blob: 3a543d5578c4763844aeb3914ad38f01e4004b39 [file] [log] [blame]
/* Test of thread-specific storage in multithreaded situations.
Copyright (C) 2005, 2008-2020 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2005. */
#include <config.h>
#if USE_ISOC_THREADS || USE_POSIX_THREADS || USE_ISOC_AND_POSIX_THREADS || USE_WINDOWS_THREADS
/* Whether to help the scheduler through explicit sched_yield().
Uncomment this to see if the operating system has a fair scheduler. */
#define EXPLICIT_YIELD 1
/* Whether to print debugging messages. */
#define ENABLE_DEBUGGING 0
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if EXPLICIT_YIELD
# include <sched.h>
#endif
#if HAVE_DECL_ALARM
# include <signal.h>
# include <unistd.h>
#endif
#include "macros.h"
#if ENABLE_DEBUGGING
# define dbgprintf printf
#else
# define dbgprintf if (0) printf
#endif
#if EXPLICIT_YIELD
# define yield() sched_yield ()
#else
# define yield()
#endif
/* Returns a reference to the current thread as a pointer, for debugging. */
#if defined __MVS__
/* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field.
The first three bytes of this field appear to uniquely identify a
pthread_t, though not necessarily representing a pointer. */
# define pthread_self_pointer() (*((void **) pthread_self ().__))
#else
# define pthread_self_pointer() ((void *) (uintptr_t) pthread_self ())
#endif
static void
perhaps_yield (void)
{
/* Call yield () only with a certain probability, otherwise the
sequence of thread activations may be too predictable. */
if ((((unsigned int) rand () >> 3) % 4) == 0)
yield ();
}
/* ----------------------- Test thread-local storage ----------------------- */
/* Number of simultaneous threads. */
#define THREAD_COUNT 16
/* Number of operations performed in each thread. */
#define REPEAT_COUNT 50000
#define KEYS_COUNT 4
static pthread_key_t mykeys[KEYS_COUNT];
static void *
worker_thread (void *arg)
{
unsigned int id = (unsigned int) (uintptr_t) arg;
int i, j, repeat;
unsigned int values[KEYS_COUNT];
dbgprintf ("Worker %p started\n", pthread_self_pointer ());
/* Initialize the per-thread storage. */
for (i = 0; i < KEYS_COUNT; i++)
{
values[i] = (((unsigned int) rand () >> 3) % 1000000) * THREAD_COUNT + id;
/* Hopefully no arithmetic overflow. */
if ((values[i] % THREAD_COUNT) != id)
abort ();
}
perhaps_yield ();
/* Verify that the initial value is NULL. */
dbgprintf ("Worker %p before initial verify\n", pthread_self_pointer ());
for (i = 0; i < KEYS_COUNT; i++)
if (pthread_getspecific (mykeys[i]) != NULL)
abort ();
dbgprintf ("Worker %p after initial verify\n", pthread_self_pointer ());
perhaps_yield ();
/* Initialize the per-thread storage. */
dbgprintf ("Worker %p before first pthread_setspecific\n",
pthread_self_pointer ());
for (i = 0; i < KEYS_COUNT; i++)
{
unsigned int *ptr = (unsigned int *) malloc (sizeof (unsigned int));
*ptr = values[i];
ASSERT (pthread_setspecific (mykeys[i], ptr) == 0);
}
dbgprintf ("Worker %p after first pthread_setspecific\n",
pthread_self_pointer ());
perhaps_yield ();
/* Shuffle around the pointers. */
for (repeat = REPEAT_COUNT; repeat > 0; repeat--)
{
dbgprintf ("Worker %p doing value swapping\n", pthread_self_pointer ());
i = ((unsigned int) rand () >> 3) % KEYS_COUNT;
j = ((unsigned int) rand () >> 3) % KEYS_COUNT;
if (i != j)
{
void *vi = pthread_getspecific (mykeys[i]);
void *vj = pthread_getspecific (mykeys[j]);
ASSERT (pthread_setspecific (mykeys[i], vj) == 0);
ASSERT (pthread_setspecific (mykeys[j], vi) == 0);
}
perhaps_yield ();
}
/* Verify that all the values are from this thread. */
dbgprintf ("Worker %p before final verify\n", pthread_self_pointer ());
for (i = 0; i < KEYS_COUNT; i++)
if ((*(unsigned int *) pthread_getspecific (mykeys[i]) % THREAD_COUNT)
!= id)
abort ();
dbgprintf ("Worker %p after final verify\n", pthread_self_pointer ());
perhaps_yield ();
dbgprintf ("Worker %p dying.\n", pthread_self_pointer ());
return NULL;
}
static void
test_tss (void)
{
int pass, i;
for (pass = 0; pass < 2; pass++)
{
pthread_t threads[THREAD_COUNT];
if (pass == 0)
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_create (&mykeys[i], free) == 0);
else
for (i = KEYS_COUNT - 1; i >= 0; i--)
ASSERT (pthread_key_create (&mykeys[i], free) == 0);
