blob: b8de1b49788772e55b4f766a4a5577baa1bb8ed2 [file] [log] [blame]
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//
// Little cms
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Vector & Matrix stuff
#include "lcms.h"
void cdecl VEC3init(LPVEC3 r, double x, double y, double z);
void cdecl VEC3initF(LPWVEC3 r, double x, double y, double z);
void cdecl VEC3toFix(LPWVEC3 r, LPVEC3 v);
void cdecl VEC3scaleFix(LPWORD r, LPWVEC3 Scale);
void cdecl VEC3swap(LPVEC3 a, LPVEC3 b);
void cdecl VEC3divK(LPVEC3 r, LPVEC3 v, double d);
void cdecl VEC3perK(LPVEC3 r, LPVEC3 v, double d);
void cdecl VEC3perComp(LPVEC3 r, LPVEC3 a, LPVEC3 b);
void cdecl VEC3minus(LPVEC3 r, LPVEC3 a, LPVEC3 b);
void cdecl VEC3scaleAndCut(LPWVEC3 r, LPVEC3 v, double d);
void cdecl VEC3cross(LPVEC3 r, LPVEC3 u, LPVEC3 v);
void cdecl VEC3saturate(LPVEC3 v);
double cdecl VEC3length(LPVEC3 a);
double cdecl VEC3distance(LPVEC3 a, LPVEC3 b);
void cdecl MAT3identity(LPMAT3 a);
void cdecl MAT3per(LPMAT3 r, LPMAT3 a, LPMAT3 b);
int cdecl MAT3inverse(LPMAT3 a, LPMAT3 b);
LCMSBOOL cdecl MAT3solve(LPVEC3 x, LPMAT3 a, LPVEC3 b);
double cdecl MAT3det(LPMAT3 m);
void cdecl MAT3eval(LPVEC3 r, LPMAT3 a, LPVEC3 v);
void cdecl MAT3toFix(LPWMAT3 r, LPMAT3 v);
void cdecl MAT3evalW(LPWVEC3 r, LPWMAT3 a, LPWVEC3 v);
void cdecl MAT3perK(LPMAT3 r, LPMAT3 v, double d);
void cdecl MAT3scaleAndCut(LPWMAT3 r, LPMAT3 v, double d);
// --------------------- Implementation ----------------------------
#define DSWAP(x, y) {double tmp = (x); (x)=(y); (y)=tmp;}
#ifdef USE_ASSEMBLER
#ifdef _MSC_VER
#pragma warning(disable : 4033)
#pragma warning(disable : 4035)
#endif
Fixed32 FixedMul(Fixed32 a, Fixed32 b)
{
ASM {
mov eax, ss:a
mov edx, ss:b
imul edx
add eax, 0x8000
adc edx, 0
shrd eax, edx, 16
}
RET(_EAX);
}
Fixed32 FixedSquare(Fixed32 a)
{
ASM {
pushf
push edx
mov eax, ss:a
imul eax
add eax, 0x8000
adc edx, 0
shrd eax, edx, 16
sar eax, 16
pop edx
popf
}
RET(_EAX);
}
// Linear intERPolation
// a * (h - l) >> 16 + l
Fixed32 FixedLERP(Fixed32 a, Fixed32 l, Fixed32 h)
{
ASM {
mov eax, dword ptr ss:h
mov edx, dword ptr ss:l
push edx
mov ecx, dword ptr ss:a
sub eax, edx
imul ecx
add eax, 0x8000
adc edx, 0
shrd eax, edx, 16
pop edx
add eax, edx
}
RET(_EAX);
}
// a as word is scaled by s as float
WORD FixedScale(WORD a, Fixed32 s)
{
ASM {
xor eax,eax
mov ax, ss:a // This is faster that movzx eax, ss:a
sal eax, 16
mov edx, ss:s
mul edx
add eax, 0x8000
adc edx, 0
mov eax, edx
}
RET(_EAX);
}
#ifdef _MSC_VER
#pragma warning(default : 4033)
#pragma warning(default : 4035)
#endif
#else
// These are floating point versions for compilers that doesn't
// support asm at all. Use with care, since this will slow down
// all operations
