blob: 7690c78dbb69e1a78fc80cd66efaf21f7970913e [file] [log] [blame]
/*
* Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.code;
import javax.lang.model.element.Element;
import javax.lang.model.element.ElementKind;
import javax.lang.model.type.TypeKind;
import javax.tools.JavaFileObject;
import com.sun.tools.javac.code.Attribute.Array;
import com.sun.tools.javac.code.Attribute.TypeCompound;
import com.sun.tools.javac.code.Symbol.ClassSymbol;
import com.sun.tools.javac.code.Symbol.TypeSymbol;
import com.sun.tools.javac.code.Type.ArrayType;
import com.sun.tools.javac.code.Type.CapturedType;
import com.sun.tools.javac.code.Type.ClassType;
import com.sun.tools.javac.code.Type.ErrorType;
import com.sun.tools.javac.code.Type.ForAll;
import com.sun.tools.javac.code.Type.MethodType;
import com.sun.tools.javac.code.Type.PackageType;
import com.sun.tools.javac.code.Type.TypeVar;
import com.sun.tools.javac.code.Type.UndetVar;
import com.sun.tools.javac.code.Type.Visitor;
import com.sun.tools.javac.code.Type.WildcardType;
import com.sun.tools.javac.code.TypeAnnotationPosition.TypePathEntry;
import com.sun.tools.javac.code.TypeAnnotationPosition.TypePathEntryKind;
import com.sun.tools.javac.code.Symbol.VarSymbol;
import com.sun.tools.javac.code.Symbol.MethodSymbol;
import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
import com.sun.tools.javac.comp.Annotate;
import com.sun.tools.javac.comp.Attr;
import com.sun.tools.javac.comp.AttrContext;
import com.sun.tools.javac.comp.Env;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.TreeInfo;
import com.sun.tools.javac.tree.JCTree.JCBlock;
import com.sun.tools.javac.tree.JCTree.JCClassDecl;
import com.sun.tools.javac.tree.JCTree.JCExpression;
import com.sun.tools.javac.tree.JCTree.JCLambda;
import com.sun.tools.javac.tree.JCTree.JCMethodDecl;
import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
import com.sun.tools.javac.tree.JCTree.JCNewClass;
import com.sun.tools.javac.tree.JCTree.JCTypeApply;
import com.sun.tools.javac.tree.JCTree.JCVariableDecl;
import com.sun.tools.javac.tree.TreeScanner;
import com.sun.tools.javac.tree.JCTree.*;
import com.sun.tools.javac.util.Assert;
import com.sun.tools.javac.util.Context;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.util.ListBuffer;
import com.sun.tools.javac.util.Log;
import com.sun.tools.javac.util.Names;
import static com.sun.tools.javac.code.Kinds.Kind.*;
/**
* Contains operations specific to processing type annotations.
* This class has two functions:
* separate declaration from type annotations and insert the type
* annotations to their types;
* and determine the TypeAnnotationPositions for all type annotations.
*/
public class TypeAnnotations {
protected static final Context.Key<TypeAnnotations> typeAnnosKey = new Context.Key<>();
public static TypeAnnotations instance(Context context) {
TypeAnnotations instance = context.get(typeAnnosKey);
if (instance == null)
instance = new TypeAnnotations(context);
return instance;
}
final Log log;
final Names names;
final Symtab syms;
final Annotate annotate;
final Attr attr;
protected TypeAnnotations(Context context) {
context.put(typeAnnosKey, this);
names = Names.instance(context);
log = Log.instance(context);
syms = Symtab.instance(context);
annotate = Annotate.instance(context);
attr = Attr.instance(context);
}
/**
* Separate type annotations from declaration annotations and
* determine the correct positions for type annotations.
* This version only visits types in signatures and should be
* called from MemberEnter.
*/
public void organizeTypeAnnotationsSignatures(final Env<AttrContext> env, final JCClassDecl tree) {
annotate.afterTypes(() -> {
JavaFileObject oldSource = log.useSource(env.toplevel.sourcefile);
try {
new TypeAnnotationPositions(true).scan(tree);
} finally {
log.useSource(oldSource);
}
});
}
public void validateTypeAnnotationsSignatures(final Env<AttrContext> env, final JCClassDecl tree) {
annotate.validate(() -> { //validate annotations
JavaFileObject oldSource = log.useSource(env.toplevel.sourcefile);
try {
attr.validateTypeAnnotations(tree, true);
} finally {
log.useSource(oldSource);
}
});
}
/**
* This version only visits types in bodies, that is, field initializers,
* top-level blocks, and method bodies, and should be called from Attr.
*/
public void organizeTypeAnnotationsBodies(JCClassDecl tree) {
new TypeAnnotationPositions(false).scan(tree);
}
public enum AnnotationType { DECLARATION, TYPE, NONE, BOTH }
public List<Attribute> annotationTargets(TypeSymbol tsym) {
Attribute.Compound atTarget = tsym.getAnnotationTypeMetadata().getTarget();
if (atTarget == null) {
return null;
}
Attribute atValue = atTarget.member(names.value);
if (!(atValue instanceof Attribute.Array)) {
return null;
}
List<Attribute> targets = ((Array)atValue).getValue();
if (targets.stream().anyMatch(a -> !(a instanceof Attribute.Enum))) {
return null;
}
return targets;
}
/**
* Determine whether an annotation is a declaration annotation,
* a type annotation, or both.
*/
public AnnotationType annotationTargetType(Attribute.Compound a, Symbol s) {
List<Attribute> targets = annotationTargets(a.type.tsym);
return (targets == null) ?
