blob: 938ecb1b997e74308dc469a44e818b6a9e4bab23 [file] [log] [blame]
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//
// Little cms
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Interpolation
#include "lcms.h"
void cmsCalcL16Params(int nSamples, LPL16PARAMS p)
{
p -> nSamples = nSamples;
p -> Domain = (WORD) (nSamples - 1);
p -> nInputs = p -> nOutputs = 1;
}
// Eval gray LUT having only one input channel
static
void Eval1Input(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, k1, rk, K0, K1;
int OutChan;
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = (WORD) FIXED_REST_TO_INT(fk);
k1 = k0 + (StageABC[0] != 0xFFFFU ? 1 : 0);
K0 = p16 -> opta1 * k0;
K1 = p16 -> opta1 * k1;
for (OutChan=0; OutChan < p16->nOutputs; OutChan++) {
StageLMN[OutChan] = (WORD) FixedLERP(rk, LutTable[K0+OutChan],
LutTable[K1+OutChan]);
}
}
// For more that 3 inputs (i.e., CMYK)
// evaluate two 3-dimensional interpolations and then linearly interpolate between them.
static
void Eval4Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, rk;
int K0, K1;
LPWORD T;
int i;
WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta4 * k0;
K1 = p16 -> opta4 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));
p16 -> nInputs = 3;
T = LutTable + K0;
cmsTetrahedralInterp16(StageABC + 1, Tmp1, T, p16);
T = LutTable + K1;
cmsTetrahedralInterp16(StageABC + 1, Tmp2, T, p16);
p16 -> nInputs = 4;
for (i=0; i < p16 -> nOutputs; i++)
{
StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval5Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, rk;
int K0, K1;
LPWORD T;
int i;
WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta5 * k0;
K1 = p16 -> opta5 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));
p16 -> nInputs = 4;
T = LutTable + K0;
Eval4Inputs(StageABC + 1, Tmp1, T, p16);
T = LutTable + K1;
Eval4Inputs(StageABC + 1, Tmp2, T, p16);
p16 -> nInputs = 5;
for (i=0; i < p16 -> nOutputs; i++)
{
StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval6Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, rk;
int K0, K1;
LPWORD T;
int i;
WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta6 * k0;
K1 = p16 -> opta6 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));
p16 -> nInputs = 5;
T = LutTable + K0;
Eval5Inputs(StageABC + 1, Tmp1, T, p16);
T = LutTable + K1;
Eval5Inputs(StageABC + 1, Tmp2, T, p16);
p16 -> nInputs = 6;
for (i=0; i < p16 -> nOutputs; i++)
{
StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval7Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, rk;
int K0, K1;
LPWORD T;
int i;
WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta7 * k0;
K1 = p16 -> opta7 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));
p16 -> nInputs = 6;
T = LutTable + K0;
Eval6Inputs(StageABC + 1, Tmp1, T, p16);
T = LutTable + K1;
Eval6Inputs(StageABC + 1, Tmp2, T, p16);
p16 -> nInputs = 7;
for (i=0; i < p16 -> nOutputs; i++)
{
StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
}
}
static
void Eval8Inputs(WORD StageABC[], WORD StageLMN[], WORD LutTable[], LPL16PARAMS p16)
{
Fixed32 fk;
Fixed32 k0, rk;
int K0, K1;
LPWORD T;
int i;
WORD Tmp1[MAXCHANNELS], Tmp2[MAXCHANNELS];
fk = ToFixedDomain((Fixed32) StageABC[0] * p16 -> Domain);
k0 = FIXED_TO_INT(fk);
rk = FIXED_REST_TO_INT(fk);
K0 = p16 -> opta8 * k0;
K1 = p16 -> opta8 * (k0 + (StageABC[0] != 0xFFFFU ? 1 : 0));
p16 -> nInputs = 7;
T = LutTable + K0;
Eval7Inputs(StageABC + 1, Tmp1, T, p16);
T = LutTable + K1;
Eval7Inputs(StageABC + 1, Tmp2, T, p16);
p16 -> nInputs = 8;
for (i=0; i < p16 -> nOutputs; i++)
{
StageLMN[i] = (WORD) FixedLERP(rk, Tmp1[i], Tmp2[i]);
}
}
// Fills optimization parameters
void cmsCalcCLUT16ParamsEx(int nSamples, int InputChan, int OutputChan,