Fixed32 FixedMul(Fixed32 a, Fixed32 b)
{
#ifdef USE_INT64
LCMSULONGLONG l = (LCMSULONGLONG) (LCMSSLONGLONG) a * (LCMSULONGLONG) (LCMSSLONGLONG) b + (LCMSULONGLONG) 0x8000;
l >>= 16;
return (Fixed32) l;
#else
return DOUBLE_TO_FIXED(FIXED_TO_DOUBLE(a) * FIXED_TO_DOUBLE(b));
#endif
}
Fixed32 FixedSquare(Fixed32 a)
{
return FixedMul(a, a);
}
Fixed32 FixedLERP(Fixed32 a, Fixed32 l, Fixed32 h)
{
#ifdef USE_INT64
LCMSULONGLONG dif = (LCMSULONGLONG) (h - l) * a + 0x8000;
dif = (dif >> 16) + l;
return (Fixed32) (dif);
#else
double dif = h - l;
dif *= a;
dif /= 65536.0;
dif += l;
return (Fixed32) (dif + 0.5);
#endif
}
WORD FixedScale(WORD a, Fixed32 s)
{
return (WORD) (a * FIXED_TO_DOUBLE(s));
}
#endif
#ifndef USE_INLINE
Fixed32 ToFixedDomain(int a)
{
return a + ((a + 0x7fff) / 0xffff);
}
int FromFixedDomain(Fixed32 a)
{
return a - ((a + 0x7fff) >> 16);
}
#endif
// Initiate a vector (double version)
void VEC3init(LPVEC3 r, double x, double y, double z)
{
r -> n[VX] = x;
r -> n[VY] = y;
r -> n[VZ] = z;
}
// Init a vector (fixed version)
void VEC3initF(LPWVEC3 r, double x, double y, double z)
{
r -> n[VX] = DOUBLE_TO_FIXED(x);
r -> n[VY] = DOUBLE_TO_FIXED(y);
r -> n[VZ] = DOUBLE_TO_FIXED(z);
}
// Convert to fixed point encoding is 1.0 = 0xFFFF
void VEC3toFix(LPWVEC3 r, LPVEC3 v)
{
r -> n[VX] = DOUBLE_TO_FIXED(v -> n[VX]);
r -> n[VY] = DOUBLE_TO_FIXED(v -> n[VY]);
r -> n[VZ] = DOUBLE_TO_FIXED(v -> n[VZ]);
}
// Convert from fixed point
void VEC3fromFix(LPVEC3 r, LPWVEC3 v)
{
r -> n[VX] = FIXED_TO_DOUBLE(v -> n[VX]);
r -> n[VY] = FIXED_TO_DOUBLE(v -> n[VY]);
r -> n[VZ] = FIXED_TO_DOUBLE(v -> n[VZ]);
}
// Swap two double vectors
void VEC3swap(LPVEC3 a, LPVEC3 b)
{
DSWAP(a-> n[VX], b-> n[VX]);
DSWAP(a-> n[VY], b-> n[VY]);
DSWAP(a-> n[VZ], b-> n[VZ]);
}
// Divide a vector by a constant
void VEC3divK(LPVEC3 r, LPVEC3 v, double d)
{
double d_inv = 1./d;
r -> n[VX] = v -> n[VX] * d_inv;
r -> n[VY] = v -> n[VY] * d_inv;
r -> n[VZ] = v -> n[VZ] * d_inv;
}
// Multiply by a constant
void VEC3perK(LPVEC3 r, LPVEC3 v, double d )
{
r -> n[VX] = v -> n[VX] * d;
r -> n[VY] = v -> n[VY] * d;
r -> n[VZ] = v -> n[VZ] * d;
}
void VEC3perComp(LPVEC3 r, LPVEC3 a, LPVEC3 b)
{
r -> n[VX] = a->n[VX]*b->n[VX];
r -> n[VY] = a->n[VY]*b->n[VY];
r -> n[VZ] = a->n[VZ]*b->n[VZ];
}
// Minus
void VEC3minus(LPVEC3 r, LPVEC3 a, LPVEC3 b)
{
r -> n[VX] = a -> n[VX] - b -> n[VX];
r -> n[VY] = a -> n[VY] - b -> n[VY];
r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
}
// Check id two vectors are the same, allowing tolerance
static
LCMSBOOL RangeCheck(double l, double h, double v)
{
return (v >= l && v <= h);
}
LCMSBOOL VEC3equal(LPWVEC3 a, LPWVEC3 b, double Tolerance)
{
int i;
double c;
