blob: bf1a9c62d2ae5381c80fede849b0f25475206e34 [file] [log] [blame]
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//
// Little cms
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "lcms.h"
/*
Gamut check by default is a catching of 0xFFFF/0xFFFF/0xFFFF PCS values, used
internally by lcms to hold invalid values. Matrix LUT's, operates in a way that
unencodeable values are marked as this combination, if PCS is XYZ, this is a very
high value since encoding is a 1.15 fixed point, something like 1.9997, 1.9997, 1.9997
not a very common color after all. Lab PCS is not to be a problem, since L>100 are truely
undefined. There is a posibility than ICC comitee defines L>100 as a valid means
to use highlights, then it will be lost.
(1.10 - Actually ICC did it, so this should be checked for full ICC 4.0 support)
*/
LCMSBOOL _cmsEndPointsBySpace(icColorSpaceSignature Space, WORD **White, WORD **Black,
int *nOutputs)
{
// Only most common spaces
static WORD RGBblack[4] = { 0, 0, 0 };
static WORD RGBwhite[4] = { 0xffff, 0xffff, 0xffff };
static WORD CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff }; // 400% of ink
static WORD CMYKwhite[4] = { 0, 0, 0, 0 };
static WORD LABblack[4] = { 0, 0x8000, 0x8000 };
static WORD LABwhite[4] = { 0xFF00, 0x8000, 0x8000 };
static WORD CMYblack[4] = { 0xffff, 0xffff, 0xffff };
static WORD CMYwhite[4] = { 0, 0, 0 };
static WORD Grayblack[4] = { 0 };
static WORD GrayWhite[4] = { 0xffff };
switch (Space) {
case icSigGrayData: if (White) *White = GrayWhite;
if (Black) *Black = Grayblack;
if (nOutputs) *nOutputs = 1;
return TRUE;
case icSigRgbData: if (White) *White = RGBwhite;
if (Black) *Black = RGBblack;
if (nOutputs) *nOutputs = 3;
return TRUE;
case icSigLabData: if (White) *White = LABwhite;
if (Black) *Black = LABblack;
if (nOutputs) *nOutputs = 3;
return TRUE;
case icSigCmykData: if (White) *White = CMYKwhite;
if (Black) *Black = CMYKblack;
if (nOutputs) *nOutputs = 4;
return TRUE;
case icSigCmyData: if (White) *White = CMYwhite;
if (Black) *Black = CMYblack;
if (nOutputs) *nOutputs = 3;
return TRUE;
default:;
}
return FALSE;
}
WORD *_cmsWhiteBySpace(icColorSpaceSignature Space)
{
WORD *White= NULL, *Black = NULL;
int Dummy;
static WORD Default[MAXCHANNELS];
if (_cmsEndPointsBySpace(Space, &White, &Black, &Dummy))
return White;
return Default;
}
WORD Clamp_L(Fixed32 in)
{
if (in == 0xFFFF) return 0xFFFFU; // Marker
if (in > 0xFF00) return 0xFF00U; // L* = 100.0
return (WORD) in;
}
#define ENCODE_AB(x) (WORD) (((x) + 128.0) * 256.0 + 0.5)
WORD Clamp_ab(Fixed32 in)
{
if (in == 0xFFFF) return 0xFFFFU; // Marker
if (in < 0) return ENCODE_AB(-128.0); // Max negative number
if (in > 0xFFFF) return ENCODE_AB(+127.9961); // Max positive number
return (WORD) in;
}
// Returns dE on two Lab values
double LCMSEXPORT cmsDeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
double dL, da, db;
if (Lab1 -> L < 0 ||
Lab2 -> L < 0) return 65536.;
if (Lab1 -> a < -200 || Lab1 -> a > 200) return 65536.;
if (Lab1 -> b < -200 || Lab1 -> b > 200) return 65536.;
if (Lab2 -> a < -200 || Lab2 -> a > 200) return 65536.;
if (Lab2 -> b < -200 || Lab2 -> b > 200) return 65536.;
if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
dL = fabs(Lab1 -> L - Lab2 -> L);
da = fabs(Lab1 -> a - Lab2 -> a);