LCMSBOOL lUseTetrahedral, LPL16PARAMS p)
{
int clutPoints;
cmsCalcL16Params(nSamples, p);
p -> nInputs = InputChan;
p -> nOutputs = OutputChan;
clutPoints = p -> Domain + 1;
p -> opta1 = p -> nOutputs; // Z
p -> opta2 = p -> opta1 * clutPoints; // Y
p -> opta3 = p -> opta2 * clutPoints; // X
p -> opta4 = p -> opta3 * clutPoints; // Used only in 4 inputs LUT
p -> opta5 = p -> opta4 * clutPoints; // Used only in 5 inputs LUT
p -> opta6 = p -> opta5 * clutPoints; // Used only on 6 inputs LUT
p -> opta7 = p -> opta6 * clutPoints; // Used only on 7 inputs LUT
p -> opta8 = p -> opta7 * clutPoints; // Used only on 8 inputs LUT
switch (InputChan) {
case 1: // Gray LUT
p ->Interp3D = Eval1Input;
break;
case 3: // RGB et al
if (lUseTetrahedral) {
p ->Interp3D = cmsTetrahedralInterp16;
}
else
p ->Interp3D = cmsTrilinearInterp16;
break;
case 4: // CMYK LUT
p ->Interp3D = Eval4Inputs;
break;
case 5: // 5 Inks
p ->Interp3D = Eval5Inputs;
break;
case 6: // 6 Inks
p -> Interp3D = Eval6Inputs;
break;
case 7: // 7 inks
p ->Interp3D = Eval7Inputs;
break;
case 8: // 8 inks
p ->Interp3D = Eval8Inputs;
break;
default:
cmsSignalError(LCMS_ERRC_ABORTED, "Unsupported restoration (%d channels)", InputChan);
}
}
void cmsCalcCLUT16Params(int nSamples, int InputChan, int OutputChan, LPL16PARAMS p)
{
cmsCalcCLUT16ParamsEx(nSamples, InputChan, OutputChan, FALSE, p);
}
#ifdef USE_FLOAT
// Floating-point version
WORD cmsLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
double y1, y0;
double y;
double val2, rest;
int cell0, cell1;
// if last value...
if (Value == 0xffff) return LutTable[p -> Domain];
val2 = p -> Domain * ((double) Value / 65535.0);
cell0 = (int) floor(val2);
cell1 = (int) ceil(val2);
// Rest is 16 LSB bits
rest = val2 - cell0;
y0 = LutTable[cell0] ;
y1 = LutTable[cell1] ;
y = y0 + (y1 - y0) * rest;
return (WORD) floor(y+.5);
}
#endif
//
// Linear interpolation (Fixed-point optimized, but C source)
//
#ifdef USE_C
WORD cmsLinearInterpLUT16(WORD Value1, WORD LutTable[], LPL16PARAMS p)
{
WORD y1, y0;
WORD y;
int dif, a1;
int cell0, rest;
int val3, Value;
// if last value...
Value = Value1;
if (Value == 0xffff) return LutTable[p -> Domain];
val3 = p -> Domain * Value;
val3 = ToFixedDomain(val3); // To fixed 15.16
cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits
rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits
y0 = LutTable[cell0] ;
y1 = LutTable[cell0+1] ;
dif = (int) y1 - y0; // dif is in domain -ffff ... ffff
if (dif >= 0)
{
a1 = ToFixedDomain(dif * rest);
a1 += 0x8000;
}
else
{
a1 = ToFixedDomain((- dif) * rest);
a1 -= 0x8000;
a1 = -a1;
}
y = (WORD) (y0 + FIXED_TO_INT(a1));
return y;
}
#endif
// Linear interpolation (asm by hand optimized)
#ifdef USE_ASSEMBLER
#ifdef _MSC_VER
#pragma warning(disable : 4033)
#pragma warning(disable : 4035)
#endif
WORD cmsLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
int xDomain = p -> Domain;
if (Value == 0xffff) return LutTable[p -> Domain];
else
ASM {
xor eax, eax
mov ax, word ptr ss:Value
mov edx, ss:xDomain
mul edx // val3 = p -> Domain * Value;
shld edx, eax, 16 // Convert it to fixed 15.16
shl eax, 16 // * 65536 / 65535
mov ebx, 0x0000ffff
div ebx
mov ecx, eax
sar ecx, 16 // ecx = cell0
mov edx, eax // rest = (val2 & 0xFFFFU)
and edx, 0x0000ffff // edx = rest
mov ebx, ss:LutTable
lea eax, dword ptr [ebx+2*ecx] // Ptr to LUT
xor ebx, ebx
mov bx, word ptr [eax] // EBX = y0
movzx eax, word ptr [eax+2] // EAX = y1
sub eax, ebx // EAX = y1-y0
js IsNegative
mul edx // EAX = EAX * rest
shld edx, eax, 16 // Pass it to fixed
sal eax, 16 // * 65536 / 65535
mov ecx, 0x0000ffff
div ecx
add eax, 0x8000 // Rounding
sar eax, 16
add eax, ebx // Done!
