blob: 4fddfb10f85545bf80deb2d86e1d50339786695a [file] [log] [blame]
/*
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.javac.comp;
import java.util.HashSet;
import java.util.Set;
import javax.tools.JavaFileObject;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.jvm.*;
import com.sun.tools.javac.tree.*;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.tree.JCTree.*;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.Flags.ANNOTATION;
import static com.sun.tools.javac.code.Kinds.*;
import static com.sun.tools.javac.code.TypeTag.CLASS;
import static com.sun.tools.javac.code.TypeTag.ERROR;
import static com.sun.tools.javac.code.TypeTag.TYPEVAR;
import static com.sun.tools.javac.tree.JCTree.Tag.*;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
/** This is the second phase of Enter, in which classes are completed
* by entering their members into the class scope using
* MemberEnter.complete(). See Enter for an overview.
*
* <p><b>This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.</b>
*/
public class MemberEnter extends JCTree.Visitor implements Completer {
protected static final Context.Key<MemberEnter> memberEnterKey = new Context.Key<>();
/** A switch to determine whether we check for package/class conflicts
*/
final static boolean checkClash = true;
private final Names names;
private final Enter enter;
private final Log log;
private final Check chk;
private final Attr attr;
private final Symtab syms;
private final TreeMaker make;
private final Todo todo;
private final Annotate annotate;
private final TypeAnnotations typeAnnotations;
private final Types types;
private final JCDiagnostic.Factory diags;
private final Source source;
private final Target target;
private final DeferredLintHandler deferredLintHandler;
private final Lint lint;
public static MemberEnter instance(Context context) {
MemberEnter instance = context.get(memberEnterKey);
if (instance == null)
instance = new MemberEnter(context);
return instance;
}
protected MemberEnter(Context context) {
context.put(memberEnterKey, this);
names = Names.instance(context);
enter = Enter.instance(context);
log = Log.instance(context);
chk = Check.instance(context);
attr = Attr.instance(context);
syms = Symtab.instance(context);
make = TreeMaker.instance(context);
todo = Todo.instance(context);
annotate = Annotate.instance(context);
typeAnnotations = TypeAnnotations.instance(context);
types = Types.instance(context);
diags = JCDiagnostic.Factory.instance(context);
source = Source.instance(context);
target = Target.instance(context);
deferredLintHandler = DeferredLintHandler.instance(context);
lint = Lint.instance(context);
allowTypeAnnos = source.allowTypeAnnotations();
}
/** Switch: support type annotations.
*/
boolean allowTypeAnnos;
/** A queue for classes whose members still need to be entered into the
* symbol table.
*/
ListBuffer<Env<AttrContext>> halfcompleted = new ListBuffer<>();
/** Set to true only when the first of a set of classes is
* processed from the half completed queue.
*/
boolean isFirst = true;
/** A flag to disable completion from time to time during member
* enter, as we only need to look up types. This avoids
* unnecessarily deep recursion.
*/
boolean completionEnabled = true;
/* ---------- Processing import clauses ----------------
*/
/** Import all classes of a class or package on demand.
* @param pos Position to be used for error reporting.
* @param tsym The class or package the members of which are imported.
* @param env The env in which the imported classes will be entered.
*/
private void importAll(int pos,
final TypeSymbol tsym,
Env<AttrContext> env) {
// Check that packages imported from exist (JLS ???).
if (tsym.kind == PCK && tsym.members().elems == null && !tsym.exists()) {
// If we can't find java.lang, exit immediately.
if (((PackageSymbol)tsym).fullname.equals(names.java_lang)) {
JCDiagnostic msg = diags.fragment("fatal.err.no.java.lang");
throw new FatalError(msg);
} else {
log.error(DiagnosticFlag.RESOLVE_ERROR, pos, "doesnt.exist", tsym);
}
}
env.toplevel.starImportScope.importAll(tsym.members());
}
/** Import all static members of a class or package on demand.
* @param pos Position to be used for error reporting.
* @param tsym The class or package the members of which are imported.
* @param env The env in which the imported classes will be entered.
*/
private void importStaticAll(int pos,
final TypeSymbol tsym,
Env<AttrContext> env) {
final JavaFileObject sourcefile = env.toplevel.sourcefile;
final Scope toScope = env.toplevel.starImportScope;
final PackageSymbol packge = env.toplevel.packge;
final TypeSymbol origin = tsym;
// enter imported types immediately
new Object() {
Set<Symbol> processed = new HashSet<>();
void importFrom(TypeSymbol tsym) {
if (tsym == null || !processed.add(tsym))
return;
// also import inherited names
importFrom(types.supertype(tsym.type).tsym);
for (Type t : types.interfaces(tsym.type))
importFrom(t.tsym);
final Scope fromScope = tsym.members();
for (Scope.Entry e = fromScope.elems; e != null; e = e.sibling) {
Symbol sym = e.sym;
if (sym.kind == TYP &&
(sym.flags() & STATIC) != 0 &&
staticImportAccessible(sym, packge) &&
sym.isMemberOf(origin, types) &&
!toScope.includes(sym))
toScope.enter(sym, fromScope, origin.members(), true);
}
}
}.importFrom(tsym);
// enter non-types before annotations that might use them
annotate.earlier(new Annotate.Worker() {
Set<Symbol> processed = new HashSet<>();
public String toString() {
return "import static " + tsym + ".*" + " in " + sourcefile;
}
void importFrom(TypeSymbol tsym) {
if (tsym == null || !processed.add(tsym))
return;
// also import inherited names
importFrom(types.supertype(tsym.type).tsym);
for (Type t : types.interfaces(tsym.type))
importFrom(t.tsym);
final Scope fromScope = tsym.members();
for (Scope.Entry e = fromScope.elems; e != null; e = e.sibling) {
Symbol sym = e.sym;
if (sym.isStatic() && sym.kind != TYP &&
staticImportAccessible(sym, packge) &&
!toScope.includes(sym) &&
sym.isMemberOf(origin, types)) {
toScope.enter(sym, fromScope, origin.members(), true);
}
}
}
public void run() {
importFrom(tsym);
}
});
}
// is the sym accessible everywhere in packge?