AnnotationType.DECLARATION :
targets.stream()
.map(attr -> targetToAnnotationType(attr, s))
.reduce(AnnotationType.NONE, this::combineAnnotationType);
}
private AnnotationType combineAnnotationType(AnnotationType at1, AnnotationType at2) {
if (at1 == AnnotationType.NONE) {
return at2;
} else if (at2 == AnnotationType.NONE) {
return at1;
} else if (at1 != at2) {
return AnnotationType.BOTH;
} else {
return at1;
}
}
private AnnotationType targetToAnnotationType(Attribute a, Symbol s) {
Attribute.Enum e = (Attribute.Enum)a;
if (e.value.name == names.TYPE) {
if (s.kind == TYP)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.FIELD) {
if (s.kind == VAR &&
s.owner.kind != MTH)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.METHOD) {
if (s.kind == MTH &&
!s.isConstructor())
return AnnotationType.DECLARATION;
} else if (e.value.name == names.PARAMETER) {
if (s.kind == VAR &&
s.owner.kind == MTH &&
(s.flags() & Flags.PARAMETER) != 0)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.CONSTRUCTOR) {
if (s.kind == MTH &&
s.isConstructor())
return AnnotationType.DECLARATION;
} else if (e.value.name == names.LOCAL_VARIABLE) {
if (s.kind == VAR &&
s.owner.kind == MTH &&
(s.flags() & Flags.PARAMETER) == 0)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.ANNOTATION_TYPE) {
if (s.kind == TYP &&
(s.flags() & Flags.ANNOTATION) != 0)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.PACKAGE) {
if (s.kind == PCK)
return AnnotationType.DECLARATION;
} else if (e.value.name == names.TYPE_USE) {
if (s.kind == TYP ||
s.kind == VAR ||
(s.kind == MTH && !s.isConstructor() &&
!s.type.getReturnType().hasTag(TypeTag.VOID)) ||
(s.kind == MTH && s.isConstructor()))
return AnnotationType.TYPE;
} else if (e.value.name == names.TYPE_PARAMETER) {
/* Irrelevant in this case */
// TYPE_PARAMETER doesn't aid in distinguishing between
// Type annotations and declaration annotations on an
// Element
} else {
Assert.error("annotationTargetType(): unrecognized Attribute name " + e.value.name +
" (" + e.value.name.getClass() + ")");
return AnnotationType.DECLARATION;
}
return AnnotationType.NONE;
}
private class TypeAnnotationPositions extends TreeScanner {
private final boolean sigOnly;
TypeAnnotationPositions(boolean sigOnly) {
this.sigOnly = sigOnly;
}
/*
* When traversing the AST we keep the "frames" of visited
* trees in order to determine the position of annotations.
*/
private List<JCTree> frames = List.nil();
protected void push(JCTree t) {
frames = frames.prepend(t);
}
protected JCTree pop() {
JCTree t = frames.head;
frames = frames.tail;
return t;
}
// could this be frames.elems.tail.head?
private JCTree peek2() {
return frames.tail.head;
}
@Override
public void scan(JCTree tree) {
push(tree);
try {
super.scan(tree);
} finally {
pop();
}
}
/**
* Separates type annotations from declaration annotations.
* This step is needed because in certain locations (where declaration
* and type annotations can be mixed, e.g. the type of a field)
* we never build an JCAnnotatedType. This step finds these
* annotations and marks them as if they were part of the type.
*/
private void separateAnnotationsKinds(JCTree typetree, Type type,
Symbol sym, TypeAnnotationPosition pos)
{
List<Attribute.Compound> allAnnotations = sym.getRawAttributes();
ListBuffer<Attribute.Compound> declAnnos = new ListBuffer<>();
ListBuffer<Attribute.TypeCompound> typeAnnos = new ListBuffer<>();
ListBuffer<Attribute.TypeCompound> onlyTypeAnnos = new ListBuffer<>();
for (Attribute.Compound a : allAnnotations) {
switch (annotationTargetType(a, sym)) {
case DECLARATION:
declAnnos.append(a);
break;
case BOTH: {
declAnnos.append(a);
Attribute.TypeCompound ta = toTypeCompound(a, pos);
typeAnnos.append(ta);
break;
}
case TYPE: {
Attribute.TypeCompound ta = toTypeCompound(a, pos);
typeAnnos.append(ta);
// Also keep track which annotations are only type annotations
onlyTypeAnnos.append(ta);
break;
}
}
}
// If we have no type annotations we are done for this Symbol
if (typeAnnos.isEmpty()) {
return;
}
// Reset decl annotations to the set {all - type only}
sym.resetAnnotations();
sym.setDeclarationAttributes(declAnnos.toList());
List<Attribute.TypeCompound> typeAnnotations = typeAnnos.toList();
if (type == null) {
// When type is null, put the type annotations to the symbol.
// This is used for constructor return annotations, for which
// we use the type of the enclosing class.
type = sym.getEnclosingElement().asType();
// Declaration annotations are always allowed on constructor returns.
// Therefore, use typeAnnotations instead of onlyTypeAnnos.
typeWithAnnotations(typetree, type, typeAnnotations, typeAnnotations, pos);
// Note that we don't use the result, the call to
// typeWithAnnotations side-effects the type annotation positions.
// This is important for constructors of nested classes.
sym.appendUniqueTypeAttributes(typeAnnotations);
return;
}
// type is non-null, add type annotations from declaration context to the type
type = typeWithAnnotations(typetree, type, typeAnnotations, onlyTypeAnnos.toList(), pos);
if (sym.getKind() == ElementKind.METHOD) {
sym.type.asMethodType().restype = type;
} else if (sym.getKind() == ElementKind.PARAMETER && currentLambda == null) {
sym.type = type;
if (sym.getQualifiedName().equals(names._this)) {
sym.owner.type.asMethodType().recvtype = type;
// note that the typeAnnotations will also be added to the owner below.