}
RET((WORD) _EAX);
IsNegative:
ASM {
neg eax
mul edx // EAX = EAX * rest
shld edx, eax, 16 // Pass it to fixed
sal eax, 16 // * 65536 / 65535
mov ecx, 0x0000ffff
div ecx
sub eax, 0x8000
neg eax
sar eax, 16
add eax, ebx // Done!
}
RET((WORD) _EAX);
}
#ifdef _MSC_VER
#pragma warning(default : 4033)
#pragma warning(default : 4035)
#endif
#endif
Fixed32 cmsLinearInterpFixed(WORD Value1, WORD LutTable[], LPL16PARAMS p)
{
Fixed32 y1, y0;
int cell0;
int val3, Value;
// if last value...
Value = Value1;
if (Value == 0xffffU) return LutTable[p -> Domain];
val3 = p -> Domain * Value;
val3 = ToFixedDomain(val3); // To fixed 15.16
cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits
y0 = LutTable[cell0] ;
y1 = LutTable[cell0+1] ;
return y0 + FixedMul((y1 - y0), (val3 & 0xFFFFL));
}
// Reverse Lineal interpolation (16 bits)
// Im using a sort of binary search here, this is not a time-critical function
WORD cmsReverseLinearInterpLUT16(WORD Value, WORD LutTable[], LPL16PARAMS p)
{
register int l = 1;
register int r = 0x10000;
register int x = 0, res; // 'int' Give spacing for negative values
int NumZeroes, NumPoles;
int cell0, cell1;
double val2;
double y0, y1, x0, x1;
double a, b, f;
// July/27 2001 - Expanded to handle degenerated curves with an arbitrary
// number of elements containing 0 at the begining of the table (Zeroes)
// and another arbitrary number of poles (FFFFh) at the end.
// First the zero and pole extents are computed, then value is compared.
NumZeroes = 0;
while (LutTable[NumZeroes] == 0 && NumZeroes < p -> Domain)
NumZeroes++;
// There are no zeros at the beginning and we are trying to find a zero, so
// return anything. It seems zero would be the less destructive choice
if (NumZeroes == 0 && Value == 0)
return 0;
NumPoles = 0;
while (LutTable[p -> Domain - NumPoles] == 0xFFFF && NumPoles < p -> Domain)
NumPoles++;
// Does the curve belong to this case?
if (NumZeroes > 1 || NumPoles > 1)
{
int a, b;
// Identify if value fall downto 0 or FFFF zone
if (Value == 0) return 0;
// if (Value == 0xFFFF) return 0xFFFF;
// else restrict to valid zone
a = ((NumZeroes-1) * 0xFFFF) / p->Domain;
b = ((p -> Domain - NumPoles) * 0xFFFF) / p ->Domain;
l = a - 1;
r = b + 1;
}
// Seems not a degenerated case... apply binary search
while (r > l) {
x = (l + r) / 2;
res = (int) cmsLinearInterpLUT16((WORD) (x - 1), LutTable, p);
if (res == Value) {
// Found exact match.
return (WORD) (x - 1);
}
if (res > Value) r = x - 1;
else l = x + 1;
}
// Not found, should we interpolate?