boolean staticImportAccessible(Symbol sym, PackageSymbol packge) {
int flags = (int)(sym.flags() & AccessFlags);
switch (flags) {
default:
case PUBLIC:
return true;
case PRIVATE:
return false;
case 0:
case PROTECTED:
return sym.packge() == packge;
}
}
/** Import statics types of a given name. Non-types are handled in Attr.
* @param pos Position to be used for error reporting.
* @param tsym The class from which the name is imported.
* @param name The (simple) name being imported.
* @param env The environment containing the named import
* scope to add to.
*/
private void importNamedStatic(final DiagnosticPosition pos,
final TypeSymbol tsym,
final Name name,
final Env<AttrContext> env) {
if (tsym.kind != TYP) {
log.error(DiagnosticFlag.RECOVERABLE, pos, "static.imp.only.classes.and.interfaces");
return;
}
final Scope toScope = env.toplevel.namedImportScope;
final PackageSymbol packge = env.toplevel.packge;
final TypeSymbol origin = tsym;
// enter imported types immediately
new Object() {
Set<Symbol> processed = new HashSet<>();
void importFrom(TypeSymbol tsym) {
if (tsym == null || !processed.add(tsym))
return;
// also import inherited names
importFrom(types.supertype(tsym.type).tsym);
for (Type t : types.interfaces(tsym.type))
importFrom(t.tsym);
for (Scope.Entry e = tsym.members().lookup(name);
e.scope != null;
e = e.next()) {
Symbol sym = e.sym;
if (sym.isStatic() &&
sym.kind == TYP &&
staticImportAccessible(sym, packge) &&
sym.isMemberOf(origin, types) &&
chk.checkUniqueStaticImport(pos, sym, toScope))
toScope.enter(sym, sym.owner.members(), origin.members(), true);
}
}
}.importFrom(tsym);
// enter non-types before annotations that might use them
annotate.earlier(new Annotate.Worker() {
Set<Symbol> processed = new HashSet<>();
boolean found = false;
public String toString() {
return "import static " + tsym + "." + name;
}
void importFrom(TypeSymbol tsym) {
if (tsym == null || !processed.add(tsym))
return;
// also import inherited names
importFrom(types.supertype(tsym.type).tsym);
for (Type t : types.interfaces(tsym.type))
importFrom(t.tsym);
for (Scope.Entry e = tsym.members().lookup(name);
e.scope != null;
e = e.next()) {
Symbol sym = e.sym;
if (sym.isStatic() &&
staticImportAccessible(sym, packge) &&
sym.isMemberOf(origin, types)) {
found = true;
if (sym.kind != TYP) {
toScope.enter(sym, sym.owner.members(), origin.members(), true);
}
}
}
}
public void run() {
JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
try {
importFrom(tsym);
if (!found) {
log.error(pos, "cant.resolve.location",
KindName.STATIC,
name, List.<Type>nil(), List.<Type>nil(),
Kinds.typeKindName(tsym.type),
tsym.type);
}
} finally {
log.useSource(prev);
}
}
});
}
/** Import given class.
* @param pos Position to be used for error reporting.
* @param tsym The class to be imported.
* @param env The environment containing the named import
* scope to add to.
*/
private void importNamed(DiagnosticPosition pos, Symbol tsym, Env<AttrContext> env) {
if (tsym.kind == TYP &&
chk.checkUniqueImport(pos, tsym, env.toplevel.namedImportScope))
env.toplevel.namedImportScope.enter(tsym, tsym.owner.members());
}
/** Construct method type from method signature.
* @param typarams The method's type parameters.
* @param params The method's value parameters.
* @param res The method's result type,
* null if it is a constructor.
* @param recvparam The method's receiver parameter,
* null if none given; TODO: or already set here?
* @param thrown The method's thrown exceptions.
* @param env The method's (local) environment.
*/
Type signature(MethodSymbol msym,
List<JCTypeParameter> typarams,
List<JCVariableDecl> params,
JCTree res,
JCVariableDecl recvparam,
List<JCExpression> thrown,
Env<AttrContext> env) {
// Enter and attribute type parameters.
List<Type> tvars = enter.classEnter(typarams, env);
attr.attribTypeVariables(typarams, env);
// Enter and attribute value parameters.
ListBuffer<Type> argbuf = new ListBuffer<>();
for (List<JCVariableDecl> l = params; l.nonEmpty(); l = l.tail) {
memberEnter(l.head, env);
argbuf.append(l.head.vartype.type);
}
// Attribute result type, if one is given.
Type restype = res == null ? syms.voidType : attr.attribType(res, env);
// Attribute receiver type, if one is given.
Type recvtype;
if (recvparam!=null) {
memberEnter(recvparam, env);
recvtype = recvparam.vartype.type;
} else {
recvtype = null;
}
// Attribute thrown exceptions.
