blob: e61bb57b11a33fe1918ac0ab6b07152ffe06912a [file] [log] [blame]
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* FUNCTION
* mlib_ImageConvMxN_Fp - image convolution with edge condition
*
* SYNOPSIS
* mlib_status mlib_ImageConvMxN_Fp(mlib_image *dst,
* const mlib_image *src,
* const mlib_d64 *kernel,
* mlib_s32 m,
* mlib_s32 n,
* mlib_s32 dm,
* mlib_s32 dn,
* mlib_s32 cmask,
* mlib_edge edge)
*
* ARGUMENTS
* dst Pointer to destination image.
* src Pointer to source image.
* m Kernel width (m must be not less than 1).
* n Kernel height (n must be not less than 1).
* dm, dn Position of key element in convolution kernel.
* kernel Pointer to convolution kernel.
* cmask Channel mask to indicate the channels to be convolved.
* Each bit of which represents a channel in the image. The
* channels corresponded to 1 bits are those to be processed.
* edge Type of edge condition.
*
* DESCRIPTION
* 2-D convolution, MxN kernel.
*
* The center of the source image is mapped to the center of the
* destination image.
* The unselected channels are not overwritten. If both src and dst have
* just one channel, cmask is ignored.
*
* The edge condition can be one of the following:
* MLIB_EDGE_DST_NO_WRITE (default)
* MLIB_EDGE_DST_FILL_ZERO
* MLIB_EDGE_DST_COPY_SRC
* MLIB_EDGE_SRC_EXTEND
*
* RESTRICTION
* The src and the dst must be the same type and have same number
* of channels (1, 2, 3, or 4).
* m >= 1, n >= 1,
* 0 <= dm < m, 0 <= dn < n.
*/
#include "mlib_image.h"
#include "mlib_ImageCheck.h"
#include "mlib_SysMath.h"
#include "mlib_ImageConv.h"
/***************************************************************/
static void mlib_ImageConvMxNMulAdd_F32(mlib_f32 *dst,
const mlib_f32 *src,
const mlib_d64 *kernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch);
static void mlib_ImageConvMxNF322F32_ext(mlib_f32 *dst,
const mlib_f32 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r);
static void mlib_ImageConvMxNMulAdd_D64(mlib_d64 *dst,
const mlib_d64 *src,
const mlib_d64 *kernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch);
static void mlib_ImageConvMxND642D64_ext(mlib_d64 *dst,
const mlib_d64 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r);
/***************************************************************/
#if 0
static void mlib_ImageConvMxNMulAdd2_F32(mlib_f32 *hdst,
mlib_f32 *vdst,
const mlib_f32 *src,
const mlib_d64 *hfilter,
const mlib_d64 *vfilter,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch);
static void mlib_ImageConvMxNMulAdd2_D64(mlib_d64 *hdst,
mlib_d64 *vdst,
const mlib_d64 *src,
const mlib_d64 *hfilter,
const mlib_d64 *vfilter,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch);
#endif /* 0 */
/***************************************************************/
mlib_status mlib_ImageConvMxN_Fp(mlib_image *dst,
const mlib_image *src,
const mlib_d64 *kernel,
mlib_s32 m,
mlib_s32 n,
mlib_s32 dm,
mlib_s32 dn,
mlib_s32 cmask,
mlib_edge edge)
{
mlib_type type;
MLIB_IMAGE_CHECK(dst);
type = mlib_ImageGetType(dst);
if (type != MLIB_FLOAT && type != MLIB_DOUBLE)
return MLIB_FAILURE;
return mlib_ImageConvMxN_f(dst, src, kernel, m, n, dm, dn, 0, cmask, edge);
}
/***************************************************************/
void mlib_ImageConvMxNMulAdd_F32(mlib_f32 *dst,