for (i=0; i < 3; i++)
{
c = FIXED_TO_DOUBLE(a -> n[i]);
if (!RangeCheck(c - Tolerance,
c + Tolerance,
FIXED_TO_DOUBLE(b->n[i]))) return FALSE;
}
return TRUE;
}
LCMSBOOL VEC3equalF(LPVEC3 a, LPVEC3 b, double Tolerance)
{
int i;
double c;
for (i=0; i < 3; i++)
{
c = a -> n[i];
if (!RangeCheck(c - Tolerance,
c + Tolerance,
b->n[i])) return FALSE;
}
return TRUE;
}
void VEC3scaleFix(LPWORD r, LPWVEC3 Scale)
{
if (Scale -> n[VX] == 0x00010000L &&
Scale -> n[VY] == 0x00010000L &&
Scale -> n[VZ] == 0x00010000L) return;
r[0] = (WORD) FixedScale(r[0], Scale -> n[VX]);
r[1] = (WORD) FixedScale(r[1], Scale -> n[VY]);
r[2] = (WORD) FixedScale(r[2], Scale -> n[VZ]);
}
// Vector cross product
void VEC3cross(LPVEC3 r, LPVEC3 u, LPVEC3 v)
{
r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
}
// The vector size
double VEC3length(LPVEC3 a)
{
return sqrt(a ->n[VX] * a ->n[VX] +
a ->n[VY] * a ->n[VY] +
a ->n[VZ] * a ->n[VZ]);
}
// Saturate a vector into 0..1.0 range
void VEC3saturate(LPVEC3 v)
{
int i;
for (i=0; i < 3; i++) {
if (v ->n[i] < 0)
v ->n[i] = 0;
else
if (v ->n[i] > 1.0)
v ->n[i] = 1.0;
}
}
// Euclidean distance
double VEC3distance(LPVEC3 a, LPVEC3 b)
{
double d1 = a ->n[VX] - b ->n[VX];
double d2 = a ->n[VY] - b ->n[VY];
double d3 = a ->n[VZ] - b ->n[VZ];
return sqrt(d1*d1 + d2*d2 + d3*d3);
}
// Identity
void MAT3identity(LPMAT3 a)
{
VEC3init(&a-> v[0], 1.0, 0.0, 0.0);
VEC3init(&a-> v[1], 0.0, 1.0, 0.0);
VEC3init(&a-> v[2], 0.0, 0.0, 1.0);
}
// Check if matrix is Identity. Allow a tolerance as %
LCMSBOOL MAT3isIdentity(LPWMAT3 a, double Tolerance)
{
int i;
MAT3 Idd;
WMAT3 Idf;
MAT3identity(&Idd);
MAT3toFix(&Idf, &Idd);
for (i=0; i < 3; i++)
if (!VEC3equal(&a -> v[i], &Idf.v[i], Tolerance)) return FALSE;
return TRUE;
}
// Multiply two matrices
void MAT3per(LPMAT3 r, LPMAT3 a, LPMAT3 b)
{
#define ROWCOL(i, j) \
a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
VEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
VEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
VEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
#undef ROWCOL //(i, j)
}
// Inverse of a matrix b = a^(-1)
// Gauss-Jordan elimination with partial pivoting
int MAT3inverse(LPMAT3 a, LPMAT3 b)
{
register int i, j, max;
MAT3identity(b);
// Loop over cols of a from left to right, eliminating above and below diag
for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
max = j; // Row with largest pivot candidate
for (i=j+1; i<3; i++)
if (fabs(a -> v[i].n[j]) > fabs(a -> v[max].n[j]))
max = i;
// Swap rows max and j in a and b to put pivot on diagonal
VEC3swap(&a -> v[max], &a -> v[j]);
VEC3swap(&b -> v[max], &b -> v[j]);
// Scale row j to have a unit diagonal
if (a -> v[j].n[j]==0.)
