blob: d5ce0f18133a005e398aeddb7e2ef189d81243ac [file] [log] [blame]
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* FUNCTIONS
* mlib_ImageConvCopyEdge_Bit - Copy src edges to dst edges
*
*
* SYNOPSIS
* mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst,
* const mlib_image *src,
* mlib_s32 dx_l,
* mlib_32 dx_r,
* mlib_s32 dy_t,
* mlib_32 dy_b,
* mlib_s32 cmask);
*
* ARGUMENT
* dst Pointer to an dst image.
* src Pointer to an src image.
* dx_l Number of columns on the left side of the
* image to be copyed.
* dx_r Number of columns on the right side of the
* image to be copyed.
* dy_t Number of rows on the top edge of the
* image to be copyed.
* dy_b Number of rows on the top edge of the
* image to be copyed.
* cmask Channel mask to indicate the channels to be convolved.
* Each bit of which represents a channel in the image. The
* channels corresponded to 1 bits are those to be processed.
*
* RESTRICTION
* The src and the dst must be the MLIB_BIT type, same width, same height and have same number
* of channels (1). The unselected channels are not
* overwritten. If both src and dst have just one channel,
* cmask is ignored.
*
* DESCRIPTION
* Copy src edges to dst edges.
*
* The unselected channels are not overwritten.
* If src and dst have just one channel,
* cmask is ignored.
*/
#include "mlib_image.h"
#include "mlib_ImageConvEdge.h"
/***************************************************************/
mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst,
const mlib_image *src,
mlib_s32 dx_l,
mlib_s32 dx_r,
mlib_s32 dy_t,
mlib_s32 dy_b,
mlib_s32 cmask)
{
mlib_u8 *pdst = mlib_ImageGetData(dst), *pd;
mlib_u8 *psrc = mlib_ImageGetData(src), *ps;
mlib_s32 img_height = mlib_ImageGetHeight(dst);
mlib_s32 img_width = mlib_ImageGetWidth(dst);
mlib_s32 img_strided = mlib_ImageGetStride(dst);
mlib_s32 img_strides = mlib_ImageGetStride(src);
mlib_s32 bitoffd = mlib_ImageGetBitOffset(dst);
mlib_s32 bitoffs = mlib_ImageGetBitOffset(src);
mlib_s32 bitoff_end, test, shift1, shift2;
mlib_u32 s0, s1, tmp;
mlib_u8 mask, mask_end;
mlib_u8 tmp_start, tmp_end;
mlib_s32 i, j, amount;
if (bitoffd == bitoffs) {
pd = pdst;
ps = psrc;
if (dx_l > 0) {
if (bitoffd + dx_l <= 8) {
mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7));
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
}
} else {
mask = (0xFF >> bitoffd);
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
}
amount = (bitoffd + dx_l + 7) >> 3;
mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7));
for (j = 1; j < amount - 1; j++) {
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided + j] = ps[i*img_strides + j];
}
}
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
(ps[i*img_strides + amount - 1] & mask);
}
}
}
if (dx_r > 0) {
pd = pdst + (img_width + bitoffd - dx_r) / 8;
ps = psrc + (img_width + bitoffd - dx_r) / 8;
bitoffd = (img_width + bitoffd - dx_r) & 7;
if (bitoffd + dx_r <= 8) {
mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7));
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
}
} else {
mask = (0xFF >> bitoffd);
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
}
amount = (bitoffd + dx_r + 7) >> 3;
mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7));
for (j = 1; j < amount - 1; j++) {
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided + j] = ps[i*img_strides + j];
}
}
for (i = dy_t; i < (img_height - dy_b); i++) {
pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
(ps[i*img_strides + amount - 1] & mask);
}
}
}
bitoffd = mlib_ImageGetBitOffset(dst);
bitoff_end = (bitoffd + img_width) & 7;
amount = (bitoffd + img_width + 7) >> 3;
mask = (0xFF >> bitoffd);
mask_end = (0xFF << ((8 - bitoff_end) & 7));
pd = pdst;
ps = psrc;
for (i = 0; i < dy_t; i++) {
tmp_start = pd[i*img_strided];
tmp_end = pd[i*img_strided+amount-1];
for (j = 0; j < amount; j++) {
pd[i*img_strided + j] = ps[i*img_strides + j];
}
pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask);
pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
(pd[i*img_strided+amount-1] & mask_end);
}
pd = pdst + (img_height-1)*img_strided;
ps = psrc + (img_height-1)*img_strides;
for (i = 0; i < dy_b; i++) {
tmp_start = pd[-i*img_strided];
tmp_end = pd[-i*img_strided+amount-1];
for (j = 0; j < amount; j++) {
pd[-i*img_strided + j] = ps[-i*img_strides + j];
}
pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask);
pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
(pd[-i*img_strided+amount-1] & mask_end);
}
} else {
pd = pdst;
if (bitoffs > bitoffd) {
ps = psrc;
shift2 = (8 - (bitoffs - bitoffd));
test = 0;
} else {
test = 1;
ps = psrc - 1;
shift2 = bitoffd - bitoffs;
}
shift1 = 8 - shift2;
if (dx_l > 0) {
if (bitoffd + dx_l <= 8) {
mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7));
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides];
s1 = ps[i*img_strides+1];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
}
} else {
mask = (0xFF >> bitoffd);
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides];
s1 = ps[i*img_strides+1];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
}
amount = (bitoffd + dx_l + 7) >> 3;
mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7));
for (j = 1; j < amount - 1; j++) {
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides+j];
s1 = ps[i*img_strides+j+1];
pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
s0 = s1;
}
}
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides+amount-1];
s1 = ps[i*img_strides+amount];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
(tmp & mask);
}
}
}
if (dx_r > 0) {
pd = pdst + (img_width + bitoffd - dx_r) / 8;
ps = psrc + (img_width + bitoffd - dx_r) / 8;
bitoffd = (img_width + bitoffd - dx_r) & 7;
ps -= test;
if (bitoffd + dx_r <= 8) {
mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7));
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides];
s1 = ps[i*img_strides+1];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
}
} else {
mask = (0xFF >> bitoffd);
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides];
s1 = ps[i*img_strides+1];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
}
amount = (bitoffd + dx_r + 7) >> 3;
mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7));
for (j = 1; j < amount - 1; j++) {
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides+j];
s1 = ps[i*img_strides+j+1];
pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
}
}
for (i = dy_t; i < (img_height - dy_b); i++) {
s0 = ps[i*img_strides+amount-1];
s1 = ps[i*img_strides+amount];
tmp = (s0 << shift1) | (s1 >> shift2);
pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
(tmp & mask);
}
}
}
bitoffd = mlib_ImageGetBitOffset(dst);
bitoff_end = (bitoffd + img_width) & 7;
amount = (bitoffd + img_width + 7) >> 3;
mask = (0xFF >> bitoffd);
mask_end = (0xFF << ((8 - bitoff_end) & 7));
pd = pdst;
ps = psrc-test;
for (i = 0; i < dy_t; i++) {
tmp_start = pd[i*img_strided];
tmp_end = pd[i*img_strided+amount-1];
s0 = ps[i*img_strides];
for (j = 0; j < amount; j++) {
s1 = ps[i*img_strides+j+1];
pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
s0 = s1;
}
pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask);
pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
(pd[i*img_strided+amount-1] & mask_end);
}
pd = pdst + (img_height-1)*img_strided;
ps = psrc + (img_height-1)*img_strides - test;
for (i = 0; i < dy_b; i++) {
tmp_start = pd[-i*img_strided];
tmp_end = pd[-i*img_strided+amount-1];
s0 = ps[-i*img_strides];
for (j = 0; j < amount; j++) {
s1 = ps[-i*img_strides+j+1];
pd[-i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
s0 = s1;
}
pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask);
pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
(pd[-i*img_strided+amount-1] & mask_end);
}
}
return MLIB_SUCCESS;
}
/***************************************************************/