} else {
MethodType methType = sym.owner.type.asMethodType();
List<VarSymbol> params = ((MethodSymbol)sym.owner).params;
List<Type> oldArgs = methType.argtypes;
ListBuffer<Type> newArgs = new ListBuffer<>();
while (params.nonEmpty()) {
if (params.head == sym) {
newArgs.add(type);
} else {
newArgs.add(oldArgs.head);
}
oldArgs = oldArgs.tail;
params = params.tail;
}
methType.argtypes = newArgs.toList();
}
} else {
sym.type = type;
}
sym.appendUniqueTypeAttributes(typeAnnotations);
if (sym.getKind() == ElementKind.PARAMETER ||
sym.getKind() == ElementKind.LOCAL_VARIABLE ||
sym.getKind() == ElementKind.RESOURCE_VARIABLE ||
sym.getKind() == ElementKind.EXCEPTION_PARAMETER) {
// Make sure all type annotations from the symbol are also
// on the owner. If the owner is an initializer block, propagate
// to the type.
final long ownerFlags = sym.owner.flags();
if ((ownerFlags & Flags.BLOCK) != 0) {
// Store init and clinit type annotations with the ClassSymbol
// to allow output in Gen.normalizeDefs.
ClassSymbol cs = (ClassSymbol) sym.owner.owner;
if ((ownerFlags & Flags.STATIC) != 0) {
cs.appendClassInitTypeAttributes(typeAnnotations);
} else {
cs.appendInitTypeAttributes(typeAnnotations);
}
} else {
sym.owner.appendUniqueTypeAttributes(sym.getRawTypeAttributes());
}
}
}
// This method has a similar purpose as
// {@link com.sun.tools.javac.parser.JavacParser.insertAnnotationsToMostInner(JCExpression, List<JCTypeAnnotation>, boolean)}
// We found a type annotation in a declaration annotation position,
// for example, on the return type.
// Such an annotation is _not_ part of an JCAnnotatedType tree and we therefore
// need to set its position explicitly.
// The method returns a copy of type that contains these annotations.
//
// As a side effect the method sets the type annotation position of "annotations".
// Note that it is assumed that all annotations share the same position.
private Type typeWithAnnotations(final JCTree typetree, final Type type,
final List<Attribute.TypeCompound> annotations,
final List<Attribute.TypeCompound> onlyTypeAnnotations,
final TypeAnnotationPosition pos)
{
if (annotations.isEmpty()) {
return type;
}
if (type.hasTag(TypeTag.ARRAY))
return rewriteArrayType((ArrayType)type, annotations, pos);
if (type.hasTag(TypeTag.TYPEVAR)) {
return type.annotatedType(onlyTypeAnnotations);
} else if (type.getKind() == TypeKind.UNION) {
// There is a TypeKind, but no TypeTag.
JCTypeUnion tutree = (JCTypeUnion)typetree;
JCExpression fst = tutree.alternatives.get(0);
Type res = typeWithAnnotations(fst, fst.type, annotations, onlyTypeAnnotations, pos);
fst.type = res;
// TODO: do we want to set res as first element in uct.alternatives?
// UnionClassType uct = (com.sun.tools.javac.code.Type.UnionClassType)type;
// Return the un-annotated union-type.
return type;
} else {
Type enclTy = type;
Element enclEl = type.asElement();
JCTree enclTr = typetree;
while (enclEl != null &&
enclEl.getKind() != ElementKind.PACKAGE &&
enclTy != null &&
enclTy.getKind() != TypeKind.NONE &&
enclTy.getKind() != TypeKind.ERROR &&
(enclTr.getKind() == JCTree.Kind.MEMBER_SELECT ||
enclTr.getKind() == JCTree.Kind.PARAMETERIZED_TYPE ||
enclTr.getKind() == JCTree.Kind.ANNOTATED_TYPE)) {
// Iterate also over the type tree, not just the type: the type is already
// completely resolved and we cannot distinguish where the annotation
// belongs for a nested type.
if (enclTr.getKind() == JCTree.Kind.MEMBER_SELECT) {
// only change encl in this case.
enclTy = enclTy.getEnclosingType();
enclEl = enclEl.getEnclosingElement();
enclTr = ((JCFieldAccess)enclTr).getExpression();
} else if (enclTr.getKind() == JCTree.Kind.PARAMETERIZED_TYPE) {
enclTr = ((JCTypeApply)enclTr).getType();
} else {
// only other option because of while condition
enclTr = ((JCAnnotatedType)enclTr).getUnderlyingType();
}
}
/** We are trying to annotate some enclosing type,
* but nothing more exists.
*/
if (enclTy != null &&
enclTy.hasTag(TypeTag.NONE)) {
switch (onlyTypeAnnotations.size()) {
case 0:
// Don't issue an error if all type annotations are
// also declaration annotations.
// If the annotations are also declaration annotations, they are
// illegal as type annotations but might be legal as declaration annotations.
// The normal declaration annotation checks make sure that the use is valid.
break;
case 1:
log.error(typetree.pos(), "cant.type.annotate.scoping.1",
onlyTypeAnnotations);
break;
default:
log.error(typetree.pos(), "cant.type.annotate.scoping",
onlyTypeAnnotations);
}
return type;
}
// At this point we have visited the part of the nested
// type that is written in the source code.
// Now count from here to the actual top-level class to determine
// the correct nesting.
// The genericLocation for the annotation.
ListBuffer<TypePathEntry> depth = new ListBuffer<>();
Type topTy = enclTy;
while (enclEl != null &&
enclEl.getKind() != ElementKind.PACKAGE &&
topTy != null &&
topTy.getKind() != TypeKind.NONE &&
topTy.getKind() != TypeKind.ERROR) {
topTy = topTy.getEnclosingType();
enclEl = enclEl.getEnclosingElement();
if (topTy != null && topTy.getKind() != TypeKind.NONE) {
// Only count enclosing types.
depth = depth.append(TypePathEntry.INNER_TYPE);
}
}
if (depth.nonEmpty()) {
// Only need to change the annotation positions
// if they are on an enclosed type.