// Get surrounding nodes
val2 = p -> Domain * ((double) (x - 1) / 65535.0);
cell0 = (int) floor(val2);
cell1 = (int) ceil(val2);
if (cell0 == cell1) return (WORD) x;
y0 = LutTable[cell0] ;
x0 = (65535.0 * cell0) / p ->Domain;
y1 = LutTable[cell1] ;
x1 = (65535.0 * cell1) / p ->Domain;
a = (y1 - y0) / (x1 - x0);
b = y0 - a * x0;
if (fabs(a) < 0.01) return (WORD) x;
f = ((Value - b) / a);
if (f < 0.0) return (WORD) 0;
if (f >= 65535.0) return (WORD) 0xFFFF;
return (WORD) floor(f + 0.5);
}
// Trilinear interpolation (16 bits) - float version
#ifdef USE_FLOAT
void cmsTrilinearInterp16(WORD Input[], WORD Output[],
WORD LutTable[], LPL16PARAMS p)
{
# define LERP(a,l,h) (double) ((l)+(((h)-(l))*(a)))
# define DENS(X, Y, Z) (double) (LutTable[TotalOut*((Z)+clutPoints*((Y)+clutPoints*(X)))+OutChan])
double px, py, pz;
int x0, y0, z0,
x1, y1, z1;
int clutPoints, TotalOut, OutChan;
double fx, fy, fz,
d000, d001, d010, d011,
d100, d101, d110, d111,
dx00, dx01, dx10, dx11,
dxy0, dxy1, dxyz;
clutPoints = p -> Domain + 1;
TotalOut = p -> nOutputs;
px = ((double) Input[0] * (p->Domain)) / 65535.0;
py = ((double) Input[1] * (p->Domain)) / 65535.0;
pz = ((double) Input[2] * (p->Domain)) / 65535.0;
x0 = (int) _cmsQuickFloor(px); fx = px - (double) x0;
y0 = (int) _cmsQuickFloor(py); fy = py - (double) y0;
z0 = (int) _cmsQuickFloor(pz); fz = pz - (double) z0;
x1 = x0 + (Input[0] != 0xFFFFU ? 1 : 0);
y1 = y0 + (Input[1] != 0xFFFFU ? 1 : 0);
z1 = z0 + (Input[2] != 0xFFFFU ? 1 : 0);
for (OutChan = 0; OutChan < TotalOut; OutChan++)
{
d000 = DENS(x0, y0, z0);
d001 = DENS(x0, y0, z1);
d010 = DENS(x0, y1, z0);
d011 = DENS(x0, y1, z1);
d100 = DENS(x1, y0, z0);
d101 = DENS(x1, y0, z1);
d110 = DENS(x1, y1, z0);
d111 = DENS(x1, y1, z1);
dx00 = LERP(fx, d000, d100);
dx01 = LERP(fx, d001, d101);
dx10 = LERP(fx, d010, d110);
dx11 = LERP(fx, d011, d111);
dxy0 = LERP(fy, dx00, dx10);
dxy1 = LERP(fy, dx01, dx11);
dxyz = LERP(fz, dxy0, dxy1);
Output[OutChan] = (WORD) floor(dxyz + .5);
}
# undef LERP
# undef DENS
}
#endif
#ifndef USE_FLOAT
// Trilinear interpolation (16 bits) - optimized version
void cmsTrilinearInterp16(WORD Input[], WORD Output[],
WORD LutTable[], LPL16PARAMS p)
{
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
#define LERP(a,l,h) (WORD) (l+ ROUND_FIXED_TO_INT(((h-l)*a)))
int OutChan, TotalOut;
Fixed32 fx, fy, fz;
register int rx, ry, rz;
int x0, y0, z0;
register int X0, X1, Y0, Y1, Z0, Z1;
int d000, d001, d010, d011,
d100, d101, d110, d111,
dx00, dx01, dx10, dx11,
dxy0, dxy1, dxyz;
TotalOut = p -> nOutputs;
fx = ToFixedDomain((int) Input[0] * p -> Domain);
x0 = FIXED_TO_INT(fx);
rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain
fy = ToFixedDomain((int) Input[1] * p -> Domain);
y0 = FIXED_TO_INT(fy);
ry = FIXED_REST_TO_INT(fy);
fz = ToFixedDomain((int) Input[2] * p -> Domain);
z0 = FIXED_TO_INT(fz);
rz = FIXED_REST_TO_INT(fz);
X0 = p -> opta3 * x0;
X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta3);
Y0 = p -> opta2 * y0;
Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta2);
Z0 = p -> opta1 * z0;
Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta1);
for (OutChan = 0; OutChan < TotalOut; OutChan++)
{
d000 = DENS(X0, Y0, Z0);
d001 = DENS(X0, Y0, Z1);
d010 = DENS(X0, Y1, Z0);
d011 = DENS(X0, Y1, Z1);
d100 = DENS(X1, Y0, Z0);
d101 = DENS(X1, Y0, Z1);
d110 = DENS(X1, Y1, Z0);
d111 = DENS(X1, Y1, Z1);
dx00 = LERP(rx, d000, d100);
dx01 = LERP(rx, d001, d101);
dx10 = LERP(rx, d010, d110);
dx11 = LERP(rx, d011, d111);
dxy0 = LERP(ry, dx00, dx10);
dxy1 = LERP(ry, dx01, dx11);
dxyz = LERP(rz, dxy0, dxy1);
Output[OutChan] = (WORD) dxyz;
}
# undef LERP
# undef DENS
}
#endif
#ifdef USE_FLOAT
#define DENS(X, Y, Z) (double) (LutTable[TotalOut*((Z)+clutPoints*((Y)+clutPoints*(X)))+OutChan])
// Tetrahedral interpolation, using Sakamoto algorithm.