db = fabs(Lab1 -> b - Lab2 -> b);
return pow(dL*dL + da * da + db * db, 0.5);
}
// Square
static
double Sqr(double v)
{
return v * v;
}
// Return the CIE94 Delta E
double LCMSEXPORT cmsCIE94DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
cmsCIELCh LCh1, LCh2;
double dE, dL, dC, dh, dhsq;
double c12, sc, sh;
if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
dL = fabs(Lab1 ->L - Lab2 ->L);
cmsLab2LCh(&LCh1, Lab1);
cmsLab2LCh(&LCh2, Lab2);
dC = fabs(LCh1.C - LCh2.C);
dE = cmsDeltaE(Lab1, Lab2);
dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
if (dhsq < 0)
dh = 0;
else
dh = pow(dhsq, 0.5);
c12 = sqrt(LCh1.C * LCh2.C);
sc = 1.0 + (0.048 * c12);
sh = 1.0 + (0.014 * c12);
return sqrt(Sqr(dL) + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
}
// Auxiliary
static
double ComputeLBFD(LPcmsCIELab Lab)
{
double yt;
if (Lab->L > 7.996969)
yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
else
yt = 100 * (Lab->L / 903.3);
return (54.6 * (LOGE * (log(yt + 1.5))) - 9.6);
}
// bfd - gets BFD(1:1) difference between Lab1, Lab2
double LCMSEXPORT cmsBFDdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
double lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
cmsCIELCh LCh1, LCh2;
if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
lbfd1 = ComputeLBFD(Lab1);
lbfd2 = ComputeLBFD(Lab2);
deltaL = lbfd2 - lbfd1;
cmsLab2LCh(&LCh1, Lab1);
cmsLab2LCh(&LCh2, Lab2);
deltaC = LCh2.C - LCh1.C;
AveC = (LCh1.C+LCh2.C)/2;
Aveh = (LCh1.h+LCh2.h)/2;
dE = cmsDeltaE(Lab1, Lab2);
if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
else
deltah =0;
dc = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
g = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
t = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
0.040*cos((2*Aveh-136)/(180/M_PI))+
0.070*cos((3*Aveh-31)/(180/M_PI))+
0.049*cos((4*Aveh+114)/(180/M_PI))-
0.015*cos((5*Aveh-103)/(180/M_PI)));
dh = dc*(g*t+1-g);
rh = -0.260*cos((Aveh-308)/(180/M_PI))-
0.379*cos((2*Aveh-160)/(180/M_PI))-
0.636*cos((3*Aveh+254)/(180/M_PI))+
0.226*cos((4*Aveh+140)/(180/M_PI))-
0.194*cos((5*Aveh+280)/(180/M_PI));
rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
rt = rh*rc;
bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
return bfd;
}
// cmc - CMC(1:1) difference between Lab1, Lab2
double LCMSEXPORT cmsCMCdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
{
double dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
cmsCIELCh LCh1, LCh2;
if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
cmsLab2LCh(&LCh1, Lab1);
cmsLab2LCh(&LCh2, Lab2);
dL = Lab2->L-Lab1->L;
dC = LCh2.C-LCh1.C;
dE = cmsDeltaE(Lab1, Lab2);
if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
else
dh =0;
if ((LCh1.h > 164) && (LCh1.h<345))
t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
else
t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
sc = 0.0638 * LCh1.C / (1 + 0.0131 * LCh1.C) + 0.638;
sl = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
if (Lab1->L<16)
sl = 0.511;
f = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
sh = sc*(t*f+1-f);
cmc = sqrt(Sqr(dL/sl)+Sqr(dC/sc)+Sqr(dh/sh));
return cmc;
}
static
double atan2deg(double b, double a)
{
double h;
if (a == 0 && b == 0)
h = 0;
else
h = atan2(a, b);
h *= (180. / M_PI);
while (h > 360.)