/* Spawn the threads. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (pthread_create (&threads[i], NULL,
worker_thread, (void *) (uintptr_t) i)
== 0);
/* Wait for the threads to terminate. */
for (i = 0; i < THREAD_COUNT; i++)
ASSERT (pthread_join (threads[i], NULL) == 0);
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_delete (mykeys[i]) == 0);
}
}
#undef KEYS_COUNT
#undef REPEAT_COUNT
#undef THREAD_COUNT
/* --------------- Test thread-local storage with destructors --------------- */
/* Number of simultaneous threads. */
#if defined __ANDROID__
# define THREAD_COUNT 5 /* to avoid a pthread_key_create failure */
#else
# define THREAD_COUNT 10
#endif
/* Number of keys to allocate in each thread. */
#define KEYS_COUNT 10
static pthread_mutex_t sumlock;
static uintptr_t sum;
static void
inc_sum (uintptr_t value)
{
ASSERT (pthread_mutex_lock (&sumlock) == 0);
sum += value;
ASSERT (pthread_mutex_unlock (&sumlock) == 0);
}
static void
destructor0 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 0)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor1 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 1)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor2 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 2)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor3 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 3)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor4 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 4)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor5 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 5)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor6 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 6)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor7 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 7)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor8 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 8)
abort ();
inc_sum ((uintptr_t) value);
}
static void
destructor9 (void *value)
{
if ((((uintptr_t) value - 1) % 10) != 9)
abort ();
inc_sum ((uintptr_t) value);
}
static void (*destructor_table[10]) (void *) =
{
destructor0,
destructor1,
destructor2,
destructor3,
destructor4,
destructor5,
destructor6,
destructor7,
destructor8,
destructor9
};
static pthread_key_t dtorcheck_keys[THREAD_COUNT][KEYS_COUNT];
/* Worker thread that uses destructors that verify that the destructor belongs
to the right thread. */
static void *
dtorcheck1_thread (void *arg)
{
unsigned int id = (unsigned int) (uintptr_t) arg;
pthread_key_t *keys = dtorcheck_keys[id]; /* an array of KEYS_COUNT keys */
int i;
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0);
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_setspecific (keys[i],
(void *) (uintptr_t) (10 * id + i + 1))
== 0);
return NULL;
}
static void
test_tss_dtorcheck1 (void)
{
pthread_t threads[THREAD_COUNT];
unsigned int id;
int i;
uintptr_t expected_sum;
sum = 0;
/* Spawn the threads. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_create (&threads[id], NULL,
dtorcheck1_thread, (void *) (uintptr_t) id)
== 0);
/* Wait for the threads to terminate. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_join (threads[id], NULL) == 0);
/* Clean up the keys. */
for (id = 0; id < THREAD_COUNT; id++)
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_delete (dtorcheck_keys[id][i]) == 0);
/* Check that the destructor was invoked for each key. */
expected_sum = 10 * KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2)
+ THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2)
+ THREAD_COUNT * KEYS_COUNT;
if (sum != expected_sum)
abort ();
}
/* Worker thread that uses destructors that verify that the destructor belongs
to the right key allocated within the thread. */
static void *
dtorcheck2_thread (void *arg)
{
unsigned int id = (unsigned int) (uintptr_t) arg;
pthread_key_t *keys = dtorcheck_keys[id]; /* an array of KEYS_COUNT keys */
int i;
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_create (&keys[i], destructor_table[id]) == 0);
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_setspecific (keys[i],
(void *) (uintptr_t) (10 * i + id + 1))
== 0);
return NULL;
}
static void
test_tss_dtorcheck2 (void)
{
pthread_t threads[THREAD_COUNT];
unsigned int id;
int i;
uintptr_t expected_sum;
