath),
FT_ENTRY ("shell", 0, 1, 1, func_shell),
FT_ENTRY ("sort", 0, 1, 1, func_sort),
FT_ENTRY ("strip", 0, 1, 1, func_strip),
FT_ENTRY ("subst", 3, 3, 1, func_subst),
FT_ENTRY ("suffix", 0, 1, 1, func_notdir_suffix),
FT_ENTRY ("value", 0, 1, 1, func_value),
FT_ENTRY ("warning", 0, 1, 1, func_error),
FT_ENTRY ("wildcard", 0, 1, 1, func_wildcard),
FT_ENTRY ("word", 2, 2, 1, func_word),
FT_ENTRY ("wordlist", 3, 3, 1, func_wordlist),
FT_ENTRY ("words", 0, 1, 1, func_words),
#ifdef EXPERIMENTAL
FT_ENTRY ("eq", 2, 2, 1, func_eq),
FT_ENTRY ("not", 0, 1, 1, func_not),
#endif
};
/* These must come after the definition of function_table. */
static char *
expand_builtin_function (char *o, unsigned int argc, char **argv,
const struct function_table_entry *entry_p)
{
char *p;
if (argc < entry_p->minimum_args)
fatal (*expanding_var, strlen (entry_p->name),
_("insufficient number of arguments (%u) to function '%s'"),
argc, entry_p->name);
/* I suppose technically some function could do something with no arguments,
but so far no internal ones do, so just test it for all functions here
rather than in each one. We can change it later if necessary. */
if (!argc && !entry_p->alloc_fn)
return o;
if (!entry_p->fptr.func_ptr)
OS (fatal, *expanding_var,
_("unimplemented on this platform: function '%s'"), entry_p->name);
if (entry_p->adds_command)
++command_count;
if (!entry_p->alloc_fn)
return entry_p->fptr.func_ptr (o, argv, entry_p->name);
/* This function allocates memory and returns it to us.
Write it to the variable buffer, then free it. */
p = entry_p->fptr.alloc_func_ptr (entry_p->name, argc, argv);
if (p)
{
o = variable_buffer_output (o, p, strlen (p));
free (p);
}
return o;
}
/* Check for a function invocation in *STRINGP. *STRINGP points at the
opening ( or { and is not null-terminated. If a function invocation
is found, expand it into the buffer at *OP, updating *OP, incrementing
*STRINGP past the reference, and return nonzero.
If no function is found, return zero and don't change *OP or *STRINGP. */
int
handle_function (char **op, const char **stringp)
{
const struct function_table_entry *entry_p;
char openparen = (*stringp)[0];
char closeparen = openparen == '(' ? ')' : '}';
const char *beg;
const char *end;
int count = 0;
char *abeg = NULL;
char **argv, **argvp;
unsigned int nargs;
beg = *stringp + 1;
entry_p = lookup_function (beg);
if (!entry_p)
return 0;
/* We found a builtin function. Find the beginning of its arguments (skip
whitespace after the name). */
beg += entry_p->len;
NEXT_TOKEN (beg);
/* Find the end of the function invocation, counting nested use of whichever
kind of parens we use. Don't use skip_reference so we can count commas
to get a rough estimate of how many arguments we might have. The count
might be high, but it'll never be low. */
for (nargs=1, end=beg; *end != '\0'; ++end)
if (!STOP_SET (*end, MAP_VARSEP|MAP_COMMA))
continue;
else if (*end == ',')
++nargs;
else if (*end == openparen)
++count;
else if (*end == closeparen && --count < 0)
break;
if (count >= 0)
fatal (*expanding_var, strlen (entry_p->name),
_("unterminated call to function '%s': missing '%c'"),
entry_p->name, closeparen);
*stringp = end;
/* Get some memory to store the arg pointers. */
argvp = argv = alloca (sizeof (char *) * (nargs + 2));
/* Chop the string into arguments, then a nul. As soon as we hit
MAXIMUM_ARGS (if it's >0) assume the rest of the string is part of the
last argument.