h -= 360.;
while ( h < 0)
h += 360.;
return h;
}
static
double RADIANES(double deg)
{
return (deg * M_PI) / 180.;
}
// dE2000 The weightings KL, KC and KH can be modified to reflect the relative
// importance of lightness, chroma and hue in different industrial applications
double LCMSEXPORT cmsCIE2000DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2,
double Kl, double Kc, double Kh)
{
double L1 = Lab1->L;
double a1 = Lab1->a;
double b1 = Lab1->b;
double C = sqrt( Sqr(a1) + Sqr(b1) );
double Ls = Lab2 ->L;
double as = Lab2 ->a;
double bs = Lab2 ->b;
double Cs = sqrt( Sqr(as) + Sqr(bs) );
double G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
double a_p = (1 + G ) * a1;
double b_p = b1;
double C_p = sqrt( Sqr(a_p) + Sqr(b_p));
double h_p = atan2deg(a_p, b_p);
double a_ps = (1 + G) * as;
double b_ps = bs;
double C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
double h_ps = atan2deg(a_ps, b_ps);
double meanC_p =(C_p + C_ps) / 2;
double hps_plus_hp = h_ps + h_p;
double hps_minus_hp = h_ps - h_p;
double meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 :
(hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 :
(hps_plus_hp - 360)/2;
double delta_h = (hps_minus_hp) <= -180.000001 ? (hps_minus_hp + 360) :
(hps_minus_hp) > 180 ? (hps_minus_hp - 360) :
(hps_minus_hp);
double delta_L = (Ls - L1);
double delta_C = (C_ps - C_p );
double delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANES(delta_h) / 2);
double T = 1 - 0.17 * cos(RADIANES(meanh_p-30))
+ 0.24 * cos(RADIANES(2*meanh_p))
+ 0.32 * cos(RADIANES(3*meanh_p + 6))
- 0.2 * cos(RADIANES(4*meanh_p - 63));
double Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
double Sc = 1 + 0.045 * (C_p + C_ps)/2;
double Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
double delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
double Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
double Rt = -sin(2 * RADIANES(delta_ro)) * Rc;
double deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
Sqr(delta_C/(Sc * Kc)) +
Sqr(delta_H/(Sh * Kh)) +
Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
return deltaE00;
}
// Carefully, clamp on CIELab space.
void LCMSEXPORT cmsClampLab(LPcmsCIELab Lab, double amax, double amin,
double bmax, double bmin)
{
// Whole Luma surface to zero
if (Lab -> L < 0) {
Lab-> L = Lab->a = Lab-> b = 0.0;
return;
}
// Clamp white, DISCARD HIGHLIGHTS. This is done
// in such way because icc spec doesn't allow the
// use of L>100 as a highlight means.
if (Lab->L > 100)
Lab -> L = 100;
// Check out gamut prism, on a, b faces
if (Lab -> a < amin || Lab->a > amax||
Lab -> b < bmin || Lab->b > bmax) {
cmsCIELCh LCh;
double h, slope;
// Falls outside a, b limits. Transports to LCh space,
// and then do the clipping
if (Lab -> a == 0.0) { // Is hue exactly 90?
// atan will not work, so clamp here
Lab -> b = Lab->b < 0 ? bmin : bmax;
return;
}
cmsLab2LCh(&LCh, Lab);
slope = Lab -> b / Lab -> a;
h = LCh.h;
// There are 4 zones
if ((h >= 0. && h < 45.) ||
(h >= 315 && h <= 360.)) {
// clip by amax
Lab -> a = amax;
Lab -> b = amax * slope;
}
else
if (h >= 45. && h < 135)
{
// clip by bmax
Lab -> b = bmax;
Lab -> a = bmax / slope;
}
else
if (h >= 135 && h < 225) {
// clip by amin
Lab -> a = amin;
Lab -> b = amin * slope;
}
else
if (h >= 225 && h < 315) {
// clip by bmin
Lab -> b = bmin;
Lab -> a = bmin / slope;
}
else
cmsSignalError(LCMS_ERRC_ABORTED, "Invalid angle");
}
}
// Several utilities -------------------------------------------------------