ListBuffer<Type> thrownbuf = new ListBuffer<>();
for (List<JCExpression> l = thrown; l.nonEmpty(); l = l.tail) {
Type exc = attr.attribType(l.head, env);
if (!exc.hasTag(TYPEVAR)) {
exc = chk.checkClassType(l.head.pos(), exc);
} else if (exc.tsym.owner == msym) {
//mark inference variables in 'throws' clause
exc.tsym.flags_field |= THROWS;
}
thrownbuf.append(exc);
}
MethodType mtype = new MethodType(argbuf.toList(),
restype,
thrownbuf.toList(),
syms.methodClass);
mtype.recvtype = recvtype;
return tvars.isEmpty() ? mtype : new ForAll(tvars, mtype);
}
/* ********************************************************************
* Visitor methods for member enter
*********************************************************************/
/** Visitor argument: the current environment
*/
protected Env<AttrContext> env;
/** Enter field and method definitions and process import
* clauses, catching any completion failure exceptions.
*/
protected void memberEnter(JCTree tree, Env<AttrContext> env) {
Env<AttrContext> prevEnv = this.env;
try {
this.env = env;
tree.accept(this);
} catch (CompletionFailure ex) {
chk.completionError(tree.pos(), ex);
} finally {
this.env = prevEnv;
}
}
/** Enter members from a list of trees.
*/
void memberEnter(List<? extends JCTree> trees, Env<AttrContext> env) {
for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
memberEnter(l.head, env);
}
/** Enter members for a class.
*/
void finishClass(JCClassDecl tree, Env<AttrContext> env) {
if ((tree.mods.flags & Flags.ENUM) != 0 &&
(types.supertype(tree.sym.type).tsym.flags() & Flags.ENUM) == 0) {
addEnumMembers(tree, env);
}
memberEnter(tree.defs, env);
}
/** Add the implicit members for an enum type
* to the symbol table.
*/
private void addEnumMembers(JCClassDecl tree, Env<AttrContext> env) {
JCExpression valuesType = make.Type(new ArrayType(tree.sym.type, syms.arrayClass,
Type.noAnnotations));
// public static T[] values() { return ???; }
JCMethodDecl values = make.
MethodDef(make.Modifiers(Flags.PUBLIC|Flags.STATIC),
names.values,
valuesType,
List.<JCTypeParameter>nil(),
List.<JCVariableDecl>nil(),
List.<JCExpression>nil(), // thrown
null, //make.Block(0, Tree.emptyList.prepend(make.Return(make.Ident(names._null)))),
null);
memberEnter(values, env);
// public static T valueOf(String name) { return ???; }
JCMethodDecl valueOf = make.
MethodDef(make.Modifiers(Flags.PUBLIC|Flags.STATIC),
names.valueOf,
make.Type(tree.sym.type),
List.<JCTypeParameter>nil(),
List.of(make.VarDef(make.Modifiers(Flags.PARAMETER |
Flags.MANDATED),
names.fromString("name"),
make.Type(syms.stringType), null)),
List.<JCExpression>nil(), // thrown
null, //make.Block(0, Tree.emptyList.prepend(make.Return(make.Ident(names._null)))),
null);
memberEnter(valueOf, env);
}
public void visitTopLevel(JCCompilationUnit tree) {
if (tree.starImportScope.elems != null) {
// we must have already processed this toplevel
return;
}
DiagnosticPosition prevLintPos = deferredLintHandler.immediate();
Lint prevLint = chk.setLint(lint);
try {
// Import-on-demand java.lang.
importAll(tree.pos, syms.enterPackage(names.java_lang), env);
// Process the package def and all import clauses.
memberEnter(tree.defs, env);
} finally {
chk.setLint(prevLint);
deferredLintHandler.setPos(prevLintPos);
}
}
public void visitPackageDef(JCPackageDecl tree) {
// check that no class exists with same fully qualified name as
// toplevel package
if (checkClash && tree.pid != null) {
Symbol p = env.toplevel.packge;
while (p.owner != syms.rootPackage) {
p.owner.complete(); // enter all class members of p
if (syms.classes.get(p.getQualifiedName()) != null) {
log.error(tree.pos,
"pkg.clashes.with.class.of.same.name",
p);
}
p = p.owner;
}
}
// process package annotations
annotate.annotateLater(tree.annotations, env, env.toplevel.packge, null);
}
// process the non-static imports and the static imports of types.
public void visitImport(JCImport tree) {
JCFieldAccess imp = (JCFieldAccess)tree.qualid;
Name name = TreeInfo.name(imp);
// Create a local environment pointing to this tree to disable
// effects of other imports in Resolve.findGlobalType
Env<AttrContext> localEnv = env.dup(tree);
TypeSymbol p = attr.attribImportQualifier(tree, localEnv).tsym;
if (name == names.asterisk) {
// Import on demand.
chk.checkCanonical(imp.selected);
if (tree.staticImport)
importStaticAll(tree.pos, p, env);
else
importAll(tree.pos, p, env);
} else {
// Named type import.