return -1; // singular matrix; can't invert
VEC3divK(&b-> v[j], &b -> v[j], a->v[j].n[j]);
VEC3divK(&a-> v[j], &a -> v[j], a->v[j].n[j]);
// Eliminate off-diagonal elems in col j of a, doing identical ops to b
for (i=0; i<3; i++)
if (i !=j) {
VEC3 temp;
VEC3perK(&temp, &b -> v[j], a -> v[i].n[j]);
VEC3minus(&b -> v[i], &b -> v[i], &temp);
VEC3perK(&temp, &a -> v[j], a -> v[i].n[j]);
VEC3minus(&a -> v[i], &a -> v[i], &temp);
}
}
return 1;
}
// Solve a system in the form Ax = b
LCMSBOOL MAT3solve(LPVEC3 x, LPMAT3 a, LPVEC3 b)
{
MAT3 m, a_1;
CopyMemory(&m, a, sizeof(MAT3));
if (!MAT3inverse(&m, &a_1)) return FALSE; // Singular matrix
MAT3eval(x, &a_1, b);
return TRUE;
}
// The determinant
double MAT3det(LPMAT3 m)
{
double a1 = m ->v[VX].n[VX];
double a2 = m ->v[VX].n[VY];
double a3 = m ->v[VX].n[VZ];
double b1 = m ->v[VY].n[VX];
double b2 = m ->v[VY].n[VY];
double b3 = m ->v[VY].n[VZ];
double c1 = m ->v[VZ].n[VX];
double c2 = m ->v[VZ].n[VY];
double c3 = m ->v[VZ].n[VZ];
return a1*b2*c3 - a1*b3*c2 + a2*b3*c1 - a2*b1*c3 - a3*b1*c2 - a3*b2*c1;
}
// linear transform
void MAT3eval(LPVEC3 r, LPMAT3 a, LPVEC3 v)
{
r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
}
// Ok, this is another bottleneck of performance.
#ifdef USE_ASSEMBLER
// ecx:ebx is result in 64 bits format
// edi points to matrix, esi points to input vector
// since only 3 accesses are in output, this is a stack variable
void MAT3evalW(LPWVEC3 r_, LPWMAT3 a_, LPWVEC3 v_)
{
ASM {
mov esi, dword ptr ss:v_
mov edi, dword ptr ss:a_
// r->n[VX] = FixedMul(a->v[0].n[0], v->n[0]) +
mov eax,dword ptr [esi]
mov edx,dword ptr [edi]
imul edx
mov ecx, eax
mov ebx, edx
// FixedMul(a->v[0].n[1], v->n[1]) +
mov eax,dword ptr [esi+4]
mov edx,dword ptr [edi+4]
imul edx
add ecx, eax
adc ebx, edx
// FixedMul(a->v[0].n[2], v->n[2]);
mov eax,dword ptr [esi+8]
mov edx,dword ptr [edi+8]
imul edx
add ecx, eax
adc ebx, edx
// Back to Fixed 15.16
add ecx, 0x8000
adc ebx, 0
shrd ecx, ebx, 16
push edi
mov edi, dword ptr ss:r_
mov dword ptr [edi], ecx // r -> n[VX]
pop edi
// 2nd row ***************************
// FixedMul(a->v[1].n[0], v->n[0])
mov eax,dword ptr [esi]
mov edx,dword ptr [edi+12]
imul edx
mov ecx, eax
mov ebx, edx
// FixedMul(a->v[1].n[1], v->n[1]) +
mov eax,dword ptr [esi+4]
mov edx,dword ptr [edi+16]
imul edx
add ecx, eax
adc ebx, edx
// FixedMul(a->v[1].n[2], v->n[2]);
mov eax,dword ptr [esi+8]
mov edx,dword ptr [edi+20]
imul edx
add ecx, eax
adc ebx, edx
add ecx, 0x8000
adc ebx, 0
shrd ecx, ebx, 16
push edi
mov edi, dword ptr ss:r_
mov dword ptr [edi+4], ecx // r -> n[VY]
pop edi
// 3d row **************************
// r->n[VZ] = FixedMul(a->v[2].n[0], v->n[0]) +
mov eax,dword ptr [esi]
mov edx,dword ptr [edi+24]
imul edx
mov ecx, eax
mov ebx, edx
// FixedMul(a->v[2].n[1], v->n[1]) +
mov eax,dword ptr [esi+4]
mov edx,dword ptr [edi+28]
imul edx
add ecx, eax
adc ebx, edx
// FixedMul(a->v[2].n[2], v->n[2]);
mov eax,dword ptr [esi+8]
mov edx,dword ptr [edi+32]
imul edx
add ecx, eax
adc ebx, edx
add ecx, 0x8000
adc ebx, 0
shrd ecx, ebx, 16
mov edi, dword ptr ss:r_
mov dword ptr [edi+8], ecx // r -> n[VZ]
}
}
#else
#ifdef USE_FLOAT
void MAT3evalW(LPWVEC3 r, LPWMAT3 a, LPWVEC3 v)
{
r->n[VX] = DOUBLE_TO_FIXED(