// Translate from our colorspace to ICC representation
icColorSpaceSignature LCMSEXPORT _cmsICCcolorSpace(int OurNotation)
{
switch (OurNotation) {
case 1:
case PT_GRAY: return icSigGrayData;
case 2:
case PT_RGB: return icSigRgbData;
case PT_CMY: return icSigCmyData;
case PT_CMYK: return icSigCmykData;
case PT_YCbCr:return icSigYCbCrData;
case PT_YUV: return icSigLuvData;
case PT_XYZ: return icSigXYZData;
case PT_Lab: return icSigLabData;
case PT_YUVK: return icSigLuvKData;
case PT_HSV: return icSigHsvData;
case PT_HLS: return icSigHlsData;
case PT_Yxy: return icSigYxyData;
case PT_HiFi: return icSigHexachromeData;
case PT_HiFi7: return icSigHeptachromeData;
case PT_HiFi8: return icSigOctachromeData;
case PT_HiFi9: return icSigMCH9Data;
case PT_HiFi10: return icSigMCHAData;
case PT_HiFi11: return icSigMCHBData;
case PT_HiFi12: return icSigMCHCData;
case PT_HiFi13: return icSigMCHDData;
case PT_HiFi14: return icSigMCHEData;
case PT_HiFi15: return icSigMCHFData;
default: return icMaxEnumData;
}
}
int LCMSEXPORT _cmsLCMScolorSpace(icColorSpaceSignature ProfileSpace)
{
switch (ProfileSpace) {
case icSigGrayData: return PT_GRAY;
case icSigRgbData: return PT_RGB;
case icSigCmyData: return PT_CMY;
case icSigCmykData: return PT_CMYK;
case icSigYCbCrData:return PT_YCbCr;
case icSigLuvData: return PT_YUV;
case icSigXYZData: return PT_XYZ;
case icSigLabData: return PT_Lab;
case icSigLuvKData: return PT_YUVK;
case icSigHsvData: return PT_HSV;
case icSigHlsData: return PT_HLS;
case icSigYxyData: return PT_Yxy;
case icSig6colorData:
case icSigHexachromeData: return PT_HiFi;
case icSigHeptachromeData:
case icSig7colorData: return PT_HiFi7;
case icSigOctachromeData:
case icSig8colorData: return PT_HiFi8;
case icSigMCH9Data:
case icSig9colorData: return PT_HiFi9;
case icSigMCHAData:
case icSig10colorData: return PT_HiFi10;
case icSigMCHBData:
case icSig11colorData: return PT_HiFi11;
case icSigMCHCData:
case icSig12colorData: return PT_HiFi12;
case icSigMCHDData:
case icSig13colorData: return PT_HiFi13;
case icSigMCHEData:
case icSig14colorData: return PT_HiFi14;
case icSigMCHFData:
case icSig15colorData: return PT_HiFi15;
default: return icMaxEnumData;
}
}
int LCMSEXPORT _cmsChannelsOf(icColorSpaceSignature ColorSpace)
{
switch (ColorSpace) {
case icSigGrayData: return 1;
case icSig2colorData: return 2;
case icSigXYZData:
case icSigLabData:
case icSigLuvData:
case icSigYCbCrData:
case icSigYxyData:
case icSigRgbData:
case icSigHsvData:
case icSigHlsData:
case icSigCmyData:
case icSig3colorData: return 3;
case icSigLuvKData:
case icSigCmykData:
case icSig4colorData: return 4;
case icSigMCH5Data:
case icSig5colorData: return 5;
case icSigHexachromeData:
case icSig6colorData: return 6;
case icSigHeptachromeData:
case icSig7colorData: return 7;
case icSigOctachromeData:
case icSig8colorData: return 8;
case icSigMCH9Data:
case icSig9colorData: return 9;
case icSigMCHAData:
case icSig10colorData: return 10;
case icSigMCHBData:
case icSig11colorData: return 11;
case icSigMCHCData:
case icSig12colorData: return 12;
case icSigMCHDData:
case icSig13colorData: return 13;
case icSigMCHEData:
case icSig14colorData: return 14;
case icSigMCHFData:
case icSig15colorData: return 15;
default: return 3;
}
}
// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
// number of gridpoints that would make exact match. However, a
// prelinearization of 258 entries, would map 0xFF00 on entry 257.
// This is almost what we need, unfortunately, the rest of entries
// should be scaled by (255*257/256) and this is not exact.