if (tree.staticImport) {
importNamedStatic(tree.pos(), p, name, localEnv);
chk.checkCanonical(imp.selected);
} else {
TypeSymbol c = attribImportType(imp, localEnv).tsym;
chk.checkCanonical(imp);
importNamed(tree.pos(), c, env);
}
}
}
public void visitMethodDef(JCMethodDecl tree) {
Scope enclScope = enter.enterScope(env);
MethodSymbol m = new MethodSymbol(0, tree.name, null, enclScope.owner);
m.flags_field = chk.checkFlags(tree.pos(), tree.mods.flags, m, tree);
tree.sym = m;
//if this is a default method, add the DEFAULT flag to the enclosing interface
if ((tree.mods.flags & DEFAULT) != 0) {
m.enclClass().flags_field |= DEFAULT;
}
Env<AttrContext> localEnv = methodEnv(tree, env);
annotate.enterStart();
try {
DiagnosticPosition prevLintPos = deferredLintHandler.setPos(tree.pos());
try {
// Compute the method type
m.type = signature(m, tree.typarams, tree.params,
tree.restype, tree.recvparam,
tree.thrown,
localEnv);
} finally {
deferredLintHandler.setPos(prevLintPos);
}
if (types.isSignaturePolymorphic(m)) {
m.flags_field |= SIGNATURE_POLYMORPHIC;
}
// Set m.params
ListBuffer<VarSymbol> params = new ListBuffer<>();
JCVariableDecl lastParam = null;
for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
JCVariableDecl param = lastParam = l.head;
params.append(Assert.checkNonNull(param.sym));
}
m.params = params.toList();
// mark the method varargs, if necessary
if (lastParam != null && (lastParam.mods.flags & Flags.VARARGS) != 0)
m.flags_field |= Flags.VARARGS;
localEnv.info.scope.leave();
if (chk.checkUnique(tree.pos(), m, enclScope)) {
enclScope.enter(m);
}
annotate.annotateLater(tree.mods.annotations, localEnv, m, tree.pos());
// Visit the signature of the method. Note that
// TypeAnnotate doesn't descend into the body.
annotate.annotateTypeLater(tree, localEnv, m, tree.pos());
if (tree.defaultValue != null)
annotateDefaultValueLater(tree.defaultValue, localEnv, m);
} finally {
annotate.enterDone();
}
}
/** Create a fresh environment for method bodies.
* @param tree The method definition.
* @param env The environment current outside of the method definition.
*/
Env<AttrContext> methodEnv(JCMethodDecl tree, Env<AttrContext> env) {
Env<AttrContext> localEnv =
env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
localEnv.enclMethod = tree;
localEnv.info.scope.owner = tree.sym;
if (tree.sym.type != null) {
//when this is called in the enter stage, there's no type to be set
localEnv.info.returnResult = attr.new ResultInfo(VAL, tree.sym.type.getReturnType());
}
if ((tree.mods.flags & STATIC) != 0) localEnv.info.staticLevel++;
return localEnv;
}
public void visitVarDef(JCVariableDecl tree) {
Env<AttrContext> localEnv = env;
if ((tree.mods.flags & STATIC) != 0 ||
(env.info.scope.owner.flags() & INTERFACE) != 0) {
localEnv = env.dup(tree, env.info.dup());
localEnv.info.staticLevel++;
}
DiagnosticPosition prevLintPos = deferredLintHandler.setPos(tree.pos());
annotate.enterStart();
try {
try {
if (TreeInfo.isEnumInit(tree)) {
attr.attribIdentAsEnumType(localEnv, (JCIdent)tree.vartype);
} else {
attr.attribType(tree.vartype, localEnv);
if (tree.nameexpr != null) {
attr.attribExpr(tree.nameexpr, localEnv);
MethodSymbol m = localEnv.enclMethod.sym;
if (m.isConstructor()) {
Type outertype = m.owner.owner.type;
if (outertype.hasTag(TypeTag.CLASS)) {
checkType(tree.vartype, outertype, "incorrect.constructor.receiver.type");
checkType(tree.nameexpr, outertype, "incorrect.constructor.receiver.name");
} else {
log.error(tree, "receiver.parameter.not.applicable.constructor.toplevel.class");
}
} else {
checkType(tree.vartype, m.owner.type, "incorrect.receiver.type");
checkType(tree.nameexpr, m.owner.type, "incorrect.receiver.name");
}
}
}
} finally {
deferredLintHandler.setPos(prevLintPos);
}
if ((tree.mods.flags & VARARGS) != 0) {
//if we are entering a varargs parameter, we need to
//replace its type (a plain array type) with the more
//precise VarargsType --- we need to do it this way
//because varargs is represented in the tree as a
//modifier on the parameter declaration, and not as a
//distinct type of array node.
ArrayType atype = (ArrayType)tree.vartype.type;
tree.vartype.type = atype.makeVarargs();
}
Scope enclScope = enter.enterScope(env);
VarSymbol v =
new VarSymbol(0, tree.name, tree.vartype.type, enclScope.owner);
v.flags_field = chk.checkFlags(tree.pos(), tree.mods.flags, v, tree);
tree.sym = v;
if (tree.init != null) {
v.flags_field |= HASINIT;
if ((v.flags_field & FINAL) != 0 &&
needsLazyConstValue(tree.init)) {
Env<AttrContext> initEnv = getInitEnv(tree, env);
initEnv.info.enclVar = v;
v.setLazyConstValue(initEnv(tree, initEnv), attr, tree);
}
}
if (chk.checkUnique(tree.pos(), v, enclScope)) {
chk.checkTransparentVar(tree.pos(), v, enclScope);
enclScope.enter(v);
}
annotate.annotateLater(tree.mods.annotations, localEnv, v, tree.pos());
annotate.annotateTypeLater(tree.vartype, env, v, tree.pos());
v.pos = tree.pos;
} finally {
annotate.enterDone();
}
}
// where
void checkType(JCTree tree, Type type, String diag) {
if (!tree.type.isErroneous() && !types.isSameType(tree.type, type)) {
log.error(tree, diag, type, tree.type);
}
}
public boolean needsLazyConstValue(JCTree tree) {
InitTreeVisitor initTreeVisitor = new InitTreeVisitor();
tree.accept(initTreeVisitor);
return initTreeVisitor.result;
}
/** Visitor class for expressions which might be constant expressions.
