blob: e489f57dafb752bb14065e469f266677f15a4bb9 [file] [log] [blame]
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* FUNCTION
* mlib_ImageConvMxN - image convolution with edge condition
*
* SYNOPSIS
* mlib_status mlib_ImageConvMxN(mlib_image *dst,
* const mlib_image *src,
* const mlib_s32 *kernel,
* mlib_s32 m,
* mlib_s32 n,
* mlib_s32 dm,
* mlib_s32 dn,
* mlib_s32 scale,
* mlib_s32 cmask,
* mlib_edge edge)
*
* ARGUMENTS
* dst Pointer to destination image.
* src Pointer to source image.
* m Kernel width (m must be not less than 1).
* n Kernel height (n must be not less than 1).
* dm, dn Position of key element in convolution kernel.
* kernel Pointer to convolution kernel.
* scale The scaling factor to convert the input integer
* coefficients into floating-point coefficients:
* floating-point coefficient = integer coefficient * 2^(-scale)
* cmask Channel mask to indicate the channels to be convolved.
* Each bit of which represents a channel in the image. The
* channels corresponded to 1 bits are those to be processed.
* edge Type of edge condition.
*
* DESCRIPTION
* 2-D convolution, MxN kernel.
*
* The center of the source image is mapped to the center of the
* destination image.
* The unselected channels are not overwritten. If both src and dst have
* just one channel, cmask is ignored.
*
* The edge condition can be one of the following:
* MLIB_EDGE_DST_NO_WRITE (default)
* MLIB_EDGE_DST_FILL_ZERO
* MLIB_EDGE_DST_COPY_SRC
* MLIB_EDGE_SRC_EXTEND
*
* RESTRICTION
* The src and the dst must be the same type and have same number
* of channels (1, 2, 3, or 4).
* m >= 1, n >= 1,
* 0 <= dm < m, 0 <= dn < n.
* For data type MLIB_BYTE: 16 <= scale <= 31 (to be compatible with VIS version)
* For data type MLIB_USHORT: 17 <= scale <= 32 (to be compatible with VIS version)
* For data type MLIB_SHORT: 17 <= scale <= 32 (to be compatible with VIS version)
* For data type MLIB_INT: scale >= 0
*/
#include "mlib_image.h"
#include "mlib_ImageConv.h"
/***************************************************************/
static void mlib_ImageConvMxNMulAdd_S32(mlib_d64 *dst,
const mlib_s32 *src,
const mlib_d64 *dkernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch);
static void mlib_ImageConvMxNMedian_S32(mlib_s32 *dst,
mlib_d64 *src,
mlib_s32 n,
mlib_s32 nch);
static void mlib_ImageConvMxNS322S32_ext(mlib_s32 *dst,
const mlib_s32 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r);
/***************************************************************/
#ifdef MLIB_USE_FTOI_CLAMPING
#define CLAMP_S32(dst, src) \
dst = (mlib_s32)(src)
#else
#define CLAMP_S32(dst, src) { \
mlib_d64 s0 = (mlib_d64)(src); \
if (s0 > (mlib_d64)MLIB_S32_MAX) s0 = (mlib_d64)MLIB_S32_MAX; \
if (s0 < (mlib_d64)MLIB_S32_MIN) s0 = (mlib_d64)MLIB_S32_MIN; \
dst = (mlib_s32)s0; \
}
#endif /* MLIB_USE_FTOI_CLAMPING */
/***************************************************************/
void mlib_ImageConvMxNMulAdd_S32(mlib_d64 *dst,
const mlib_s32 *src,
const mlib_d64 *dkernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch)
{
mlib_d64 *dst1 = dst + 1;
mlib_s32 i, j;
for (j = 0; j < m; j += 3, src += 3 * nch, dkernel += 3) {
const mlib_s32 *src2 = src + 2 * nch;