//
// An intermediate solution would be to use 257 entries. This does not
// map 0xFF00 exactly on a node, but so close that the dE induced is
// negligible. AND the rest of curve is exact.
static
void CreateLabPrelinearization(LPGAMMATABLE LabTable[])
{
int i;
LabTable[0] = cmsAllocGamma(257);
LabTable[1] = cmsBuildGamma(257, 1.0);
LabTable[2] = cmsBuildGamma(257, 1.0);
// L* uses 257 entries. Entry 256 holds 0xFFFF, so, the effective range
// is 0..0xFF00. Last entry (257) is also collapsed to 0xFFFF
// From 0 to 0xFF00
for (i=0; i < 256; i++)
LabTable[0]->GammaTable[i] = RGB_8_TO_16(i);
// Repeat last for 0xFFFF
LabTable[0] ->GammaTable[256] = 0xFFFF;
}
// Used by gamut & softproofing
typedef struct {
cmsHTRANSFORM hInput; // From whatever input color space. NULL for Lab
cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
double Thereshold; // The thereshold after which is considered out of gamut
} GAMUTCHAIN,FAR* LPGAMUTCHAIN;
// This sampler does compute gamut boundaries by comparing original
// values with a transform going back and forth. Values above ERR_THERESHOLD
// of maximum are considered out of gamut.
#define ERR_THERESHOLD 5
static
int GamutSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
{
LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
WORD Proof[MAXCHANNELS], Check[MAXCHANNELS];
WORD Proof2[MAXCHANNELS], Check2[MAXCHANNELS];
cmsCIELab LabIn1, LabOut1;
cmsCIELab LabIn2, LabOut2;
double dE1, dE2, ErrorRatio;
// Assume in-gamut by default.
dE1 = 0.;
dE2 = 0;
ErrorRatio = 1.0;
// Any input space? I can use In[] no matter channels
// because is just one pixel
if (t -> hInput != NULL) cmsDoTransform(t -> hInput, In, In, 1);
// converts from PCS to colorant. This always
// does return in-gamut values,
cmsDoTransform(t -> hForward, In, Proof, 1);
// Now, do the inverse, from colorant to PCS.
cmsDoTransform(t -> hReverse, Proof, Check, 1);
// Try again, but this time taking Check as input
cmsDoTransform(t -> hForward, Check, Proof2, 1);
cmsDoTransform(t -> hReverse, Proof2, Check2, 1);
// Does the transform returns out-of-gamut?
if (Check[0] == 0xFFFF &&
Check[1] == 0xFFFF &&
Check[2] == 0xFFFF)
Out[0] = 0xFF00; // Out of gamut!
else {
// Transport encoded values
cmsLabEncoded2Float(&LabIn1, In);
cmsLabEncoded2Float(&LabOut1, Check);
// Take difference of direct value
dE1 = cmsDeltaE(&LabIn1, &LabOut1);
cmsLabEncoded2Float(&LabIn2, Check);
cmsLabEncoded2Float(&LabOut2, Check2);
// Take difference of converted value
dE2 = cmsDeltaE(&LabIn2, &LabOut2);
// if dE1 is small and dE2 is small, value is likely to be in gamut
if (dE1 < t->Thereshold && dE2 < t->Thereshold)
Out[0] = 0;
else
// if dE1 is small and dE2 is big, undefined. Assume in gamut
if (dE1 < t->Thereshold && dE2 > t->Thereshold)
Out[0] = 0;
else
// dE1 is big and dE2 is small, clearly out of gamut
if (dE1 > t->Thereshold && dE2 < t->Thereshold)
Out[0] = (WORD) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
else {
// dE1 is big and dE2 is also big, could be due to perceptual mapping
// so take error ratio
if (dE2 == 0.0)
ErrorRatio = dE1;
else
ErrorRatio = dE1 / dE2;
if (ErrorRatio > t->Thereshold)
Out[0] = (WORD) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
else
Out[0] = 0;
}
}
return TRUE;
}
// Does compute a gamut LUT going back and forth across
// pcs -> relativ. colorimetric intent -> pcs
// the dE obtained is then annotated on the LUT.
// values truely out of gamut, are clipped to dE = 0xFFFE
// and values changed are supposed to be handled by
// any gamut remapping, so, are out of gamut as well.