// All annotations share the same position; modify the first one.
Attribute.TypeCompound a = annotations.get(0);
TypeAnnotationPosition p = a.position;
p.location = p.location.appendList(depth.toList());
}
Type ret = typeWithAnnotations(type, enclTy, annotations);
typetree.type = ret;
return ret;
}
}
/**
* Create a copy of the {@code Type type} with the help of the Tree for a type
* {@code JCTree typetree} inserting all type annotations in {@code annotations} to the
* innermost array component type.
*
* SIDE EFFECT: Update position for the annotations to be {@code pos}.
*/
private Type rewriteArrayType(ArrayType type, List<TypeCompound> annotations, TypeAnnotationPosition pos) {
ArrayType tomodify = new ArrayType(type);
ArrayType res = tomodify;
List<TypePathEntry> loc = List.nil();
// peel one and update loc
Type tmpType = type.elemtype;
loc = loc.prepend(TypePathEntry.ARRAY);
while (tmpType.hasTag(TypeTag.ARRAY)) {
ArrayType arr = (ArrayType)tmpType;
// Update last type with new element type
ArrayType tmp = new ArrayType(arr);
tomodify.elemtype = tmp;
tomodify = tmp;
tmpType = arr.elemtype;
loc = loc.prepend(TypePathEntry.ARRAY);
}
// Fix innermost element type
Type elemType;
if (tmpType.getMetadata() != null) {
List<TypeCompound> tcs;
if (tmpType.getAnnotationMirrors().isEmpty()) {
tcs = annotations;
} else {
// Special case, lets prepend
tcs = annotations.appendList(tmpType.getAnnotationMirrors());
}
elemType = tmpType.cloneWithMetadata(tmpType
.getMetadata()
.without(Kind.ANNOTATIONS)
.combine(new TypeMetadata.Annotations(tcs)));
} else {
elemType = tmpType.cloneWithMetadata(new TypeMetadata(new TypeMetadata.Annotations(annotations)));
}
tomodify.elemtype = elemType;
// Update positions
for (TypeCompound tc : annotations) {
if (tc.position == null)
tc.position = pos;
tc.position.location = loc;
}
return res;
}
/** Return a copy of the first type that only differs by
* inserting the annotations to the left-most/inner-most type
* or the type given by stopAt.
*
* We need the stopAt parameter to know where on a type to
* put the annotations.
* If we have nested classes Outer > Middle > Inner, and we
* have the source type "@A Middle.Inner", we will invoke
* this method with type = Outer.Middle.Inner,
* stopAt = Middle.Inner, and annotations = @A.
*
* @param type The type to copy.
* @param stopAt The type to stop at.
* @param annotations The annotations to insert.
* @return A copy of type that contains the annotations.
*/
private Type typeWithAnnotations(final Type type,
final Type stopAt,
final List<Attribute.TypeCompound> annotations) {
Visitor<Type, List<TypeCompound>> visitor =
new Type.Visitor<Type, List<Attribute.TypeCompound>>() {
@Override
public Type visitClassType(ClassType t, List<TypeCompound> s) {
// assert that t.constValue() == null?
if (t == stopAt ||
t.getEnclosingType() == Type.noType) {
return t.annotatedType(s);
} else {
ClassType ret = new ClassType(t.getEnclosingType().accept(this, s),
t.typarams_field, t.tsym,
t.getMetadata());
ret.all_interfaces_field = t.all_interfaces_field;
ret.allparams_field = t.allparams_field;
ret.interfaces_field = t.interfaces_field;
ret.rank_field = t.rank_field;
ret.supertype_field = t.supertype_field;
return ret;
}
}
@Override
public Type visitWildcardType(WildcardType t, List<TypeCompound> s) {
return t.annotatedType(s);
}
@Override
public Type visitArrayType(ArrayType t, List<TypeCompound> s) {
ArrayType ret = new ArrayType(t.elemtype.accept(this, s), t.tsym,
t.getMetadata());
return ret;
}
@Override
public Type visitMethodType(MethodType t, List<TypeCompound> s) {
// Impossible?
return t;
}
@Override
public Type visitPackageType(PackageType t, List<TypeCompound> s) {
// Impossible?
return t;
}
@Override
public Type visitTypeVar(TypeVar t, List<TypeCompound> s) {
return t.annotatedType(s);
}
@Override
public Type visitCapturedType(CapturedType t, List<TypeCompound> s) {
return t.annotatedType(s);
}
@Override
public Type visitForAll(ForAll t, List<TypeCompound> s) {
// Impossible?
return t;
}
@Override
public Type visitUndetVar(UndetVar t, List<TypeCompound> s) {
// Impossible?
return t;
}
@Override
public Type visitErrorType(ErrorType t, List<TypeCompound> s) {
return t.annotatedType(s);
}
@Override
public Type visitType(Type t, List<TypeCompound> s) {
return t.annotatedType(s);
}
};
return type.accept(visitor, annotations);
}
private Attribute.TypeCompound toTypeCompound(Attribute.Compound a, TypeAnnotationPosition p) {
// It is safe to alias the position.
return new Attribute.TypeCompound(a, p);
}
/* This is the beginning of the second part of organizing
* type annotations: determine the type annotation positions.