sum = 0;
/* Spawn the threads. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_create (&threads[id], NULL,
dtorcheck2_thread, (void *) (uintptr_t) id)
== 0);
/* Wait for the threads to terminate. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_join (threads[id], NULL) == 0);
/* Clean up the keys. */
for (id = 0; id < THREAD_COUNT; id++)
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_delete (dtorcheck_keys[id][i]) == 0);
/* Check that the destructor was invoked for each key. */
expected_sum = 10 * THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2)
+ KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2)
+ THREAD_COUNT * KEYS_COUNT;
if (sum != expected_sum)
abort ();
}
#undef KEYS_COUNT
#undef THREAD_COUNT
/* --- Test thread-local storage with with races between init and destroy --- */
/* Number of simultaneous threads. */
#if defined __ANDROID__
# define THREAD_COUNT 5 /* to avoid a pthread_key_create failure */
#else
# define THREAD_COUNT 10
#endif
/* Number of keys to allocate in each thread. */
#define KEYS_COUNT 10
/* Number of times to destroy and reallocate a key in each thread. */
#define REPEAT_COUNT 100000
static pthread_key_t racecheck_keys[THREAD_COUNT][KEYS_COUNT];
/* Worker thread that does many destructions and reallocations of keys, and also
uses destructors that verify that the destructor belongs to the right key. */
static void *
racecheck_thread (void *arg)
{
unsigned int id = (unsigned int) (uintptr_t) arg;
pthread_key_t *keys = racecheck_keys[id]; /* an array of KEYS_COUNT keys */
int repeat;
int i;
dbgprintf ("Worker %p started\n", pthread_self_pointer ());
for (i = 0; i < KEYS_COUNT; i++)
{
ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0);
ASSERT (pthread_setspecific (keys[i],
(void *) (uintptr_t) (10 * id + i + 1))
== 0);
}
for (repeat = REPEAT_COUNT; repeat > 0; repeat--)
{
i = ((unsigned int) rand () >> 3) % KEYS_COUNT;
dbgprintf ("Worker %p reallocating key %d\n", pthread_self_pointer (), i);
ASSERT (pthread_key_delete (keys[i]) == 0);
ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0);
ASSERT (pthread_setspecific (keys[i],
(void *) (uintptr_t) (10 * id + i + 1))
== 0);
}
dbgprintf ("Worker %p dying.\n", pthread_self_pointer ());
return NULL;
}
static void
test_tss_racecheck (void)
{
pthread_t threads[THREAD_COUNT];
unsigned int id;
int i;
uintptr_t expected_sum;
sum = 0;
/* Spawn the threads. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_create (&threads[id], NULL,
racecheck_thread, (void *) (uintptr_t) id)
== 0);
/* Wait for the threads to terminate. */
for (id = 0; id < THREAD_COUNT; id++)
ASSERT (pthread_join (threads[id], NULL) == 0);
/* Clean up the keys. */
for (id = 0; id < THREAD_COUNT; id++)
for (i = 0; i < KEYS_COUNT; i++)
ASSERT (pthread_key_delete (racecheck_keys[id][i]) == 0);
/* Check that the destructor was invoked for each key. */
expected_sum = 10 * KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2)
+ THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2)
+ THREAD_COUNT * KEYS_COUNT;
if (sum != expected_sum)
abort ();
}
#undef REPEAT_COUNT
#undef KEYS_COUNT
#undef THREAD_COUNT
/* -------------------------------------------------------------------------- */
int
main ()
{
#if HAVE_DECL_ALARM
/* Declare failure if test takes too long, by using default abort
caused by SIGALRM. */
int alarm_value = 600;
signal (SIGALRM, SIG_DFL);
alarm (alarm_value);
#endif
{
pthread_mutexattr_t attr;
ASSERT (pthread_mutexattr_init (&attr) == 0);
ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0);
ASSERT (pthread_mutex_init (&sumlock, &attr) == 0);
ASSERT (pthread_mutexattr_destroy (&attr) == 0);
}
printf ("Starting test_tss ..."); fflush (stdout);
test_tss ();
printf (" OK\n"); fflush (stdout);
printf ("Starting test_tss_dtorcheck1 ..."); fflush (stdout);
test_tss_dtorcheck1 ();
printf (" OK\n"); fflush (stdout);
printf ("Starting test_tss_dtorcheck2 ..."); fflush (stdout);
test_tss_dtorcheck2 ();
printf (" OK\n"); fflush (stdout);
printf ("Starting test_tss_racecheck ..."); fflush (stdout);
test_tss_racecheck ();
printf (" OK\n"); fflush (stdout);
return 0;
}
#else
/* No multithreading available. */
#include <stdio.h>
int
main ()
{
fputs ("Skipping test: multithreading not enabled\n", stderr);
return 77;
}
#endif