//
// **WARNING: This algorithm does assume that gamut
// remapping algorithms does NOT move in-gamut colors,
// of course, many perceptual and saturation intents does
// not work in such way, but relativ. ones should.
static
LPLUT ComputeGamutWithInput(cmsHPROFILE hInput, cmsHPROFILE hProfile, int Intent)
{
cmsHPROFILE hLab;
LPLUT Gamut;
DWORD dwFormat;
GAMUTCHAIN Chain;
int nErrState, nChannels, nGridpoints;
LPGAMMATABLE Trans[3];
icColorSpaceSignature ColorSpace;
ZeroMemory(&Chain, sizeof(GAMUTCHAIN));
hLab = cmsCreateLabProfile(NULL);
// Safeguard against early abortion
nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);
// The figure of merit. On matrix-shaper profiles, should be almost zero as
// the conversion is pretty exact. On LUT based profiles, different resolutions
// of input and output CLUT may result in differences.
if (!cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_INPUT) &&
!cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_OUTPUT))
Chain.Thereshold = 1.0;
else
Chain.Thereshold = ERR_THERESHOLD;
ColorSpace = cmsGetColorSpace(hProfile);
// If input profile specified, create a transform from such profile to Lab
if (hInput != NULL) {
nChannels = _cmsChannelsOf(ColorSpace);
nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
Chain.hInput = cmsCreateTransform(hInput, dwFormat,
hLab, TYPE_Lab_16,
Intent,
cmsFLAGS_NOTPRECALC);
}
else {
// Input transform=NULL (Lab) Used to compute the gamut tag
// This table will take 53 points to give some accurancy,
// 53 * 53 * 53 * 2 = 291K
nChannels = 3; // For Lab
nGridpoints = 53;
Chain.hInput = NULL;
dwFormat = (CHANNELS_SH(_cmsChannelsOf(ColorSpace))|BYTES_SH(2));
}
// Does create the forward step
Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16,
hProfile, dwFormat,
INTENT_RELATIVE_COLORIMETRIC,
cmsFLAGS_NOTPRECALC);
// Does create the backwards step
Chain.hReverse = cmsCreateTransform(hProfile, dwFormat,
hLab, TYPE_Lab_16,
INTENT_RELATIVE_COLORIMETRIC,
cmsFLAGS_NOTPRECALC);
// Restores error handler previous state
cmsErrorAction(nErrState);
// All ok?
if (Chain.hForward && Chain.hReverse) {
// Go on, try to compute gamut LUT from PCS.
// This consist on a single channel containing
// dE when doing a transform back and forth on
// the colorimetric intent.
Gamut = cmsAllocLUT();
Gamut = cmsAlloc3DGrid(Gamut, nGridpoints, nChannels, 1);
// If no input, then this is a gamut tag operated by Lab,
// so include pertinent prelinearization
if (hInput == NULL) {
CreateLabPrelinearization(Trans);
cmsAllocLinearTable(Gamut, Trans, 1);
cmsFreeGammaTriple(Trans);
}
cmsSample3DGrid(Gamut, GamutSampler, (LPVOID) &Chain, Gamut ->wFlags);
}
else
Gamut = NULL; // Didn't work...
// Free all needed stuff.
if (Chain.hInput) cmsDeleteTransform(Chain.hInput);
if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
cmsCloseProfile(hLab);
// And return computed hull
return Gamut;
}
// Wrapper
LPLUT _cmsComputeGamutLUT(cmsHPROFILE hProfile, int Intent)
{
return ComputeGamutWithInput(NULL, hProfile, Intent);
}
// This routine does compute the gamut check CLUT. This CLUT goes from whatever
// input space to the 0 or != 0 gamut check.
LPLUT _cmsPrecalculateGamutCheck(cmsHTRANSFORM h)
{
_LPcmsTRANSFORM p = (_LPcmsTRANSFORM) h;
return ComputeGamutWithInput(p->InputProfile, p ->PreviewProfile, p->Intent);
}
// SoftProofing. Convert from Lab to device, then back to Lab,
// any gamut remapping is applied
static
int SoftProofSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
{
LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
WORD Colorant[MAXCHANNELS];
// From pcs to colorant
cmsDoTransform(t -> hForward, In, Colorant, 1);
// Now, do the inverse, from colorant to pcs.