void cmsTetrahedralInterp16(WORD Input[],
WORD Output[],
WORD LutTable[],
LPL16PARAMS p)
{
double px, py, pz;
int x0, y0, z0,
x1, y1, z1;
double fx, fy, fz;
double c1=0, c2=0, c3=0;
int clutPoints, OutChan, TotalOut;
clutPoints = p -> Domain + 1;
TotalOut = p -> nOutputs;
px = ((double) Input[0] * p->Domain) / 65535.0;
py = ((double) Input[1] * p->Domain) / 65535.0;
pz = ((double) Input[2] * p->Domain) / 65535.0;
x0 = (int) _cmsQuickFloor(px); fx = (px - (double) x0);
y0 = (int) _cmsQuickFloor(py); fy = (py - (double) y0);
z0 = (int) _cmsQuickFloor(pz); fz = (pz - (double) z0);
x1 = x0 + (Input[0] != 0xFFFFU ? 1 : 0);
y1 = y0 + (Input[1] != 0xFFFFU ? 1 : 0);
z1 = z0 + (Input[2] != 0xFFFFU ? 1 : 0);
for (OutChan=0; OutChan < TotalOut; OutChan++)
{
// These are the 6 Tetrahedral
if (fx >= fy && fy >= fz)
{
c1 = DENS(x1, y0, z0) - DENS(x0, y0, z0);
c2 = DENS(x1, y1, z0) - DENS(x1, y0, z0);
c3 = DENS(x1, y1, z1) - DENS(x1, y1, z0);
}
else
if (fx >= fz && fz >= fy)
{
c1 = DENS(x1, y0, z0) - DENS(x0, y0, z0);
c2 = DENS(x1, y1, z1) - DENS(x1, y0, z1);
c3 = DENS(x1, y0, z1) - DENS(x1, y0, z0);
}
else
if (fz >= fx && fx >= fy)
{
c1 = DENS(x1, y0, z1) - DENS(x0, y0, z1);
c2 = DENS(x1, y1, z1) - DENS(x1, y0, z1);
c3 = DENS(x0, y0, z1) - DENS(x0, y0, z0);
}
else
if (fy >= fx && fx >= fz)
{
c1 = DENS(x1, y1, z0) - DENS(x0, y1, z0);
c2 = DENS(x0, y1, z0) - DENS(x0, y0, z0);
c3 = DENS(x1, y1, z1) - DENS(x1, y1, z0);
}
else
if (fy >= fz && fz >= fx)
{
c1 = DENS(x1, y1, z1) - DENS(x0, y1, z1);
c2 = DENS(x0, y1, z0) - DENS(x0, y0, z0);
c3 = DENS(x0, y1, z1) - DENS(x0, y1, z0);
}
else
if (fz >= fy && fy >= fx)
{
c1 = DENS(x1, y1, z1) - DENS(x0, y1, z1);
c2 = DENS(x0, y1, z1) - DENS(x0, y0, z1);
c3 = DENS(x0, y0, z1) - DENS(x0, y0, z0);
}
else
{
c1 = c2 = c3 = 0;
// assert(FALSE);
}
Output[OutChan] = (WORD) floor((double) DENS(x0,y0,z0) + c1 * fx + c2 * fy + c3 * fz + .5);
}
}
#undef DENS
#else
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
void cmsTetrahedralInterp16(WORD Input[],
WORD Output[],
WORD LutTable1[],
LPL16PARAMS p)
{
Fixed32 fx, fy, fz;
Fixed32 rx, ry, rz;
int x0, y0, z0;
Fixed32 c0, c1, c2, c3, Rest;
int OutChan;
Fixed32 X0, X1, Y0, Y1, Z0, Z1;
int TotalOut = p -> nOutputs;
register LPWORD LutTable = LutTable1;
fx = ToFixedDomain((int) Input[0] * p -> Domain);
fy = ToFixedDomain((int) Input[1] * p -> Domain);
fz = ToFixedDomain((int) Input[2] * p -> Domain);
x0 = FIXED_TO_INT(fx);
y0 = FIXED_TO_INT(fy);
z0 = FIXED_TO_INT(fz);
rx = FIXED_REST_TO_INT(fx);
ry = FIXED_REST_TO_INT(fy);
rz = FIXED_REST_TO_INT(fz);
X0 = p -> opta3 * x0;
X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta3);
Y0 = p -> opta2 * y0;
Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta2);
Z0 = p -> opta1 * z0;
Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta1);
// These are the 6 Tetrahedral
for (OutChan=0; OutChan < TotalOut; OutChan++) {
c0 = DENS(X0, Y0, Z0);
if (rx >= ry && ry >= rz) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry) {
c1 = DENS(X1, Y0, Z0) - c0;
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry) {
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else
if (ry >= rx && rx >= rz) {
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - c0;
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx) {
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - c0;
}
else {
c1 = c2 = c3 = 0;
// assert(FALSE);
}
Rest = c1 * rx + c2 * ry + c3 * rz;
// There is a lot of math hidden in this expression. The rest is in fixed domain
// and the result in 0..ffff domain. So the complete expression should be
// ROUND_FIXED_TO_INT(ToFixedDomain(Rest)) But that can be optimized as (Rest + 0x7FFF) / 0xFFFF
Output[OutChan] = (WORD) (c0 + ((Rest + 0x7FFF) / 0xFFFF));
}
}
#undef DENS
#endif
// A optimized interpolation for 8-bit input.
#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
void cmsTetrahedralInterp8(WORD Input[],
WORD Output[],
WORD LutTable[],
LPL16PARAMS p)
{
int r, g, b;
Fixed32 rx, ry, rz;
Fixed32 c1, c2, c3, Rest;
int OutChan;
register Fixed32 X0, X1, Y0, Y1, Z0, Z1;
int TotalOut = p -> nOutputs;
register LPL8PARAMS p8 = p ->p8;
r = Input[0] >> 8;
g = Input[1] >> 8;
b = Input[2] >> 8;
X0 = X1 = p8->X0[r];
Y0 = Y1 = p8->Y0[g];
Z0 = Z1 = p8->Z0[b];
X1 += (r == 255) ? 0 : p ->opta3;
Y1 += (g == 255) ? 0 : p ->opta2;
Z1 += (b == 255) ? 0 : p ->opta1;
rx = p8 ->rx[r];
ry = p8 ->ry[g];
rz = p8 ->rz[b];
// These are the 6 Tetrahedral
for (OutChan=0; OutChan < TotalOut; OutChan++) {
if (rx >= ry && ry >= rz)
{
c1 = DENS(X1, Y0, Z0) - DENS(X0, Y0, Z0);
c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (rx >= rz && rz >= ry)
{
c1 = DENS(X1, Y0, Z0) - DENS(X0, Y0, Z0);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
}
else
if (rz >= rx && rx >= ry)
{
c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - DENS(X0, Y0, Z0);
}
else
if (ry >= rx && rx >= rz)
{
c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
c2 = DENS(X0, Y1, Z0) - DENS(X0, Y0, Z0);
c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
}
else
if (ry >= rz && rz >= rx)
{
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z0) - DENS(X0, Y0, Z0);
c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
}
else
if (rz >= ry && ry >= rx)
{
c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
c3 = DENS(X0, Y0, Z1) - DENS(X0, Y0, Z0);
}
else {
c1 = c2 = c3 = 0;
// assert(FALSE);
}
Rest = c1 * rx + c2 * ry + c3 * rz;
Output[OutChan] = (WORD) (DENS(X0,Y0,Z0) + ((Rest + 0x7FFF) / 0xFFFF));
}
}
#undef DENS