*/
static class InitTreeVisitor extends JCTree.Visitor {
private boolean result = true;
@Override
public void visitTree(JCTree tree) {}
@Override
public void visitNewClass(JCNewClass that) {
result = false;
}
@Override
public void visitNewArray(JCNewArray that) {
result = false;
}
@Override
public void visitLambda(JCLambda that) {
result = false;
}
@Override
public void visitReference(JCMemberReference that) {
result = false;
}
@Override
public void visitApply(JCMethodInvocation that) {
result = false;
}
@Override
public void visitSelect(JCFieldAccess tree) {
tree.selected.accept(this);
}
@Override
public void visitConditional(JCConditional tree) {
tree.cond.accept(this);
tree.truepart.accept(this);
tree.falsepart.accept(this);
}
@Override
public void visitParens(JCParens tree) {
tree.expr.accept(this);
}
@Override
public void visitTypeCast(JCTypeCast tree) {
tree.expr.accept(this);
}
}
/** Create a fresh environment for a variable's initializer.
* If the variable is a field, the owner of the environment's scope
* is be the variable itself, otherwise the owner is the method
* enclosing the variable definition.
*
* @param tree The variable definition.
* @param env The environment current outside of the variable definition.
*/
Env<AttrContext> initEnv(JCVariableDecl tree, Env<AttrContext> env) {
Env<AttrContext> localEnv = env.dupto(new AttrContextEnv(tree, env.info.dup()));
if (tree.sym.owner.kind == TYP) {
localEnv.info.scope = env.info.scope.dupUnshared();
localEnv.info.scope.owner = tree.sym;
}
if ((tree.mods.flags & STATIC) != 0 ||
((env.enclClass.sym.flags() & INTERFACE) != 0 && env.enclMethod == null))
localEnv.info.staticLevel++;
return localEnv;
}
/** Default member enter visitor method: do nothing
*/
public void visitTree(JCTree tree) {
}
public void visitErroneous(JCErroneous tree) {
if (tree.errs != null)
memberEnter(tree.errs, env);
}
public Env<AttrContext> getMethodEnv(JCMethodDecl tree, Env<AttrContext> env) {
Env<AttrContext> mEnv = methodEnv(tree, env);
mEnv.info.lint = mEnv.info.lint.augment(tree.sym);
for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
mEnv.info.scope.enterIfAbsent(l.head.type.tsym);
for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail)
mEnv.info.scope.enterIfAbsent(l.head.sym);
return mEnv;
}
public Env<AttrContext> getInitEnv(JCVariableDecl tree, Env<AttrContext> env) {
Env<AttrContext> iEnv = initEnv(tree, env);
return iEnv;
}
/* ********************************************************************
* Type completion
*********************************************************************/
Type attribImportType(JCTree tree, Env<AttrContext> env) {
Assert.check(completionEnabled);
try {
// To prevent deep recursion, suppress completion of some
// types.
completionEnabled = false;
return attr.attribType(tree, env);
} finally {
completionEnabled = true;
}
}
/**
* Check if a list of annotations contains a reference to
* java.lang.Deprecated.
**/
private boolean hasDeprecatedAnnotation(List<JCAnnotation> annotations) {
for (List<JCAnnotation> al = annotations; !al.isEmpty(); al = al.tail) {
JCAnnotation a = al.head;
if (a.annotationType.type == syms.deprecatedType && a.args.isEmpty())
return true;
}
return false;
}
/** Queue processing of an attribute default value. */
void annotateDefaultValueLater(final JCExpression defaultValue,
final Env<AttrContext> localEnv,
final MethodSymbol m) {
annotate.normal(new Annotate.Worker() {
@Override
public String toString() {
return "annotate " + m.owner + "." +
m + " default " + defaultValue;
}
@Override
public void run() {
JavaFileObject prev = log.useSource(localEnv.toplevel.sourcefile);
try {
enterDefaultValue(defaultValue, localEnv, m);
} finally {
log.useSource(prev);
}
}
});
annotate.validate(new Annotate.Worker() { //validate annotations
@Override
public void run() {
JavaFileObject prev = log.useSource(localEnv.toplevel.sourcefile);
try {
// if default value is an annotation, check it is a well-formed
// annotation value (e.g. no duplicate values, no missing values, etc.)
chk.validateAnnotationTree(defaultValue);
} finally {
log.useSource(prev);
}
}
});
}
/** Enter a default value for an attribute method. */
private void enterDefaultValue(final JCExpression defaultValue,
final Env<AttrContext> localEnv,
final MethodSymbol m) {
m.defaultValue = annotate.enterAttributeValue(m.type.getReturnType(),
defaultValue,
localEnv);
}
/* ********************************************************************
* Source completer
*********************************************************************/
/** Complete entering a class.
* @param sym The symbol of the class to be completed.
*/
public void complete(Symbol sym) throws CompletionFailure {
// Suppress some (recursive) MemberEnter invocations
if (!completionEnabled) {
// Re-install same completer for next time around and return.