cmsDoTransform(t -> hReverse, Colorant, Out, 1);
return TRUE;
}
// Does return Softproofing LUT on desired intent
LPLUT _cmsComputeSoftProofLUT(cmsHPROFILE hProfile, int nIntent)
{
cmsHPROFILE hLab;
LPLUT SoftProof;
DWORD dwFormat;
GAMUTCHAIN Chain;
int nErrState;
LPGAMMATABLE Trans[3];
// LUTs are never abs. colorimetric, is the transform who
// is responsible of generating white point displacement
if (nIntent == INTENT_ABSOLUTE_COLORIMETRIC)
nIntent = INTENT_RELATIVE_COLORIMETRIC;
ZeroMemory(&Chain, sizeof(GAMUTCHAIN));
hLab = cmsCreateLabProfile(NULL);
// ONLY 4 channels
dwFormat = (CHANNELS_SH(4)|BYTES_SH(2));
// Safeguard against early abortion
nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);
// Does create the first step
Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16,
hProfile, dwFormat,
nIntent,
cmsFLAGS_NOTPRECALC);
// Does create the last step
Chain.hReverse = cmsCreateTransform(hProfile, dwFormat,
hLab, TYPE_Lab_16,
INTENT_RELATIVE_COLORIMETRIC,
cmsFLAGS_NOTPRECALC);
// Restores error handler previous state
cmsErrorAction(nErrState);
// All ok?
if (Chain.hForward && Chain.hReverse) {
// This is Lab -> Lab, so 33 point should hold anything
SoftProof = cmsAllocLUT();
SoftProof = cmsAlloc3DGrid(SoftProof, 33, 3, 3);
CreateLabPrelinearization(Trans);
cmsAllocLinearTable(SoftProof, Trans, 1);
cmsFreeGammaTriple(Trans);
cmsSample3DGrid(SoftProof, SoftProofSampler, (LPVOID) &Chain, SoftProof->wFlags);
}
else
SoftProof = NULL; // Didn't work...
// Free all needed stuff.
if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
cmsCloseProfile(hLab);
return SoftProof;
}
static
int MostlyLinear(WORD Table[], int nEntries)
{
register int i;
int diff;
for (i=5; i < nEntries; i++) {
diff = abs((int) Table[i] - (int) _cmsQuantizeVal(i, nEntries));
if (diff > 0x0300)
return 0;
}
return 1;
}
static
void SlopeLimiting(WORD Table[], int nEntries)
{
int At = (int) floor((double) nEntries * 0.02 + 0.5); // Cutoff at 2%
double Val, Slope;
int i;
Val = Table[At];
Slope = Val / At;
for (i=0; i < At; i++)
Table[i] = (WORD) floor(i * Slope + 0.5);
}
// Check for monotonicity.
static
LCMSBOOL IsMonotonic(LPGAMMATABLE t)
{
int n = t -> nEntries;
int i, last;
last = t ->GammaTable[n-1];
for (i = n-2; i >= 0; --i) {
if (t ->GammaTable[i] > last)
return FALSE;
else
last = t ->GammaTable[i];
}
return TRUE;
}
// Check for endpoints
static
LCMSBOOL HasProperEndpoints(LPGAMMATABLE t)
{
if (t ->GammaTable[0] != 0) return FALSE;
if (t ->GammaTable[t ->nEntries-1] != 0xFFFF) return FALSE;
return TRUE;
}
#define PRELINEARIZATION_POINTS 4096
// Fixes the gamma balancing of transform. Thanks to Mike Chaney
// for pointing this subtle bug.