If we're expanding, store pointers to the expansion of each one. If
not, make a duplicate of the string and point into that, nul-terminating
each argument. */
if (entry_p->expand_args)
{
const char *p;
for (p=beg, nargs=0; p <= end; ++argvp)
{
const char *next;
++nargs;
if (nargs == entry_p->maximum_args
|| ((next = find_next_argument (openparen, closeparen, p, end)) == NULL))
next = end;
*argvp = expand_argument (p, next);
p = next + 1;
}
}
else
{
size_t len = end - beg;
char *p, *aend;
abeg = xmalloc (len+1);
aend = mempcpy (abeg, beg, len);
*aend = '\0';
for (p=abeg, nargs=0; p <= aend; ++argvp)
{
char *next;
++nargs;
if (nargs == entry_p->maximum_args
|| ((next = find_next_argument (openparen, closeparen, p, aend)) == NULL))
next = aend;
*argvp = p;
*next = '\0';
p = next + 1;
}
}
*argvp = NULL;
/* Finally! Run the function... */
*op = expand_builtin_function (*op, nargs, argv, entry_p);
/* Free memory. */
if (entry_p->expand_args)
for (argvp=argv; *argvp != 0; ++argvp)
free (*argvp);
else
free (abeg);
return 1;
}
/* User-defined functions. Expand the first argument as either a builtin
function or a make variable, in the context of the rest of the arguments
assigned to $1, $2, ... $N. $0 is the name of the function. */
static char *
func_call (char *o, char **argv, const char *funcname UNUSED)
{
static unsigned int max_args = 0;
char *fname;
size_t flen;
unsigned int i;
int saved_args;
const struct function_table_entry *entry_p;
struct variable *v;
/* Clean up the name of the variable to be invoked. */
fname = next_token (argv[0]);
end_of_token (fname)[0] = '\0';
/* Calling nothing is a no-op */
if (*fname == '\0')
return o;
/* Are we invoking a builtin function? */
entry_p = lookup_function (fname);
if (entry_p)
{
/* How many arguments do we have? */
for (i=0; argv[i+1]; ++i)
;
return expand_builtin_function (o, i, argv+1, entry_p);
}
/* Not a builtin, so the first argument is the name of a variable to be
expanded and interpreted as a function. Find it. */
flen = strlen (fname);
v = lookup_variable (fname, flen);
if (v == 0)
warn_undefined (fname, flen);
if (v == 0 || *v->value == '\0')
return o;
/* Set up arguments $(1) .. $(N). $(0) is the function name. */
push_new_variable_scope ();
for (i=0; *argv; ++i, ++argv)
{
char num[INTSTR_LENGTH];
sprintf (num, "%u", i);
define_variable (num, strlen (num), *argv, o_automatic, 0);
}
/* If the number of arguments we have is < max_args, it means we're inside
a recursive invocation of $(call ...). Fill in the remaining arguments
in the new scope with the empty value, to hide them from this
invocation. */
for (; i < max_args; ++i)
{
char num[INTSTR_LENGTH];
sprintf (num, "%u", i);
define_variable (num, strlen (num), "", o_automatic, 0);
}
/* Expand the function in the context of the arguments, adding the result to
the variable buffer. */
v->exp_count = EXP_COUNT_MAX;
saved_args = max_args;
max_args = i;
o = expand_variable_output (o, fname, flen);
max_args = saved_args;
v->exp_count = 0;
pop_variable_scope ();
return o + strlen (o);
}
void
define_new_function (const floc *flocp, const char *name,
unsigned int min, unsigned int max, unsigned int flags,
gmk_func_ptr func)
{
const char *e = name;
struct function_table_entry *ent;
size_t len;
while (STOP_SET (*e, MAP_USERFUNC))
e++;
len = e - name;
if (len == 0)
O (fatal, flocp, _("empty function name"));
if (*name == '.' || *e != '\0')
OS (fatal, flocp, _("invalid function name: %s"), name);
if (len > 255)
OS (fatal, flocp, _("function name too long: %s"), name);
if (min > 255)
ONS (fatal, flocp,
_("invalid minimum argument count (%u) for function %s"), min, name);
if (max > 255 || (max && max < min))
ONS (fatal, flocp,
_("invalid maximum argument count (%u) for function %s"), max, name);
ent = xmalloc (sizeof (struct function_table_entry));
ent->name = strcache_add (name);
ent->len = (unsigned char) len;
ent->minimum_args = (unsigned char) min;
ent->maximum_args = (unsigned char) max;
ent->expand_args = ANY_SET(flags, GMK_FUNC_NOEXPAND) ? 0 : 1;
ent->alloc_fn = 1;
/* We don't know what this function will do. */
ent->adds_command = 1;
ent->fptr.alloc_func_ptr = func;
ent = hash_insert (&function_table, ent);
free (ent);
}
void
hash_init_function_table (void)
{
hash_init (&function_table, ARRAYLEN (function_table_init) * 2,
function_table_entry_hash_1, function_table_entry_hash_2,
function_table_entry_hash_cmp);
hash_load (&function_table, function_table_init,
ARRAYLEN (function_table_init), sizeof (struct function_table_entry));
}