mlib_d64 hval0 = dkernel[0];
mlib_d64 hval1 = dkernel[1];
mlib_d64 hval2 = dkernel[2];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 dval = dst[0];
if (j == m - 2) {
hval2 = 0.f;
}
else if (j == m - 1) {
hval1 = 0.f;
hval2 = 0.f;
}
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 dval0 = val0 * hval0 + dval;
mlib_d64 val2 = src2[i * nch];
dval = dst1[i];
dval0 += val1 * hval1;
dval0 += val2 * hval2;
val0 = val1;
val1 = val2;
dst[i] = dval0;
}
}
}
/***************************************************************/
void mlib_ImageConvMxNMedian_S32(mlib_s32 *dst,
mlib_d64 *src,
mlib_s32 n,
mlib_s32 nch)
{
mlib_s32 i;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_s32 res;
CLAMP_S32(res, src[i]);
src[i] = 0.5;
dst[i * nch] = res;
}
}
/***************************************************************/
void mlib_ImageConvMxNS322S32_ext(mlib_s32 *dst,
const mlib_s32 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r)
{
mlib_s32 i;
mlib_d64 val = src[0];
for (i = 0; i < dx_l; i++)
dst[i] = (mlib_s32) val;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (; i < n - dx_r; i++)
dst[i] = src[nch * (i - dx_l)];
val = dst[n - dx_r - 1];
for (; i < n; i++)
dst[i] = (mlib_s32) val;
}
/***************************************************************/
mlib_status mlib_convMxNext_s32(mlib_image *dst,
const mlib_image *src,
const mlib_s32 *kernel,
mlib_s32 m,
mlib_s32 n,
mlib_s32 dx_l,
mlib_s32 dx_r,
mlib_s32 dy_t,
mlib_s32 dy_b,
mlib_s32 scale,
mlib_s32 cmask)
{
mlib_d64 dspace[1024], *dsa = dspace;
mlib_d64 akernel[256], *dkernel = akernel, fscale = 1.0;
mlib_s32 wid_e = mlib_ImageGetWidth(src);
mlib_d64 *dsh, *dsv;
mlib_s32 *isa;
mlib_s32 *da = mlib_ImageGetData(dst);
mlib_s32 *sa = mlib_ImageGetData(src);
mlib_s32 dlb = mlib_ImageGetStride(dst) >> 2;
mlib_s32 slb = mlib_ImageGetStride(src) >> 2;
mlib_s32 dw = mlib_ImageGetWidth(dst);
mlib_s32 dh = mlib_ImageGetHeight(dst);
mlib_s32 nch = mlib_ImageGetChannels(dst);
mlib_s32 i, j, j1, k, mn;
/* internal buffer */
if (3 * wid_e + m > 1024) {
dsa = mlib_malloc((3 * wid_e + m) * sizeof(mlib_d64));
if (dsa == NULL)
return MLIB_FAILURE;
}
isa = (mlib_s32 *) dsa;
/* load kernel */
mn = m * n;
if (mn > 256) {
dkernel = mlib_malloc(mn * sizeof(mlib_d64));
if (dkernel == NULL)
return MLIB_FAILURE;
}
while (scale > 30) {
fscale /= (1 << 30);
scale -= 30;
}
fscale /= (1 << scale);
for (i = 0; i < mn; i++) {
dkernel[i] = ((mlib_s32 *) kernel)[i] * fscale;
}
dsh = dsa + dw + m;
dsv = dsh + dw;
for (i = 0; i < dw; i++) {
dsh[i] = 0.5;
dsv[i] = 0.5;
}
for (j = 0; j < dh; j++, da += dlb) {
for (k = 0; k < nch; k++)
if (cmask & (1 << (nch - 1 - k))) {
mlib_s32 *sa1 = sa + k;
mlib_d64 *dkernel1 = dkernel;
for (j1 = 0; j1 < n; j1++, dkernel1 += m) {
mlib_ImageConvMxNS322S32_ext(isa, sa1, dw + m - 1, nch, dx_l, dx_r);
mlib_ImageConvMxNMulAdd_S32(dsh, isa, dkernel1, dw, m, 1);
if ((j + j1 >= dy_t) && (j + j1 < dh + n - dy_b - 2))
sa1 += slb;
}
mlib_ImageConvMxNMedian_S32(da + k, dsh, dw, nch);
}
if ((j >= dy_t) && (j < dh + n - dy_b - 2))
sa += slb;
}
if (dkernel != akernel)
mlib_free(dkernel);
if (dsa != dspace)
mlib_free(dsa);
return MLIB_SUCCESS;
}
/***************************************************************/