*/
private TypeAnnotationPosition
resolveFrame(JCTree tree,
JCTree frame,
List<JCTree> path,
JCLambda currentLambda,
int outer_type_index,
ListBuffer<TypePathEntry> location)
{
// Note that p.offset is set in
// com.sun.tools.javac.jvm.Gen.setTypeAnnotationPositions(int)
switch (frame.getKind()) {
case TYPE_CAST:
return TypeAnnotationPosition.typeCast(location.toList(),
currentLambda,
outer_type_index,
frame.pos);
case INSTANCE_OF:
return TypeAnnotationPosition.instanceOf(location.toList(),
currentLambda,
frame.pos);
case NEW_CLASS:
final JCNewClass frameNewClass = (JCNewClass) frame;
if (frameNewClass.def != null) {
// Special handling for anonymous class instantiations
final JCClassDecl frameClassDecl = frameNewClass.def;
if (frameClassDecl.implementing.contains(tree)) {
final int type_index =
frameClassDecl.implementing.indexOf(tree);
return TypeAnnotationPosition
.classExtends(location.toList(), currentLambda,
type_index, frame.pos);
} else {
//for encl.new @TA Clazz(), tree may be different from frameClassDecl.extending
return TypeAnnotationPosition
.classExtends(location.toList(), currentLambda,
frame.pos);
}
} else if (frameNewClass.typeargs.contains(tree)) {
final int type_index =
frameNewClass.typeargs.indexOf(tree);
return TypeAnnotationPosition
.constructorInvocationTypeArg(location.toList(),
currentLambda,
type_index,
frame.pos);
} else {
return TypeAnnotationPosition
.newObj(location.toList(), currentLambda,
frame.pos);
}
case NEW_ARRAY:
return TypeAnnotationPosition
.newObj(location.toList(), currentLambda, frame.pos);
case ANNOTATION_TYPE:
case CLASS:
case ENUM:
case INTERFACE:
if (((JCClassDecl)frame).extending == tree) {
return TypeAnnotationPosition
.classExtends(location.toList(), currentLambda,
frame.pos);
} else if (((JCClassDecl)frame).implementing.contains(tree)) {
final int type_index =
((JCClassDecl)frame).implementing.indexOf(tree);
return TypeAnnotationPosition
.classExtends(location.toList(), currentLambda,
type_index, frame.pos);
} else if (((JCClassDecl)frame).typarams.contains(tree)) {
final int parameter_index =
((JCClassDecl)frame).typarams.indexOf(tree);
return TypeAnnotationPosition
.typeParameter(location.toList(), currentLambda,
parameter_index, frame.pos);
} else {
throw new AssertionError("Could not determine position of tree " +
tree + " within frame " + frame);
}
case METHOD: {
final JCMethodDecl frameMethod = (JCMethodDecl) frame;
if (frameMethod.thrown.contains(tree)) {
final int type_index = frameMethod.thrown.indexOf(tree);
return TypeAnnotationPosition
.methodThrows(location.toList(), currentLambda,
type_index, frame.pos);
} else if (frameMethod.restype == tree) {
return TypeAnnotationPosition
.methodReturn(location.toList(), currentLambda,
frame.pos);
} else if (frameMethod.typarams.contains(tree)) {
final int parameter_index =
frameMethod.typarams.indexOf(tree);
return TypeAnnotationPosition
.methodTypeParameter(location.toList(),
currentLambda,
parameter_index, frame.pos);
} else {
throw new AssertionError("Could not determine position of tree " + tree +
" within frame " + frame);
}
}
case PARAMETERIZED_TYPE: {
List<JCTree> newPath = path.tail;
if (((JCTypeApply)frame).clazz == tree) {
// generic: RAW; noop
} else if (((JCTypeApply)frame).arguments.contains(tree)) {
JCTypeApply taframe = (JCTypeApply) frame;
int arg = taframe.arguments.indexOf(tree);
location = location.prepend(
new TypePathEntry(TypePathEntryKind.TYPE_ARGUMENT,
arg));
Type typeToUse;
if (newPath.tail != null &&
newPath.tail.head.hasTag(Tag.NEWCLASS)) {
// If we are within an anonymous class
// instantiation, use its type, because it
// contains a correctly nested type.
typeToUse = newPath.tail.head.type;
} else {
typeToUse = taframe.type;
}
location = locateNestedTypes(typeToUse, location);
} else {
throw new AssertionError("Could not determine type argument position of tree " + tree +
" within frame " + frame);
}
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index, location);
}
case MEMBER_REFERENCE: {
JCMemberReference mrframe = (JCMemberReference) frame;
if (mrframe.expr == tree) {
switch (mrframe.mode) {
case INVOKE:
return TypeAnnotationPosition
.methodRef(location.toList(), currentLambda,
frame.pos);
case NEW:
return TypeAnnotationPosition
.constructorRef(location.toList(),
currentLambda,
frame.pos);
default:
throw new AssertionError("Unknown method reference mode " + mrframe.mode +
" for tree " + tree + " within frame " + frame);
}
} else if (mrframe.typeargs != null &&
mrframe.typeargs.contains(tree)) {
final int type_index = mrframe.typeargs.indexOf(tree);
switch (mrframe.mode) {
case INVOKE:
return TypeAnnotationPosition
.methodRefTypeArg(location.toList(),
currentLambda,
type_index, frame.pos);
case NEW:
return TypeAnnotationPosition
.constructorRefTypeArg(location.toList(),
currentLambda,
type_index, frame.pos);
default:
throw new AssertionError("Unknown method reference mode " + mrframe.mode +
" for tree " + tree + " within frame " + frame);
}
} else {
throw new AssertionError("Could not determine type argument position of tree " + tree +
" within frame " + frame);
}
}
case ARRAY_TYPE: {
location = location.prepend(TypePathEntry.ARRAY);
List<JCTree> newPath = path.tail;
while (true) {
JCTree npHead = newPath.tail.head;
if (npHead.hasTag(JCTree.Tag.TYPEARRAY)) {
newPath = newPath.tail;
location = location.prepend(TypePathEntry.ARRAY);
} else if (npHead.hasTag(JCTree.Tag.ANNOTATED_TYPE)) {
newPath = newPath.tail;
} else {
break;
}
}
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index, location);
}
case TYPE_PARAMETER:
if (path.tail.tail.head.hasTag(JCTree.Tag.CLASSDEF)) {
final JCClassDecl clazz =
(JCClassDecl)path.tail.tail.head;
final int parameter_index =
clazz.typarams.indexOf(path.tail.head);
final int bound_index =
((JCTypeParameter)frame).bounds.get(0)
.type.isInterface() ?