void _cmsComputePrelinearizationTablesFromXFORM(cmsHTRANSFORM h[], int nTransforms, LPLUT Grid)
{
LPGAMMATABLE Trans[MAXCHANNELS];
unsigned int t, i, v;
int j;
WORD In[MAXCHANNELS], Out[MAXCHANNELS];
LCMSBOOL lIsSuitable;
_LPcmsTRANSFORM InputXForm = (_LPcmsTRANSFORM) h[0];
_LPcmsTRANSFORM OutputXForm = (_LPcmsTRANSFORM) h[nTransforms-1];
// First space is *Lab, use our specialized curves for v2 Lab
if (InputXForm ->EntryColorSpace == icSigLabData &&
OutputXForm->ExitColorSpace != icSigLabData) {
CreateLabPrelinearization(Trans);
cmsAllocLinearTable(Grid, Trans, 1);
cmsFreeGammaTriple(Trans);
return;
}
// Do nothing on all but Gray/RGB to Gray/RGB transforms
if (((InputXForm ->EntryColorSpace != icSigRgbData) && (InputXForm ->EntryColorSpace != icSigGrayData)) ||
((OutputXForm->ExitColorSpace != icSigRgbData) && (OutputXForm->ExitColorSpace != icSigGrayData))) return;
for (t = 0; t < Grid -> InputChan; t++)
Trans[t] = cmsAllocGamma(PRELINEARIZATION_POINTS);
for (i=0; i < PRELINEARIZATION_POINTS; i++) {
v = _cmsQuantizeVal(i, PRELINEARIZATION_POINTS);
for (t=0; t < Grid -> InputChan; t++)
In[t] = (WORD) v;
cmsDoTransform(h[0], In, Out, 1);
for (j=1; j < nTransforms; j++)
cmsDoTransform(h[j], Out, Out, 1);
for (t=0; t < Grid -> InputChan; t++)
Trans[t] ->GammaTable[i] = Out[t];
}
// Check transfer curves
lIsSuitable = TRUE;
for (t=0; (lIsSuitable && (t < Grid->InputChan)); t++) {
// Exclude if already linear
if (MostlyLinear(Trans[t]->GammaTable, PRELINEARIZATION_POINTS))
lIsSuitable = FALSE;
// Exclude if non-monotonic
if (!IsMonotonic(Trans[t]))
lIsSuitable = FALSE;
// Exclude if weird endpoints
if (!HasProperEndpoints(Trans[t]))
lIsSuitable = FALSE;
/*
// Exclude if transfer function is not smooth enough
// to be modelled as a gamma function, or the gamma is reversed
if (cmsEstimateGamma(Trans[t]) < 1.0)
lIsSuitable = FALSE;
*/
}
if (lIsSuitable) {
for (t = 0; t < Grid ->InputChan; t++)
SlopeLimiting(Trans[t]->GammaTable, Trans[t]->nEntries);
}
if (lIsSuitable) cmsAllocLinearTable(Grid, Trans, 1);
for (t = 0; t < Grid ->InputChan; t++)
cmsFreeGamma(Trans[t]);
}
// Compute K -> L* relationship. Flags may include black point compensation. In this case,
// the relationship is assumed from the profile with BPC to a black point zero.
static
LPGAMMATABLE ComputeKToLstar(cmsHPROFILE hProfile, int nPoints, int Intent, DWORD dwFlags)
{
LPGAMMATABLE out;
int i;
WORD cmyk[4], wLab[3];
cmsHPROFILE hLab = cmsCreateLabProfile(NULL);
cmsHTRANSFORM xform = cmsCreateTransform(hProfile, TYPE_CMYK_16,
hLab, TYPE_Lab_16,
Intent, (dwFlags|cmsFLAGS_NOTPRECALC));
out = cmsAllocGamma(nPoints);
for (i=0; i < nPoints; i++) {
cmyk[0] = 0;
cmyk[1] = 0;
cmyk[2] = 0;
cmyk[3] = _cmsQuantizeVal(i, nPoints);
cmsDoTransform(xform, cmyk, wLab, 1);
out->GammaTable[i] = (WORD) (0xFFFF - wLab[0]);
}
cmsDeleteTransform(xform);
cmsCloseProfile(hLab);
return out;
}
// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
// using the proof direction on both profiles to find K->L* relationship
// then joining both curves. dwFlags may include black point compensation.
LPGAMMATABLE _cmsBuildKToneCurve(cmsHTRANSFORM hCMYK2CMYK, int nPoints)
{
LPGAMMATABLE in, out;
LPGAMMATABLE KTone;
_LPcmsTRANSFORM p = (_LPcmsTRANSFORM) hCMYK2CMYK;
// Make sure CMYK -> CMYK
if (p -> EntryColorSpace != icSigCmykData ||
p -> ExitColorSpace != icSigCmykData) return NULL;
// Create individual curves. BPC works also as each K to L* is
// computed as a BPC to zero black point in case of L*
in = ComputeKToLstar(p ->InputProfile, nPoints, p->Intent, p -> dwOriginalFlags);
out = ComputeKToLstar(p ->OutputProfile, nPoints, p->Intent, p -> dwOriginalFlags);
// Build the relationship
KTone = cmsJoinGamma(in, out);
cmsFreeGamma(in); cmsFreeGamma(out);
// Make sure it is monotonic
if (!IsMonotonic(KTone)) {
cmsFreeGamma(KTone);
return NULL;
}
return KTone;
}