FIXED_TO_DOUBLE(a->v[0].n[0]) * FIXED_TO_DOUBLE(v->n[0]) +
FIXED_TO_DOUBLE(a->v[0].n[1]) * FIXED_TO_DOUBLE(v->n[1]) +
FIXED_TO_DOUBLE(a->v[0].n[2]) * FIXED_TO_DOUBLE(v->n[2])
);
r->n[VY] = DOUBLE_TO_FIXED(
FIXED_TO_DOUBLE(a->v[1].n[0]) * FIXED_TO_DOUBLE(v->n[0]) +
FIXED_TO_DOUBLE(a->v[1].n[1]) * FIXED_TO_DOUBLE(v->n[1]) +
FIXED_TO_DOUBLE(a->v[1].n[2]) * FIXED_TO_DOUBLE(v->n[2])
);
r->n[VZ] = DOUBLE_TO_FIXED(
FIXED_TO_DOUBLE(a->v[2].n[0]) * FIXED_TO_DOUBLE(v->n[0]) +
FIXED_TO_DOUBLE(a->v[2].n[1]) * FIXED_TO_DOUBLE(v->n[1]) +
FIXED_TO_DOUBLE(a->v[2].n[2]) * FIXED_TO_DOUBLE(v->n[2])
);
}
#else
void MAT3evalW(LPWVEC3 r, LPWMAT3 a, LPWVEC3 v)
{
#ifdef USE_INT64
LCMSULONGLONG l1 = (LCMSULONGLONG) (LCMSSLONGLONG) a->v[0].n[0] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[0] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[0].n[1] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[1] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[0].n[2] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[2] + (LCMSULONGLONG) 0x8000;
LCMSULONGLONG l2 = (LCMSULONGLONG) (LCMSSLONGLONG) a->v[1].n[0] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[0] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[1].n[1] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[1] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[1].n[2] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[2] + (LCMSULONGLONG) 0x8000;
LCMSULONGLONG l3 = (LCMSULONGLONG) (LCMSSLONGLONG) a->v[2].n[0] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[0] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[2].n[1] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[1] +
(LCMSULONGLONG) (LCMSSLONGLONG) a->v[2].n[2] *
(LCMSULONGLONG) (LCMSSLONGLONG) v->n[2] + (LCMSULONGLONG) 0x8000;
l1 >>= 16;
l2 >>= 16;
l3 >>= 16;
r->n[VX] = (Fixed32) l1;
r->n[VY] = (Fixed32) l2;
r->n[VZ] = (Fixed32) l3;
#else
// FIXME: Rounding should be done at very last stage. There is 1-Contone rounding error!
r->n[VX] = FixedMul(a->v[0].n[0], v->n[0]) +
FixedMul(a->v[0].n[1], v->n[1]) +
FixedMul(a->v[0].n[2], v->n[2]);
r->n[VY] = FixedMul(a->v[1].n[0], v->n[0]) +
FixedMul(a->v[1].n[1], v->n[1]) +
FixedMul(a->v[1].n[2], v->n[2]);
r->n[VZ] = FixedMul(a->v[2].n[0], v->n[0]) +
FixedMul(a->v[2].n[1], v->n[1]) +
FixedMul(a->v[2].n[2], v->n[2]);
#endif
}
#endif
#endif
void MAT3perK(LPMAT3 r, LPMAT3 v, double d)
{
VEC3perK(&r -> v[0], &v -> v[0], d);
VEC3perK(&r -> v[1], &v -> v[1], d);
VEC3perK(&r -> v[2], &v -> v[2], d);
}
void MAT3toFix(LPWMAT3 r, LPMAT3 v)
{
VEC3toFix(&r -> v[0], &v -> v[0]);
VEC3toFix(&r -> v[1], &v -> v[1]);
VEC3toFix(&r -> v[2], &v -> v[2]);
}
void MAT3fromFix(LPMAT3 r, LPWMAT3 v)
{
VEC3fromFix(&r -> v[0], &v -> v[0]);
VEC3fromFix(&r -> v[1], &v -> v[1]);
VEC3fromFix(&r -> v[2], &v -> v[2]);
}
// Scale v by d and store it in r giving INTEGER
void VEC3scaleAndCut(LPWVEC3 r, LPVEC3 v, double d)
{
r -> n[VX] = (int) floor(v -> n[VX] * d + .5);
r -> n[VY] = (int) floor(v -> n[VY] * d + .5);
r -> n[VZ] = (int) floor(v -> n[VZ] * d + .5);
}
void MAT3scaleAndCut(LPWMAT3 r, LPMAT3 v, double d)
{
VEC3scaleAndCut(&r -> v[0], &v -> v[0], d);
VEC3scaleAndCut(&r -> v[1], &v -> v[1], d);
VEC3scaleAndCut(&r -> v[2], &v -> v[2], d);
}