((JCTypeParameter)frame).bounds.indexOf(tree) + 1:
((JCTypeParameter)frame).bounds.indexOf(tree);
return TypeAnnotationPosition
.typeParameterBound(location.toList(),
currentLambda,
parameter_index, bound_index,
frame.pos);
} else if (path.tail.tail.head.hasTag(JCTree.Tag.METHODDEF)) {
final JCMethodDecl method =
(JCMethodDecl)path.tail.tail.head;
final int parameter_index =
method.typarams.indexOf(path.tail.head);
final int bound_index =
((JCTypeParameter)frame).bounds.get(0)
.type.isInterface() ?
((JCTypeParameter)frame).bounds.indexOf(tree) + 1:
((JCTypeParameter)frame).bounds.indexOf(tree);
return TypeAnnotationPosition
.methodTypeParameterBound(location.toList(),
currentLambda,
parameter_index,
bound_index,
frame.pos);
} else {
throw new AssertionError("Could not determine position of tree " + tree +
" within frame " + frame);
}
case VARIABLE:
VarSymbol v = ((JCVariableDecl)frame).sym;
if (v.getKind() != ElementKind.FIELD) {
v.owner.appendUniqueTypeAttributes(v.getRawTypeAttributes());
}
switch (v.getKind()) {
case LOCAL_VARIABLE:
return TypeAnnotationPosition
.localVariable(location.toList(), currentLambda,
frame.pos);
case FIELD:
return TypeAnnotationPosition.field(location.toList(),
currentLambda,
frame.pos);
case PARAMETER:
if (v.getQualifiedName().equals(names._this)) {
return TypeAnnotationPosition
.methodReceiver(location.toList(),
currentLambda,
frame.pos);
} else {
final int parameter_index =
methodParamIndex(path, frame);
return TypeAnnotationPosition
.methodParameter(location.toList(),
currentLambda,
parameter_index,
frame.pos);
}
case EXCEPTION_PARAMETER:
return TypeAnnotationPosition
.exceptionParameter(location.toList(),
currentLambda,
frame.pos);
case RESOURCE_VARIABLE:
return TypeAnnotationPosition
.resourceVariable(location.toList(),
currentLambda,
frame.pos);
default:
throw new AssertionError("Found unexpected type annotation for variable: " + v + " with kind: " + v.getKind());
}
case ANNOTATED_TYPE: {
if (frame == tree) {
// This is only true for the first annotated type we see.
// For any other annotated types along the path, we do
// not care about inner types.
JCAnnotatedType atypetree = (JCAnnotatedType) frame;
final Type utype = atypetree.underlyingType.type;
Assert.checkNonNull(utype);
Symbol tsym = utype.tsym;
if (tsym.getKind().equals(ElementKind.TYPE_PARAMETER) ||
utype.getKind().equals(TypeKind.WILDCARD) ||
utype.getKind().equals(TypeKind.ARRAY)) {
// Type parameters, wildcards, and arrays have the declaring
// class/method as enclosing elements.
// There is actually nothing to do for them.
} else {
location = locateNestedTypes(utype, location);
}
}
List<JCTree> newPath = path.tail;
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index, location);
}
case UNION_TYPE: {
List<JCTree> newPath = path.tail;
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index, location);
}
case INTERSECTION_TYPE: {
JCTypeIntersection isect = (JCTypeIntersection)frame;
final List<JCTree> newPath = path.tail;
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
isect.bounds.indexOf(tree), location);
}
case METHOD_INVOCATION: {
JCMethodInvocation invocation = (JCMethodInvocation)frame;
if (!invocation.typeargs.contains(tree)) {
throw new AssertionError("{" + tree + "} is not an argument in the invocation: " + invocation);
}
MethodSymbol exsym = (MethodSymbol) TreeInfo.symbol(invocation.getMethodSelect());
final int type_index = invocation.typeargs.indexOf(tree);
if (exsym == null) {
throw new AssertionError("could not determine symbol for {" + invocation + "}");
} else if (exsym.isConstructor()) {
return TypeAnnotationPosition
.constructorInvocationTypeArg(location.toList(),
currentLambda,
type_index,
invocation.pos);
} else {
return TypeAnnotationPosition
.methodInvocationTypeArg(location.toList(),
currentLambda,
type_index,
invocation.pos);
}
}
case EXTENDS_WILDCARD:
case SUPER_WILDCARD: {
// Annotations in wildcard bounds
final List<JCTree> newPath = path.tail;
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index,
location.prepend(TypePathEntry.WILDCARD));
}
case MEMBER_SELECT: {
final List<JCTree> newPath = path.tail;
return resolveFrame(newPath.head, newPath.tail.head,
newPath, currentLambda,
outer_type_index, location);
}
default:
throw new AssertionError("Unresolved frame: " + frame +
" of kind: " + frame.getKind() +
"\n Looking for tree: " + tree);
}
}
private ListBuffer<TypePathEntry>
locateNestedTypes(Type type,
ListBuffer<TypePathEntry> depth) {
Type encl = type.getEnclosingType();
while (encl != null &&
encl.getKind() != TypeKind.NONE &&
encl.getKind() != TypeKind.ERROR) {
depth = depth.prepend(TypePathEntry.INNER_TYPE);
encl = encl.getEnclosingType();
}
return depth;
}
private int methodParamIndex(List<JCTree> path, JCTree param) {
List<JCTree> curr = path;
while (curr.head.getTag() != Tag.METHODDEF &&
curr.head.getTag() != Tag.LAMBDA) {
curr = curr.tail;
}
if (curr.head.getTag() == Tag.METHODDEF) {
JCMethodDecl method = (JCMethodDecl)curr.head;
return method.params.indexOf(param);
} else if (curr.head.getTag() == Tag.LAMBDA) {
JCLambda lambda = (JCLambda)curr.head;
return lambda.params.indexOf(param);
} else {
Assert.error("methodParamIndex expected to find method or lambda for param: " + param);
return -1;
}
}
// Each class (including enclosed inner classes) is visited separately.