const mlib_f32 *src,
const mlib_d64 *kernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch)
{
mlib_f32 *hdst1 = dst + dnch;
mlib_s32 i, j;
for (j = 0; j < m - 2; j += 3, src += 3 * nch, kernel += 3) {
const mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) kernel[0];
mlib_f32 hval1 = (mlib_f32) kernel[1];
mlib_f32 hval2 = (mlib_f32) kernel[2];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
hdvl0 += val1 * hval1;
hdvl0 += val2 * hval2;
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
if (j < m - 1) {
const mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) kernel[0];
mlib_f32 hval1 = (mlib_f32) kernel[1];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
hdvl0 += val1 * hval1;
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
else if (j < m) {
const mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) kernel[0];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
}
/***************************************************************/
void mlib_ImageConvMxNF322F32_ext(mlib_f32 *dst,
const mlib_f32 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r)
{
mlib_s32 i;
mlib_f32 val = src[0];
for (i = 0; i < dx_l; i++)
dst[i] = val;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (; i < n - dx_r; i++)
dst[i] = src[nch * (i - dx_l)];
val = dst[n - dx_r - 1];
for (; i < n; i++)
dst[i] = val;
}
/***************************************************************/
mlib_status mlib_convMxNext_f32(mlib_image *dst,
const mlib_image *src,
const mlib_d64 *kernel,
mlib_s32 m,
mlib_s32 n,
mlib_s32 dx_l,
mlib_s32 dx_r,
mlib_s32 dy_t,
mlib_s32 dy_b,
mlib_s32 cmask)
{
mlib_d64 dspace[1024], *dsa = dspace;
mlib_s32 wid_e = mlib_ImageGetWidth(src);
mlib_f32 *fsa;
mlib_f32 *da = mlib_ImageGetData(dst);
mlib_f32 *sa = mlib_ImageGetData(src);
mlib_s32 dlb = mlib_ImageGetStride(dst) >> 2;
mlib_s32 slb = mlib_ImageGetStride(src) >> 2;
mlib_s32 dw = mlib_ImageGetWidth(dst);
mlib_s32 dh = mlib_ImageGetHeight(dst);
mlib_s32 nch = mlib_ImageGetChannels(dst);
mlib_s32 i, j, j1, k;
if (3 * wid_e + m > 1024) {
dsa = mlib_malloc((3 * wid_e + m) * sizeof(mlib_d64));
if (dsa == NULL)
return MLIB_FAILURE;
}
fsa = (mlib_f32 *) dsa;
for (j = 0; j < dh; j++, da += dlb) {
for (k = 0; k < nch; k++)
if (cmask & (1 << (nch - 1 - k))) {
const mlib_f32 *sa1 = sa + k;
mlib_f32 *da1 = da + k;
const mlib_d64 *kernel1 = kernel;
for (i = 0; i < dw; i++)
da1[i * nch] = 0.f;
for (j1 = 0; j1 < n; j1++, kernel1 += m) {
mlib_ImageConvMxNF322F32_ext(fsa, sa1, dw + m - 1, nch, dx_l, dx_r);
mlib_ImageConvMxNMulAdd_F32(da1, fsa, kernel1, dw, m, 1, nch);
if ((j + j1 >= dy_t) && (j + j1 < dh + n - dy_b - 2))
sa1 += slb;
}
}
if ((j >= dy_t) && (j < dh + n - dy_b - 2))
sa += slb;
}
if (dsa != dspace)
mlib_free(dsa);
return MLIB_SUCCESS;
}
/***************************************************************/
#if 0
void mlib_ImageConvMxNMulAdd2_F32(mlib_f32 *hdst,
mlib_f32 *vdst,
const mlib_f32 *src,
const mlib_d64 *hfilter,
const mlib_d64 *vfilter,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch)
{
mlib_f32 *hdst1 = hdst + dnch, *vdst1 = vdst + dnch;
mlib_s32 i, j;
for (j = 0; j < m - 2; j += 3, src += 3 * nch, hfilter += 3, vfilter += 3) {
mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) hfilter[0];