Assert.check((sym.flags() & Flags.COMPOUND) == 0);
sym.completer = this;
return;
}
ClassSymbol c = (ClassSymbol)sym;
ClassType ct = (ClassType)c.type;
Env<AttrContext> env = enter.typeEnvs.get(c);
JCClassDecl tree = (JCClassDecl)env.tree;
boolean wasFirst = isFirst;
isFirst = false;
JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
DiagnosticPosition prevLintPos = deferredLintHandler.setPos(tree.pos());
try {
// Save class environment for later member enter (2) processing.
halfcompleted.append(env);
// Mark class as not yet attributed.
c.flags_field |= UNATTRIBUTED;
// If this is a toplevel-class, make sure any preceding import
// clauses have been seen.
if (c.owner.kind == PCK) {
memberEnter(env.toplevel, env.enclosing(TOPLEVEL));
todo.append(env);
}
if (c.owner.kind == TYP)
c.owner.complete();
// create an environment for evaluating the base clauses
Env<AttrContext> baseEnv = baseEnv(tree, env);
if (tree.extending != null)
annotate.annotateTypeLater(tree.extending, baseEnv, sym, tree.pos());
for (JCExpression impl : tree.implementing)
annotate.annotateTypeLater(impl, baseEnv, sym, tree.pos());
annotate.flush();
// Determine supertype.
Type supertype =
(tree.extending != null)
? attr.attribBase(tree.extending, baseEnv, true, false, true)
: ((tree.mods.flags & Flags.ENUM) != 0)
? attr.attribBase(enumBase(tree.pos, c), baseEnv,
true, false, false)
: (c.fullname == names.java_lang_Object)
? Type.noType
: syms.objectType;
ct.supertype_field = modelMissingTypes(supertype, tree.extending, false);
// Determine interfaces.
ListBuffer<Type> interfaces = new ListBuffer<>();
ListBuffer<Type> all_interfaces = null; // lazy init
Set<Type> interfaceSet = new HashSet<>();
List<JCExpression> interfaceTrees = tree.implementing;
for (JCExpression iface : interfaceTrees) {
Type i = attr.attribBase(iface, baseEnv, false, true, true);
if (i.hasTag(CLASS)) {
interfaces.append(i);
if (all_interfaces != null) all_interfaces.append(i);
chk.checkNotRepeated(iface.pos(), types.erasure(i), interfaceSet);
} else {
if (all_interfaces == null)
all_interfaces = new ListBuffer<Type>().appendList(interfaces);
all_interfaces.append(modelMissingTypes(i, iface, true));
}
}
if ((c.flags_field & ANNOTATION) != 0) {
ct.interfaces_field = List.of(syms.annotationType);
ct.all_interfaces_field = ct.interfaces_field;
} else {
ct.interfaces_field = interfaces.toList();
ct.all_interfaces_field = (all_interfaces == null)
? ct.interfaces_field : all_interfaces.toList();
}
if (c.fullname == names.java_lang_Object) {
if (tree.extending != null) {
chk.checkNonCyclic(tree.extending.pos(),
supertype);
ct.supertype_field = Type.noType;
}
else if (tree.implementing.nonEmpty()) {
chk.checkNonCyclic(tree.implementing.head.pos(),
ct.interfaces_field.head);
ct.interfaces_field = List.nil();
}
}
// Annotations.
// In general, we cannot fully process annotations yet, but we
// can attribute the annotation types and then check to see if the
// @Deprecated annotation is present.
attr.attribAnnotationTypes(tree.mods.annotations, baseEnv);
if (hasDeprecatedAnnotation(tree.mods.annotations))
c.flags_field |= DEPRECATED;
annotate.annotateLater(tree.mods.annotations, baseEnv, c, tree.pos());
// class type parameters use baseEnv but everything uses env
chk.checkNonCyclicDecl(tree);
attr.attribTypeVariables(tree.typarams, baseEnv);
// Do this here, where we have the symbol.
for (JCTypeParameter tp : tree.typarams)
annotate.annotateTypeLater(tp, baseEnv, sym, tree.pos());
// Add default constructor if needed.
if ((c.flags() & INTERFACE) == 0 &&
!TreeInfo.hasConstructors(tree.defs)) {
List<Type> argtypes = List.nil();
List<Type> typarams = List.nil();
List<Type> thrown = List.nil();
long ctorFlags = 0;
boolean based = false;
boolean addConstructor = true;
JCNewClass nc = null;
if (c.name.isEmpty()) {
nc = (JCNewClass)env.next.tree;
if (nc.constructor != null) {
addConstructor = nc.constructor.kind != ERR;
Type superConstrType = types.memberType(c.type,
nc.constructor);
argtypes = superConstrType.getParameterTypes();
typarams = superConstrType.getTypeArguments();
ctorFlags = nc.constructor.flags() & VARARGS;
if (nc.encl != null) {
argtypes = argtypes.prepend(nc.encl.type);
based = true;
}
thrown = superConstrType.getThrownTypes();
}
}
if (addConstructor) {
MethodSymbol basedConstructor = nc != null ?
(MethodSymbol)nc.constructor : null;
JCTree constrDef = DefaultConstructor(make.at(tree.pos), c,
basedConstructor,
typarams, argtypes, thrown,
ctorFlags, based);
tree.defs = tree.defs.prepend(constrDef);
}
}
// enter symbols for 'this' into current scope.