// This flag is used to prevent from visiting inner classes.
private boolean isInClass = false;
@Override
public void visitClassDef(JCClassDecl tree) {
if (isInClass)
return;
isInClass = true;
if (sigOnly) {
scan(tree.mods);
scan(tree.typarams);
scan(tree.extending);
scan(tree.implementing);
}
scan(tree.defs);
}
/**
* Resolve declaration vs. type annotations in methods and
* then determine the positions.
*/
@Override
public void visitMethodDef(final JCMethodDecl tree) {
if (tree.sym == null) {
Assert.error("Visiting tree node before memberEnter");
}
if (sigOnly) {
if (!tree.mods.annotations.isEmpty()) {
if (tree.sym.isConstructor()) {
final TypeAnnotationPosition pos =
TypeAnnotationPosition.methodReturn(tree.pos);
// Use null to mark that the annotations go
// with the symbol.
separateAnnotationsKinds(tree, null, tree.sym, pos);
} else {
final TypeAnnotationPosition pos =
TypeAnnotationPosition.methodReturn(tree.restype.pos);
separateAnnotationsKinds(tree.restype,
tree.sym.type.getReturnType(),
tree.sym, pos);
}
}
if (tree.recvparam != null && tree.recvparam.sym != null &&
!tree.recvparam.mods.annotations.isEmpty()) {
// Nothing to do for separateAnnotationsKinds if
// there are no annotations of either kind.
// TODO: make sure there are no declaration annotations.
final TypeAnnotationPosition pos = TypeAnnotationPosition.methodReceiver(tree.recvparam.vartype.pos);
push(tree.recvparam);
try {
separateAnnotationsKinds(tree.recvparam.vartype, tree.recvparam.sym.type, tree.recvparam.sym, pos);
} finally {
pop();
}
}
int i = 0;
for (JCVariableDecl param : tree.params) {
if (!param.mods.annotations.isEmpty()) {
// Nothing to do for separateAnnotationsKinds if
// there are no annotations of either kind.
final TypeAnnotationPosition pos = TypeAnnotationPosition.methodParameter(i, param.vartype.pos);
push(param);
try {
separateAnnotationsKinds(param.vartype, param.sym.type, param.sym, pos);
} finally {
pop();
}
}
++i;
}
}
if (sigOnly) {
scan(tree.mods);
scan(tree.restype);
scan(tree.typarams);
scan(tree.recvparam);
scan(tree.params);
scan(tree.thrown);
} else {
scan(tree.defaultValue);
scan(tree.body);
}
}
/* Store a reference to the current lambda expression, to
* be used by all type annotations within this expression.
*/
private JCLambda currentLambda = null;
public void visitLambda(JCLambda tree) {
JCLambda prevLambda = currentLambda;
try {
currentLambda = tree;
int i = 0;
for (JCVariableDecl param : tree.params) {
if (!param.mods.annotations.isEmpty()) {
// Nothing to do for separateAnnotationsKinds if
// there are no annotations of either kind.
final TypeAnnotationPosition pos = TypeAnnotationPosition
.methodParameter(tree, i, param.vartype.pos);
push(param);
try {
separateAnnotationsKinds(param.vartype, param.sym.type, param.sym, pos);
} finally {
pop();
}
}
++i;
}
scan(tree.body);
scan(tree.params);
} finally {
currentLambda = prevLambda;
}
}
/**
* Resolve declaration vs. type annotations in variable declarations and
* then determine the positions.
*/
@Override
public void visitVarDef(final JCVariableDecl tree) {
if (tree.mods.annotations.isEmpty()) {
// Nothing to do for separateAnnotationsKinds if
// there are no annotations of either kind.
} else if (tree.sym == null) {
Assert.error("Visiting tree node before memberEnter");
} else if (tree.sym.getKind() == ElementKind.PARAMETER) {
// Parameters are handled in visitMethodDef or visitLambda.
} else if (tree.sym.getKind() == ElementKind.FIELD) {
if (sigOnly) {
TypeAnnotationPosition pos =
TypeAnnotationPosition.field(tree.pos);
separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos);
}
} else if (tree.sym.getKind() == ElementKind.LOCAL_VARIABLE) {
final TypeAnnotationPosition pos =
TypeAnnotationPosition.localVariable(currentLambda,
tree.pos);
separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos);
} else if (tree.sym.getKind() == ElementKind.EXCEPTION_PARAMETER) {
final TypeAnnotationPosition pos =
TypeAnnotationPosition.exceptionParameter(currentLambda,
tree.pos);
separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos);
} else if (tree.sym.getKind() == ElementKind.RESOURCE_VARIABLE) {
final TypeAnnotationPosition pos =
TypeAnnotationPosition.resourceVariable(currentLambda,
tree.pos);
separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos);
} else if (tree.sym.getKind() == ElementKind.ENUM_CONSTANT) {
// No type annotations can occur here.