mlib_f32 vval0 = (mlib_f32) vfilter[0];
mlib_f32 hval1 = (mlib_f32) hfilter[1];
mlib_f32 vval1 = (mlib_f32) vfilter[1];
mlib_f32 hval2 = (mlib_f32) hfilter[2];
mlib_f32 vval2 = (mlib_f32) vfilter[2];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = hdst[0];
mlib_f32 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 vdvl0 = val0 * vval0 + vdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
hdvl0 += val1 * hval1;
vdvl0 += val1 * vval1;
hdvl0 += val2 * hval2;
vdvl0 += val2 * vval2;
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
if (j < m - 1) {
mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) hfilter[0];
mlib_f32 vval0 = (mlib_f32) vfilter[0];
mlib_f32 hval1 = (mlib_f32) hfilter[1];
mlib_f32 vval1 = (mlib_f32) vfilter[1];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = hdst[0];
mlib_f32 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 vdvl0 = val0 * vval0 + vdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
hdvl0 += val1 * hval1;
vdvl0 += val1 * vval1;
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
else if (j < m) {
mlib_f32 *src2 = src + 2 * nch;
mlib_f32 hval0 = (mlib_f32) hfilter[0];
mlib_f32 vval0 = (mlib_f32) vfilter[0];
mlib_f32 val0 = src[0];
mlib_f32 val1 = src[nch];
mlib_f32 hdvl = hdst[0];
mlib_f32 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_f32 hdvl0 = val0 * hval0 + hdvl;
mlib_f32 vdvl0 = val0 * vval0 + vdvl;
mlib_f32 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
}
/***************************************************************/
void mlib_ImageConvMxNMulAdd2_D64(mlib_d64 *hdst,
mlib_d64 *vdst,
const mlib_d64 *src,
const mlib_d64 *hfilter,
const mlib_d64 *vfilter,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch)
{
mlib_d64 *hdst1 = hdst + dnch, *vdst1 = vdst + dnch;
mlib_s32 i, j;
for (j = 0; j < m - 2; j += 3, src += 3 * nch, hfilter += 3, vfilter += 3) {
mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = hfilter[0];
mlib_d64 vval0 = vfilter[0];
mlib_d64 hval1 = hfilter[1];
mlib_d64 vval1 = vfilter[1];
mlib_d64 hval2 = hfilter[2];
mlib_d64 vval2 = vfilter[2];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = hdst[0];
mlib_d64 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 vdvl0 = val0 * vval0 + vdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
hdvl0 += val1 * hval1;
vdvl0 += val1 * vval1;
hdvl0 += val2 * hval2;
vdvl0 += val2 * vval2;
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
if (j < m - 1) {
mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = hfilter[0];
mlib_d64 vval0 = vfilter[0];
mlib_d64 hval1 = hfilter[1];
mlib_d64 vval1 = vfilter[1];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = hdst[0];
mlib_d64 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 vdvl0 = val0 * vval0 + vdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
hdvl0 += val1 * hval1;
vdvl0 += val1 * vval1;
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
else if (j < m) {
mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = hfilter[0];
mlib_d64 vval0 = vfilter[0];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = hdst[0];
mlib_d64 vdvl = vdst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 vdvl0 = val0 * vval0 + vdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