VarSymbol thisSym =
new VarSymbol(FINAL | HASINIT, names._this, c.type, c);
thisSym.pos = Position.FIRSTPOS;
env.info.scope.enter(thisSym);
// if this is a class, enter symbol for 'super' into current scope.
if ((c.flags_field & INTERFACE) == 0 &&
ct.supertype_field.hasTag(CLASS)) {
VarSymbol superSym =
new VarSymbol(FINAL | HASINIT, names._super,
ct.supertype_field, c);
superSym.pos = Position.FIRSTPOS;
env.info.scope.enter(superSym);
}
// check that no package exists with same fully qualified name,
// but admit classes in the unnamed package which have the same
// name as a top-level package.
if (checkClash &&
c.owner.kind == PCK && c.owner != syms.unnamedPackage &&
syms.packageExists(c.fullname)) {
log.error(tree.pos, "clash.with.pkg.of.same.name", Kinds.kindName(sym), c);
}
if (c.owner.kind == PCK && (c.flags_field & PUBLIC) == 0 &&
!env.toplevel.sourcefile.isNameCompatible(c.name.toString(),JavaFileObject.Kind.SOURCE)) {
c.flags_field |= AUXILIARY;
}
} catch (CompletionFailure ex) {
chk.completionError(tree.pos(), ex);
} finally {
deferredLintHandler.setPos(prevLintPos);
log.useSource(prev);
}
// Enter all member fields and methods of a set of half completed
// classes in a second phase.
if (wasFirst) {
try {
while (halfcompleted.nonEmpty()) {
Env<AttrContext> toFinish = halfcompleted.next();
finish(toFinish);
if (allowTypeAnnos) {
typeAnnotations.organizeTypeAnnotationsSignatures(toFinish, (JCClassDecl)toFinish.tree);
typeAnnotations.validateTypeAnnotationsSignatures(toFinish, (JCClassDecl)toFinish.tree);
}
}
} finally {
isFirst = true;
}
}
}
private Env<AttrContext> baseEnv(JCClassDecl tree, Env<AttrContext> env) {
Scope baseScope = new Scope(tree.sym);
//import already entered local classes into base scope
for (Scope.Entry e = env.outer.info.scope.elems ; e != null ; e = e.sibling) {
if (e.sym.isLocal()) {
baseScope.enter(e.sym);
}
}
//import current type-parameters into base scope
if (tree.typarams != null)
for (List<JCTypeParameter> typarams = tree.typarams;
typarams.nonEmpty();
typarams = typarams.tail)
baseScope.enter(typarams.head.type.tsym);
Env<AttrContext> outer = env.outer; // the base clause can't see members of this class
Env<AttrContext> localEnv = outer.dup(tree, outer.info.dup(baseScope));
localEnv.baseClause = true;
localEnv.outer = outer;
localEnv.info.isSelfCall = false;
return localEnv;
}
/** Enter member fields and methods of a class
* @param env the environment current for the class block.
*/
private void finish(Env<AttrContext> env) {
JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
try {
JCClassDecl tree = (JCClassDecl)env.tree;
finishClass(tree, env);
} finally {
log.useSource(prev);
}
}
/** Generate a base clause for an enum type.
* @param pos The position for trees and diagnostics, if any
* @param c The class symbol of the enum
*/
private JCExpression enumBase(int pos, ClassSymbol c) {
JCExpression result = make.at(pos).
TypeApply(make.QualIdent(syms.enumSym),
List.<JCExpression>of(make.Type(c.type)));
return result;
}
Type modelMissingTypes(Type t, final JCExpression tree, final boolean interfaceExpected) {
if (!t.hasTag(ERROR))
return t;
return new ErrorType(t.getOriginalType(), t.tsym) {
private Type modelType;
@Override
public Type getModelType() {
if (modelType == null)
modelType = new Synthesizer(getOriginalType(), interfaceExpected).visit(tree);
return modelType;
}
};
}
// where
private class Synthesizer extends JCTree.Visitor {
Type originalType;
boolean interfaceExpected;
List<ClassSymbol> synthesizedSymbols = List.nil();
Type result;
Synthesizer(Type originalType, boolean interfaceExpected) {
this.originalType = originalType;
this.interfaceExpected = interfaceExpected;
}
Type visit(JCTree tree) {
tree.accept(this);
return result;
}
List<Type> visit(List<? extends JCTree> trees) {
ListBuffer<Type> lb = new ListBuffer<>();
for (JCTree t: trees)
lb.append(visit(t));
return lb.toList();
}
@Override
public void visitTree(JCTree tree) {
result = syms.errType;
}
@Override
public void visitIdent(JCIdent tree) {
if (!tree.type.hasTag(ERROR)) {
result = tree.type;
} else {
result = synthesizeClass(tree.name, syms.unnamedPackage).type;
}
}
@Override
public void visitSelect(JCFieldAccess tree) {
if (!tree.type.hasTag(ERROR)) {
result = tree.type;
} else {
Type selectedType;
boolean prev = interfaceExpected;
try {
interfaceExpected = false;
selectedType = visit(tree.selected);
} finally {
interfaceExpected = prev;
}
ClassSymbol c = synthesizeClass(tree.name, selectedType.tsym);
result = c.type;
}
}
@Override
public void visitTypeApply(JCTypeApply tree) {
if (!tree.type.hasTag(ERROR)) {
result = tree.type;
} else {
ClassType clazzType = (ClassType) visit(tree.clazz);
if (synthesizedSymbols.contains(clazzType.tsym))
synthesizeTyparams((ClassSymbol) clazzType.tsym, tree.arguments.size());
final List<Type> actuals = visit(tree.arguments);
result = new ErrorType(tree.type, clazzType.tsym) {