} else {
// There is nothing else in a variable declaration that needs separation.
Assert.error("Unhandled variable kind");
}
scan(tree.mods);
scan(tree.vartype);
if (!sigOnly) {
scan(tree.init);
}
}
@Override
public void visitBlock(JCBlock tree) {
// Do not descend into top-level blocks when only interested
// in the signature.
if (!sigOnly) {
scan(tree.stats);
}
}
@Override
public void visitAnnotatedType(JCAnnotatedType tree) {
push(tree);
findPosition(tree, tree, tree.annotations);
pop();
super.visitAnnotatedType(tree);
}
@Override
public void visitTypeParameter(JCTypeParameter tree) {
findPosition(tree, peek2(), tree.annotations);
super.visitTypeParameter(tree);
}
private void copyNewClassAnnotationsToOwner(JCNewClass tree) {
Symbol sym = tree.def.sym;
final TypeAnnotationPosition pos =
TypeAnnotationPosition.newObj(tree.pos);
ListBuffer<Attribute.TypeCompound> newattrs = new ListBuffer<>();
for (Attribute.TypeCompound old : sym.getRawTypeAttributes()) {
newattrs.append(new Attribute.TypeCompound(old.type, old.values,
pos));
}
sym.owner.appendUniqueTypeAttributes(newattrs.toList());
}
@Override
public void visitNewClass(JCNewClass tree) {
if (tree.def != null &&
!tree.def.mods.annotations.isEmpty()) {
JCClassDecl classdecl = tree.def;
TypeAnnotationPosition pos;
if (classdecl.extending == tree.clazz) {
pos = TypeAnnotationPosition.classExtends(tree.pos);
} else if (classdecl.implementing.contains(tree.clazz)) {
final int index = classdecl.implementing.indexOf(tree.clazz);
pos = TypeAnnotationPosition.classExtends(index, tree.pos);
} else {
// In contrast to CLASS elsewhere, typarams cannot occur here.
throw new AssertionError("Could not determine position of tree " + tree);
}
Type before = classdecl.sym.type;
separateAnnotationsKinds(classdecl, tree.clazz.type, classdecl.sym, pos);
copyNewClassAnnotationsToOwner(tree);
// classdecl.sym.type now contains an annotated type, which
// is not what we want there.
// TODO: should we put this type somewhere in the superclass/interface?
classdecl.sym.type = before;
}
scan(tree.encl);
scan(tree.typeargs);
scan(tree.clazz);
scan(tree.args);
// The class body will already be scanned.
// scan(tree.def);
}
@Override
public void visitNewArray(JCNewArray tree) {
findPosition(tree, tree, tree.annotations);
int dimAnnosCount = tree.dimAnnotations.size();
ListBuffer<TypePathEntry> depth = new ListBuffer<>();
// handle annotations associated with dimensions
for (int i = 0; i < dimAnnosCount; ++i) {
ListBuffer<TypePathEntry> location =
new ListBuffer<TypePathEntry>();
if (i != 0) {
depth = depth.append(TypePathEntry.ARRAY);
location = location.appendList(depth.toList());
}
final TypeAnnotationPosition p =
TypeAnnotationPosition.newObj(location.toList(),
currentLambda,
tree.pos);
setTypeAnnotationPos(tree.dimAnnotations.get(i), p);
}
// handle "free" annotations
// int i = dimAnnosCount == 0 ? 0 : dimAnnosCount - 1;
// TODO: is depth.size == i here?
JCExpression elemType = tree.elemtype;
depth = depth.append(TypePathEntry.ARRAY);
while (elemType != null) {
if (elemType.hasTag(JCTree.Tag.ANNOTATED_TYPE)) {
JCAnnotatedType at = (JCAnnotatedType)elemType;
final ListBuffer<TypePathEntry> locationbuf =
locateNestedTypes(elemType.type,
new ListBuffer<TypePathEntry>());
final List<TypePathEntry> location =
locationbuf.toList().prependList(depth.toList());
final TypeAnnotationPosition p =
TypeAnnotationPosition.newObj(location, currentLambda,
tree.pos);
setTypeAnnotationPos(at.annotations, p);
elemType = at.underlyingType;
} else if (elemType.hasTag(JCTree.Tag.TYPEARRAY)) {
depth = depth.append(TypePathEntry.ARRAY);
elemType = ((JCArrayTypeTree)elemType).elemtype;
} else if (elemType.hasTag(JCTree.Tag.SELECT)) {
elemType = ((JCFieldAccess)elemType).selected;
} else {
break;
}
}
scan(tree.elems);
}
private void findTypeCompoundPosition(JCTree tree, JCTree frame, List<Attribute.TypeCompound> annotations) {
if (!annotations.isEmpty()) {
final TypeAnnotationPosition p =
resolveFrame(tree, frame, frames, currentLambda, 0, new ListBuffer<>());
for (TypeCompound tc : annotations)
tc.position = p;
}
}
private void findPosition(JCTree tree, JCTree frame, List<JCAnnotation> annotations) {
if (!annotations.isEmpty())
{
final TypeAnnotationPosition p =
resolveFrame(tree, frame, frames, currentLambda, 0, new ListBuffer<>());
setTypeAnnotationPos(annotations, p);
}
}
private void setTypeAnnotationPos(List<JCAnnotation> annotations, TypeAnnotationPosition position)
{
// attribute might be null during DeferredAttr;
// we will be back later.
for (JCAnnotation anno : annotations) {
if (anno.attribute != null)
((Attribute.TypeCompound) anno.attribute).position = position;
}
}
@Override
public String toString() {
return super.toString() + ": sigOnly: " + sigOnly;
}
}
}