vdvl = vdst1[i * dnch];
val0 = val1;
val1 = val2;
hdst[i * dnch] = hdvl0;
vdst[i * dnch] = vdvl0;
}
}
}
#endif /* 0 */
/***************************************************************/
void mlib_ImageConvMxNMulAdd_D64(mlib_d64 *dst,
const mlib_d64 *src,
const mlib_d64 *kernel,
mlib_s32 n,
mlib_s32 m,
mlib_s32 nch,
mlib_s32 dnch)
{
mlib_d64 *hdst1 = dst + dnch;
mlib_s32 i, j;
for (j = 0; j < m - 2; j += 3, src += 3 * nch, kernel += 3) {
const mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = kernel[0];
mlib_d64 hval1 = kernel[1];
mlib_d64 hval2 = kernel[2];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
hdvl0 += val1 * hval1;
hdvl0 += val2 * hval2;
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
if (j < m - 1) {
const mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = kernel[0];
mlib_d64 hval1 = kernel[1];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
hdvl0 += val1 * hval1;
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
else if (j < m) {
const mlib_d64 *src2 = src + 2 * nch;
mlib_d64 hval0 = kernel[0];
mlib_d64 val0 = src[0];
mlib_d64 val1 = src[nch];
mlib_d64 hdvl = dst[0];
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (i = 0; i < n; i++) {
mlib_d64 hdvl0 = val0 * hval0 + hdvl;
mlib_d64 val2 = src2[i * nch];
hdvl = hdst1[i * dnch];
val0 = val1;
val1 = val2;
dst[i * dnch] = hdvl0;
}
}
}
/***************************************************************/
void mlib_ImageConvMxND642D64_ext(mlib_d64 *dst,
const mlib_d64 *src,
mlib_s32 n,
mlib_s32 nch,
mlib_s32 dx_l,
mlib_s32 dx_r)
{
mlib_s32 i;
mlib_d64 val = src[0];
for (i = 0; i < dx_l; i++)
dst[i] = val;
#ifdef __SUNPRO_C
#pragma pipeloop(0)
#endif /* __SUNPRO_C */
for (; i < n - dx_r; i++)
dst[i] = src[nch * (i - dx_l)];
val = dst[n - dx_r - 1];
for (; i < n; i++)
dst[i] = val;
}
/***************************************************************/
mlib_status mlib_convMxNext_d64(mlib_image *dst,
const mlib_image *src,
const mlib_d64 *kernel,
mlib_s32 m,
mlib_s32 n,
mlib_s32 dx_l,
mlib_s32 dx_r,
mlib_s32 dy_t,
mlib_s32 dy_b,
mlib_s32 cmask)
{
mlib_d64 dspace[1024], *dsa = dspace;
mlib_s32 wid_e = mlib_ImageGetWidth(src);
mlib_d64 *da = mlib_ImageGetData(dst);
mlib_d64 *sa = mlib_ImageGetData(src);
mlib_s32 dlb = mlib_ImageGetStride(dst) >> 3;
mlib_s32 slb = mlib_ImageGetStride(src) >> 3;
mlib_s32 dw = mlib_ImageGetWidth(dst);
mlib_s32 dh = mlib_ImageGetHeight(dst);
mlib_s32 nch = mlib_ImageGetChannels(dst);
mlib_s32 i, j, j1, k;
if (3 * wid_e + m > 1024) {
dsa = mlib_malloc((3 * wid_e + m) * sizeof(mlib_d64));
if (dsa == NULL)
return MLIB_FAILURE;
}
for (j = 0; j < dh; j++, da += dlb) {
for (k = 0; k < nch; k++)
if (cmask & (1 << (nch - 1 - k))) {
mlib_d64 *sa1 = sa + k;
mlib_d64 *da1 = da + k;
const mlib_d64 *kernel1 = kernel;
for (i = 0; i < dw; i++)
da1[i * nch] = 0.;
for (j1 = 0; j1 < n; j1++, kernel1 += m) {
mlib_ImageConvMxND642D64_ext(dsa, sa1, dw + m - 1, nch, dx_l, dx_r);
mlib_ImageConvMxNMulAdd_D64(da1, dsa, kernel1, dw, m, 1, nch);
if ((j + j1 >= dy_t) && (j + j1 < dh + n - dy_b - 2))
sa1 += slb;
}
}
if ((j >= dy_t) && (j < dh + n - dy_b - 2))
sa += slb;
}
if (dsa != dspace)
mlib_free(dsa);
return MLIB_SUCCESS;
}
/***************************************************************/