@Override
public List<Type> getTypeArguments() {
return actuals;
}
};
}
}
ClassSymbol synthesizeClass(Name name, Symbol owner) {
int flags = interfaceExpected ? INTERFACE : 0;
ClassSymbol c = new ClassSymbol(flags, name, owner);
c.members_field = new Scope.ErrorScope(c);
c.type = new ErrorType(originalType, c) {
@Override
public List<Type> getTypeArguments() {
return typarams_field;
}
};
synthesizedSymbols = synthesizedSymbols.prepend(c);
return c;
}
void synthesizeTyparams(ClassSymbol sym, int n) {
ClassType ct = (ClassType) sym.type;
Assert.check(ct.typarams_field.isEmpty());
if (n == 1) {
TypeVar v = new TypeVar(names.fromString("T"), sym, syms.botType,
Type.noAnnotations);
ct.typarams_field = ct.typarams_field.prepend(v);
} else {
for (int i = n; i > 0; i--) {
TypeVar v = new TypeVar(names.fromString("T" + i), sym,
syms.botType, Type.noAnnotations);
ct.typarams_field = ct.typarams_field.prepend(v);
}
}
}
}
/* ***************************************************************************
* tree building
****************************************************************************/
/** Generate default constructor for given class. For classes different
* from java.lang.Object, this is:
*
* c(argtype_0 x_0, ..., argtype_n x_n) throws thrown {
* super(x_0, ..., x_n)
* }
*
* or, if based == true:
*
* c(argtype_0 x_0, ..., argtype_n x_n) throws thrown {
* x_0.super(x_1, ..., x_n)
* }
*
* @param make The tree factory.
* @param c The class owning the default constructor.
* @param argtypes The parameter types of the constructor.
* @param thrown The thrown exceptions of the constructor.
* @param based Is first parameter a this$n?
*/
JCTree DefaultConstructor(TreeMaker make,
ClassSymbol c,
MethodSymbol baseInit,
List<Type> typarams,
List<Type> argtypes,
List<Type> thrown,
long flags,
boolean based) {
JCTree result;
if ((c.flags() & ENUM) != 0 &&
(types.supertype(c.type).tsym == syms.enumSym)) {
// constructors of true enums are private
flags = (flags & ~AccessFlags) | PRIVATE | GENERATEDCONSTR;
} else
flags |= (c.flags() & AccessFlags) | GENERATEDCONSTR;
if (c.name.isEmpty()) {
flags |= ANONCONSTR;
}
Type mType = new MethodType(argtypes, null, thrown, c);
Type initType = typarams.nonEmpty() ?
new ForAll(typarams, mType) :
mType;
MethodSymbol init = new MethodSymbol(flags, names.init,
initType, c);
init.params = createDefaultConstructorParams(make, baseInit, init,
argtypes, based);
List<JCVariableDecl> params = make.Params(argtypes, init);
List<JCStatement> stats = List.nil();
if (c.type != syms.objectType) {
stats = stats.prepend(SuperCall(make, typarams, params, based));
}
result = make.MethodDef(init, make.Block(0, stats));
return result;
}
private List<VarSymbol> createDefaultConstructorParams(
TreeMaker make,
MethodSymbol baseInit,
MethodSymbol init,
List<Type> argtypes,
boolean based) {
List<VarSymbol> initParams = null;
List<Type> argTypesList = argtypes;
if (based) {
/* In this case argtypes will have an extra type, compared to baseInit,
* corresponding to the type of the enclosing instance i.e.:
*
* Inner i = outer.new Inner(1){}
*
* in the above example argtypes will be (Outer, int) and baseInit
* will have parameter's types (int). So in this case we have to add
* first the extra type in argtypes and then get the names of the
* parameters from baseInit.
*/
initParams = List.nil();
VarSymbol param = new VarSymbol(PARAMETER, make.paramName(0), argtypes.head, init);
initParams = initParams.append(param);
argTypesList = argTypesList.tail;
}
if (baseInit != null && baseInit.params != null &&
baseInit.params.nonEmpty() && argTypesList.nonEmpty()) {
initParams = (initParams == null) ? List.<VarSymbol>nil() : initParams;
List<VarSymbol> baseInitParams = baseInit.params;
while (baseInitParams.nonEmpty() && argTypesList.nonEmpty()) {
VarSymbol param = new VarSymbol(baseInitParams.head.flags() | PARAMETER,
baseInitParams.head.name, argTypesList.head, init);
initParams = initParams.append(param);
baseInitParams = baseInitParams.tail;
argTypesList = argTypesList.tail;
}
}
return initParams;
}
/** Generate call to superclass constructor. This is:
*
* super(id_0, ..., id_n)
*
* or, if based == true
*
* id_0.super(id_1,...,id_n)
*
* where id_0, ..., id_n are the names of the given parameters.
*
* @param make The tree factory
* @param params The parameters that need to be passed to super
* @param typarams The type parameters that need to be passed to super
* @param based Is first parameter a this$n?
*/
JCExpressionStatement SuperCall(TreeMaker make,
List<Type> typarams,
List<JCVariableDecl> params,
boolean based) {
JCExpression meth;
if (based) {
meth = make.Select(make.Ident(params.head), names._super);
params = params.tail;
} else {
meth = make.Ident(names._super);
}
List<JCExpression> typeargs = typarams.nonEmpty() ? make.Types(typarams) : null;
return make.Exec(make.Apply(typeargs, meth, make.Idents(params)));
}
}